Chapter 7

Cointegration

7.1 Introduction

Let {X; : t € Z} be a time series, If {V?X,} is a stationary time series, but {V?~1X;} is not, then
{X:} is said to be integrated of order d, written more concisely as {X;} ~ I(d).

Recall that V denotes the difference operator VX, = Xy — X;_1 and hence that V = (1 — B) where
B denotes the backward shift operator. The power denotes:

ve.=(1- B).

If {X,} is an m-variate time series, the series {V?X,} is defined as the m-variate time series with jth
component {V4Xy; : t € Z}.

An m-variate time series {X, : t € Z} is integrated of order d if each component of VX, is
stationary, but each component of V¢~!'X, is not. This is written: {X,} ~ I(d). The I(d) process
{X,} is said to be cointegrated with cointegration vector a if « is an m-vector such that the univariate

time series {a'X,} is integrated of order less than d.
Example 7.1.

Counsider the following bi-variate process:

=1

X, ="' _17; tel,2,... {Z}~1ID(0,0?)
YV,=X;+W, tel,2,... {W;}~I1ID(0,7?)

where {W;} L {Z;}. Then clearly {(Xy, Y;)!} is integrated of order 1, since
VX, =2 VY, =Zi+ (W — Wiq).
It is cointegrated with cointegration vector o = (1,—1)¢, since
Xe—Yr=-W;
which is stationary.
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Let Uy = VX; = Z; and V; = VY, = Z; + Wy — W;_1. Then the series (Uy, V;)! may be expressed as a
bivariate MA(1) process:

() =GB ) (5 ) ()
ot ) ()5 7))

The process is not invertible, since
1 0
det ( ) =1-z
z 11—z

which is 0 for z = 1. O

and

7.2 Error Correction

A system is cointegrated if there are more unit-root nonstationary components than the number of
unit roots. It follows that taking the system of equations obtained by differencing each individual com-
ponent sufficiently often to achieve stationarity results in the problem of unit roots in the MA matrix
polynomial, similar to those encountered by over differencing, which causes difficulties in parameter
estimation. A VARMA time series is not invertible if the MA matrix polynomial contains unit roots.

Engle and Granger (1987) discuss an error correction representation for a cointegrated system that
overcomes the difficulty of estimating noninvertible VARMA models. The following, which develops

the example above, gives all the principles.
Example 7.2.

Continuing with the example above, the series {(X¢,Y;)! : ¢ € Z} can be represented as a VAR(1)
Xt 1 0 Xt_l N Zt . €1
Yy 10 Yi Zy+ Wy €t2
2 2
€\ _ Zy ~1ID 0 o o .
€12 Zy + Wy 0 o2 o2+ 712

From this, it follows directly, by subtracting (X;_1,Y;—1)* from both sides, that

()= ()02 ) () =0 e 062 )- ()
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where



X
This is stationary, because (1,—1) Yt is stationary and the innovation term is also stationary.
t

Furthermore, the ‘MA’ part does not have the problem of unit roots, since it is the same as the ‘MA’

part of the original.

When differencing a VARMA, the aim is therefore to express the differenced equation in such a way
that the VMA part remains the same and the terms in the VAR part are modified so that each term

is stationary. The rearrangement which does this is given by the equations in the following lemma.

Lemma 7.1. Let
p q
X, =S 0X, = +2,+Y.0,2;  {Z)~ WNQ,%).
— ~

where ©, 1s a determanistic trend function. Then VX, has representation:

p—1
VX, = M+H&1+§)®ma,+4+§)34] (7.1)
i=1 7j=1
where
Or =30 @ j=1,....,p—1 72)
=&, +Q, 1 +...+ P — I =—-2(1).
Proof
P q
VX, = p,-Xe 0+ X j+Z,+ ) 07,
j=1 j=1
p P q
= (I - Z@J X, Z i(Xiy = Xp1) +Z, + Z@Zt—j
j=1 j=1
P p J q
= (I - z (D] 21" Z J Z(Xt—kﬂ = Xik)+ 2+ Z @Zt—j
j=2 k=2 j=1
p—1
= p+0X,  +> VX, Z+Zt+Z@ Z,_
j=1 j=1
where ®%:j=1,...,p— 1 and Il are given by Equation (7.2). O

Note that the AR matrices (®;)?_; can be recovered from the representation of Equation (7.1) via:

b =111+ 8]
O, =0 -, i=2,...,p, (using @5 = 0).

If the process {VX,} in Equation (7.1) it follows that I1X,_; is stationary. If IT has rank k < m, then
it may be decomposed into IT = AB! where A and B are m x k matrices of full rank. The term 11X, ,
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is known as the error correction term, which plays a key role in cointegration. An error correction

representation is:

p—1 q
VX, =p, +AB'X,  + Y O;VX i+ 2+ 0,2,
i=1 =1

where A and B are such m x k full rank matrices. In the decomposition II = AB?, the matrices A and

B are not necessarily unique. For any k& X k orthonormal matrix P,

AB' = APP'B' = (AP)(BP)' = A.B!.

where both A, and B, are of rank k.

To choose an appropriate matrix B, a common requirement is:

B' = (It| BY)

where Ij, is the k x k identity matrix and Bj is a (m — k) x k matrix. This may require the elements

of X, to be re-ordered so that the first £ components all have a unit root.

There are three cases of interest in considering the ECM:

1. Rank(IT) = 0. This implies IT = 0 and hence that X, is not cointegrated. The ECM reduces to:

q
VX, =, +OVX, 4.+ 0 VX o+ 2+ Y 0,7,
j=1

so that VX, follows a VARMA(p-1,q) model with deterministic trend g, .

2. Rank(II) = m This implies that |®(1)| # 0 and X, contains no unit roots; that is X, is I(0).
The ECM model is not informative and X, should be studied directly.

3. 0 < Rank(IT) = & < m. In this case, II can be written as:

1= AB!

where A and B are m x k matrices with Rank(A) = Rank(B) = k. The ECM is:

q
VX, =p,+AB'X, | +®[VX, | +...+® VX, +Z,+> 6,Z,
j=1

This means that X, is cointegrated with k linearly independent cointegrating vectors and m — k

unit roots, which correspond to m — k common stochastic trends of X,.
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The discussion assumes that all unit roots are of multiplicity 1, but it is straightforward to extend
it to situations where the unit roots have different multiplicities. I(0) or I(1) processes are the most
common in applications.

If the innovations are from a known family of distributions and the number of cointegrating factors
k is given, then the error correction model can be estimated by maximum likelihood methods.

If X, is cointegrated with Rank(IT) = k, then a simple way to obtain the representation of the
m — k common trends is to obtain an orthogonal complement matrix A of A (that, A, ismx (m—k)
such that A} A = 0) and then set Y, = A" X,. This is seen by pre-multiplying the ECM by AY and
using Il = AB'.

If X, is at most I(1), it follows that VX, is I(0). If X, contains unit roots, then det(®(1)) = 0 and
IT = —®(1) is singular.

There is no error correction term in the resulting equation. It follows that the m — k-variate process

Y, has m — k unit roots.
Example 7.3.

Let X, be the bivariate ARMA(1,1) process defined by:

th . 0.5 —1.0 Xt—l,l o Ztl + —0.2 04 Zt_171
X2 —0.25 0.5 Xi12 )\ Z 01 —02 Ziaa )

{Z} ~WN@O,%)  det(X) > 0.

1—-0.52 z
d(z) =
0.25% 1-0.5z

|®(2)| = (1 —-0.52)% —0.2522 =1 — 2

This is not a stationary model;

which has a unit root. This may be re-written as:

VXa ) [ 05 -10 Xean N, (20, [ -02 04 Zi 11

VXp )\ 025 —05 Xi-12 Zia 01 —02 Zi 19

~1 X, Z —02 04 7
(05 10 ) ( M) 00 )+ i

—0.5 X 12 Zi) 01 —0.2 Zi 19

This is a stationary model because both VX, and (0.5,1.0)X, are stationary. The MA matrix poly-

nomial does not have unit roots. In this case,

NEAIRIES
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giving

yt:(1 _z)gtzxﬂ—mz

7.3 Cointegration Test

Consider an m-dimensional VAR(p) time series {X,} with possible time trend, so that the model is:

The innovations are assumed to be Gaussian. Suppose that

By = By Y
where p and p, are m-vectors (the trend is linear). For a specified deterministic term p,, the rank
of IT may be tested using a mazimum likelihood test. Let H(k) denote the null hypothesis that the
rank of the matrix II is k. For example, under H(0), Rank(II) = 0 so that II = 0 and there is no
cointegration. The hypotheses of interest are:

HO)c...C H(k)C...C H(m).

For testing purposes, the ECM is written:

VX, =p,+itp, +1IX  + IV, +...+ 2, VX, 1+ 7, t=p+1,...T

The rank of II is the number of non zero eigenvalues of II, which can be obtained if a consistent
estimate of II is available. Clearly II is related to the covariance matrix between X, ; and VX, after

adjusting for the effects of B, = o Tty and VX, ;,, i=1,...,p—1. Let
Qt = VXIE - P(VXIELF(VXt—Z ti= 17 tee 7p7H0 +tH1))

and
Kt = thl - P(thl‘f(vztfi ti= 17 ce 7p7ﬁ0 + tﬁl))

then

Qt == Hﬁt + Zt'

which is the equation of interest for the cointegration test.

Under the normality assumption, the likelihood ratio test for testing the rank of IT can be done using

canonical correlation analysis between U, and V,. These canonical correlations are the partial canonical
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correlations between VX, | and X, ;. Let {:\\l} denote the squared canonical correlations between

U . and Et.
Consider the hypotheses:
Hp : Rank(Il) =k versus Hj : Rank(Il) > k

where H; denotes the alternative. The likelihood ratio test, proposed by Johansen (1988), is:

m
LRy (k) = —(n—p) D In(1—=X)
i=k+1

If Rank(IT) = k, then i should be small for i > k and hence the test statistic should be small. This
test is referred to as the trace cointegration test.

The distribution of the test statistic under the null hypothesis is not asymptotically chi-squared;
the situation does not admit splitting into i.i.d. variables and it is not possible to appeal to a central
limit theorem effect. Information on the distribution is obtained via simulation and these values are

stored in the routines used to test the hypotheses.

Johansen (1988) also considers a sequential procedure to determine the number of cointegrating vectors.

Specifically, the hypotheses of interest are:

Hj : Rank(Il) = k Versus H; : Rank(Il) = k + 1.

The LR ratio test statistic in this case, called the mazimum eigenvalue statistic, is:

LRmax (k) = —(n — p)In (1 . XM) .

Again, the statistic does not have a standard distribution and the critical values have been obtained

by simulation and are stored in the routines used for testing.

7.4 Forecasting of Conintegrated VAR Models

The fitted ECM can be used to produce forecasts. First, conditioned on the estimated parameters, the
ECM equation can be used to produce forecasts of the differenced series V.X,. These forecasts are then
used in turn to obtain forecasts of X,. The difference between these forecasts and the VAR forecasts
considered earlier is that the ECM approach imposes the cointegration relationships in producing the

forecasts.

Example The data for two weekly U.S. short-term interest rates are from December 12, 1958 and
August 6, 2004 are found in w-tb3n6éms.txt. They are the 3 month and 6 month treasury bill (TB)
rates. Firstly, when the Augmented Dickey-Fuller test is applied, the null hypothesis of ‘no unit roots’

is not rejected for either the series. The 3 month gives a p value of 0.2573, while the 6 month gives
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a p value of 0.2907. We may therefore proceed on the assumption that these series have unit roots.

Secondly, from the plots found in Figure 7.1 show remarkable similarities.

15

data$X3m
10

I I I I
0 500 1000 1500 2000

Index

15

data$X6m
10

T T T I
0 500 1000 1500 2000

Index

Figure 7.1: Treasury bill 3 month and 6 month

At a rough guess, the difference between the 3 month and 6 month may produce a series that does not
have unit roots. The difference (3 month - 6 month) is plotted in Figure 7.2

Applying the Augmented Dickey-Fuller test to the differences gives a Dickey-Fuller statistic of —8.6174
and a p-value of less than 0.01, so the presence of a unit root is rejected at the 0.01 significance level;

it is safe to work under the assumption that this series of differences does not have a unit root.

Firstly, note that for the co-integration test, the AR order p is given. The first thing to do is to find a
suitable order. The package vars helps with this and should be installed and activated.

library(vars)
WWW =
"https://www.mimuw.edu.pl/"noble/courses/TimeSeries/data/w-tb3n6ms.

txt"
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1.0

data$diff
0.0
|

-1.5
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Index

Figure 7.2: Difference: treasury bill 3 month minus 6 month

wtb3n6ms = read.table(www,header=T)
data <- wtb3néms

x <- cbind(data$X3m, data$X6m)

y <- data.frame(x)
z<-VAR(y,p=4,type="both",ic="AIC")

The default value for p is 1, so it is necessary to write in the highest order that one is prepared to

accept. The ‘both’ means both Hy and My should be estimated for a trend Mo+ tp -
> summary (z)

The significance levels of the parameter estimates indicate that a VAR(3) model should be appropriate,
from the ‘estimation results for equation X1’. The constant and the trend are not significant. A VAR(2)
model may be OK.

Now perform a cointegration test. A useful package for this is urca, which should be installed and

activated. This package enables a Johansen test to be performed:
?ca.jo

gives the syntax for the command ca. jo.

> cointeigen <- ca.jo(y,type = "eigen", ecdet = "none", K=3)

K = 3 denotes that the test is based on a VAR(3) model, ‘none’ indicates that p, = 0 and p, = 0,

and ‘eigen’ denotes the eigenvalue test described above.
> summary(cointeigen)
For the trace test,
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> cointtrace <- ca.jo(y,type="trace",ecdet="none",K=3)

> summary(cointtrace)

Both Johansen’s tests confirm that the two series are cointegrated with one cointegrating vector when
a VAR(3) model is used.

One way to obtain the model is to try the package tsDyn

> library("tsDyn")
> answer <- VECM(y,2,r=1,include="none")

> summary(answer)

The output gives the model:

VX —0.091
) = (X1 — 0.98X )
VX —0.031
n 0.045 0.268 VXi_11 n —0.208 0.258 VX291
—-0.037 0.311 VXi_12 —0.029 0.094 VXi_29
An output with lag 3 would show that the lag 3 coefficients were not significant.

Finally, we use the fitted ECM to produce 1-step and 10-step-ahead forecasts for both VX, and X,.

This may be done in the following way:

> model <- vec2var(cointeigen)
> pred <- predict(model, n.ahead = 10, ci = 0.95)
> pred$fcst

These are the forecasts for the original data.
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