Chapter 5

Estimation of the mean, autocovariance

and autocorrelation

Let {X:} be a stationary time series with mean p, autocovariance function ~y(-), and spectral density
f(-). Now consider the problem of estimating the mean pu, ACVF ~(-) and ACF p(-) = % from
observations of X1, Xo,..., X,.

5.1 Asymptotic Normality

For a large class of strictly linear time series, estimators of the mean p, ACVF ~(.) and ACF p(.) will
satisfy a central limit theorem and, asymptotically, the distribution, appropriately rescaled, will be

normal.

Definition 5.1 (Asymptotic Normality). Let Y1,Ya,... be a sequence of random variables. They are
said to be asymptotically normal, written Y, ~ AN(jin, 02) if and only if ., = E[Y,] and 02 = Var(Y;,)
for each n and

Y, —
lim P (n'un < x) = ®(x),
On

n—oo

where ®(z) =P(Z <), Z ~ N(0,1).
LetY ,Y,,... be a sequence of random k-vectors. The sequence is said to be asymptotically normal,
written Y, ~ AN(p_,%y) if and only if p = E[Y, ] and ;5 = Cov(Yn s, Yn ;) (Xn is the covariance

—n

matriz of Y,, for each n) and
NY, ~ ANQ'p N'E,)) VAR

5.2 Estimation of p

The estimator X, := % 2?21 X is the natural unbiased estimate of p.
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Theorem 5.2. Let {X;} be a stationary time series with mean p and autocovariance function ~(-)
which satisfies limy,_, 1 o |y(h)| = 0. Then

Var(X,,) "ZER .
Suppose Y ;> |y(h)| < 400 and let f denote the spectral density. Then

nVar(X,) fmacey Z v(h) =27 f(0)

h=—o00

Proof In all cases,

n

— 1 « 1
nVar(X,) = nVar(EZXj) Z Cov(Xi, X;) = Z i—j)=~(0 Z Z v(j — 1)
— Zj 1 j=1 =1 j=i+1
n n—i n
= ~4(0)+ = Z v(h) = 4(0) + = Z(n— h)v(h).
i=1 h=1 "=
For the first statement, since |y(h)| et 0, therefore
[n1/21 n
1 & h 1 — 7(0) n—+00
IS0 ) < Z (R |+— > hwl< 1/2+ sup_ () =50
h=1 h:l h=[n1/2]+1
so that
Var(X,) = 2 i njﬁ” 0.
n —

For the second statement, suppose that » = __ |v(h)| < co. Then it follows firstly, that for any N
D lhl<N ( - U) () " >_inj<n V(h) and secondly that

> (=m0,

|R|>N+1 |h|>N+1

from which it follows that -

nVar(X,) "5 N (k) = 22 (0).
h=—o00
O
The sample average X is an unbiased estimator of y and we also have consistency; directly from
Chebyshev, Var(X,,) "=%£° 0 implies convergence in probability. When 3" |y(h)| < +o00, we also have
n——+00

the rate of convergence and nVar(X,) —> 27 f(0). We can go further, and show that if |y(h)| decays
quickly enough, then X, is asymptotically normal.
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Theorem 5.3. Let {X;} be a strictly linear time series defined by

oo
Xe=p+ Y ey {e}~1ID0,0%)

j=—00
where (y;) satisfy D272 [¥j] < oo and 3272 b # 0. then

‘/ﬁ()\(/’%_”) ~ AN(0,1)

where
2

and v is the ACVF of {X.}.

Since {X; : t € Z} is not an i.i.d. sequence, we first prove the result for m-dependent stationary
processes, where for each ¢, Xy 1 X1, » > m + 1 and then extend to arbitrary linear stationary
processes with well defined ACVF.

Theorem 5.4 (Central Limit Theorem for Strictly Stationary m-Dependent Sequences). Let {X;} be
a strictly stationary m-dependent sequence of random variables. That is, Xy L X for all s such that
|t —s| >m. Let p = 0 and let y denote the autocovariance function. Let vy, =y(0) +23 770, y(j) and
suppose that v, # 0. Then

1. limy, 0o nVar(X,) = vy, and
2. Xp~ AN (0,%2).

Proof The first statement has already been dealt with. For the second statement (asymptotic nor-

mality), for each integer k such that k > 2m, let

1
Y, = 7 {Xi4. 4+ Xeem) + o+ (Xt + -+ Xrkem) }

where r = [ 7|. Since the series is m-dependent, removal of X;3_,,41,..., X for each j, splits it into

independent pieces; n'/2Y,, is the sum of 7 i.i.d. random variables, each with mean zero and variance:

Ry = Var(Xi+...4+ Xp—m)

k—m k—m
= Z Z COV(X,L‘,XJ')
o k—m k—m
= (k=m)y(0)+2> > (-1
i=1 j=i+1
k—m k—m—j
= (k=m0 +2 3 1(0) ( ' 1)
= > (k=m—li()
lil<k—m



By the Central Limit Theorem, therefore:

(n'2Y1)  nodeo
(Fres e

which may be expressed as

n o0 1 o0
Yo "5 N(O, Rim) F2E0 N(0, vi).

We now have to show that the pieces that have been omitted do not contribute as k¥ — +oo and

r — +o00. That is, it remains to show that

lim limsup]P’(’nl/Qyn — Yok

k—+00 n—+oo

>€>:O Ve > 0.

To establish this,

o 1 r—1 1
(n'?X, = Yop,) = 7 Z(Xjk_mH oo+ X)) + W(er_mﬂ +. X
j=1

The terms are independent for k& > m. Therefore:

— 1 n
Var(n'/?X,, — Yui) = o <(LEJ — DRy + Rh(ﬂ)) ’

h(n):n—kL%J—l—m 0 < h(n) <k+m.

Therefore:
limsup Var(n"/*X,, — Y1) = —Rm
n—-4oo k
and, as k — 400, the result follows by Chebyshev. O

We therefore have asymptotic normality for the mean of an M A(q) process for any g < +oo. This
is the key point for proving Theorem 5.3, since a stationary linear process can be approximated by a

2m + 1 dependent process.

Proof of Theorem 5.3 Let X, denote the 2m + 1 dependent approximation defined by:

m
Xim=pn+ Y vjej  {e} ~TID(0,0%)

j=-m

Set

It follows from the previous result that
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2 2
m oo
VaYom —p) =a N [ 0,67 | Y v "N o[ D vy

j:—m jzfoo

A direct computation, using > 72 [1;| < +oo gives:

1 n mo
sup Var (nl/g(Yan _Ynm1)> = sup nVar EZ Z i€
ma>my ma2>my t=1 |j|=m1+1
1 mo+n s—mi—1 1 n—mi—1 s+mo
= sup nVar | — Z €s Z Vs + — Z €s Z Yi—s
ma>mi+1 n s=mi+2 t=s—mo n s=1—-mo t=s+mi+1
o2 mo+n  s—mi—1 n—mi—1  st+m2
2 2
= ; Z ( Z ¢t75) + Z ( Z wtfs)
s=mi1+2 t=s—ma2 t=s—mso t=s+mi+1
2 —mi1—1 mo
o?(n+my —my — 2) 2 2
- e (5 e 32w
t=—mso t=m1+1
from which

lim  sup limsup Var (n1/2(Ynm2 — Ynm1)> =0.
M1—=+00 o >mq n—+oo

(We first let n — +00.) From this, it now follows that

V(X mn — 1) "5 N(0, vp) "5 N(0, v).

5.3 Estimation of ()

The estimators for v and p which are used are:

n—h
v(h) = % Z(Xt — X)) (Xptnh — X)), 0<h<n-—1
t=1
and
s = 1)
" =50

respectively. These estimators are clearly biased, but nevertheless are the estimators used, to ensure

that the estimated covariance matrix

7(0) ... (R

y(h) .. 7(0)
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is non-negative definite. The estimators are asymptotically unbiased. The estimates (7(h))}_, satisfy
> nY(h) =0 (exercise).

In the sequel, let v = (v(0),7(1),...,7(h))’, with similar notation for estimators of . That is,
7 = (7(0),...,7(h))". This section is devoted to the following result:

Theorem 5.5. Let {X;} be a moving average process satisfying

o
Xe= Y iy {ea} ~11D(0,0%)
j=—00
where 3°7° || < 4o and E[e}] = no* < 4+o0. Let v be the autocovariance function of {X;}. Then

for any non negative integer h

~ 1

¥~ AN <% V)

- n
where V' 1s the covariance matrix with entries

o0

vog = (=3P + Y (v —p+q) +v(k+ vk -p)).

k=—o00
Note that the ‘noise’ is i.i.d., but we do not require that it is Gaussian. If it is Gaussian, then (clearly)

n = 3 and the first term in the expression for v,, vanishes. We’ll present the proof in stages.

If it is known that g = 0, then the estimator

n—h
. 1
vi(h) =~ > XiXjs
j=1

may be used for the ACVF. When trying to establish results, this is easier to work with; under
conditions that X is asymptotically consistent, ¥ and +* will have the same asymptotics. We’'ll use

the notation

7= (7(0), ..., 7" (h)-
To establish that 7 is asymptotically normal, we proceed in stages, firstly by considering ~*.

Theorem 5.6. Let {X;} be a strictly linear time series with mean 0;

Xe= Y ey {a}~I1ID(0,07)

j=—o0

satisfying > 22 |j| < oo and E [€}] =no* < oco. Let

* IR
g (h):E;XtXHh h=0,1,2,...

Then

oo

lim_nCov(y*(p),y" () = (1 =3v(P)v(@) + D> Vk)v(k—p+a) +7(k+av(k—p).

n—-+o0o
k=—o00
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Proof

1 nop 1 n—ga 1 n—pn-—a
* *
Cov(y" (P), 7" (@) = Cov(— D X;jXjpq, — >, X;Xj19) = —5 > > Cov(X;Xj1p, XpXptg)
i=1 i=1 J=1 k=1
and
Cov(X; Xj1py Xk Xptq) = EIX;Xj4pXeXppql — Cov(Xj, X;4p)Cov(Xp, Xkiq)
= EX;Xj1pXpXptql —v®)v(@)
‘We’ll use:
BX;Xj4pXkXktql = Do YartagPagPasBElej—ay ¢jtp—anh—aghtq—ayl-
aj,ag,az,ay
Now,
no‘4 s=t=u=wv
Eleseteyen] = o2 s=t#u=v, s=u#t=v s=vEt=u
0 otherwise
so that:

B[XtXiypXsXapgl = D VitjypUutisqbler—icr_jes_pes—i]
W4,k

= 3 VitiqpPr—ttsVi—ttstqBler—ict—jer_rer—i)
i,7,k,1

=not Zwiwi+pwi7t+swi7t+s+q + ot Z ViYitpVk—t4+sVhk—t4stq
B i#k
+o* Z Yivi—ttsVitp¥j—ttstq t o? Z ViVi—ttstq¥it+p¥Pi—t+s
iF#] i#]
(1= 3)0 3 Withi g pPi—thsqpPiotrstq +Y@V@ +A(E— VP +t—s—q) +(t —s—)v(p+t—5)

i

It follows that

L [omom
F Zl tZI Xt Xt4pXsXstq
==

E [v*(p)7v" (2)]

X (v @ + (s —t)v(s—t—p+a)+ (s —t+a)y(s —t —p)

s=1t=1

3 -

+(n —3)0? E¢i¢i+pwi+s—t¢i+s—t+q>

Now set k = s — t, change the order of summation and subtract v(p)v(q) from each side. It follows that

« . 1 k
vty @ =~ 3 (1- ),
" kl<n n
where
Ty = (k)7 (k —p+a) + vk + @)y (k — p) + (n — 3)0* S PitigpPitkYithtq-
Note that

STl < 23 WP + [0 = 310* O [9kl?)? < +oo
k k k

since 3. |v(k)| < 400 and hence >3-, |v(k)|%2 < 400 and 3 |1h;| < +oo and hence 3 |4;|? < 4o0. It follows (using a standard e § argument, noting that
for any N, limy, Z\k\<n/\N ( — %) Ty — ZleN T}, and that for any € > 0, N may be chosen such that sup,, ZnVN<\k\<N ( _ M)‘ <e

n
that 322 Ty is well defined and that

Ldim nCov(y*(p), 7" (@) = Y. Th=m—-3)v@v(@+ >, ((k)v(k—p+q) +v(k+a)y(k—p))
k=—o0 k=—o0

as required. O

The covariance structure of v* has now been established; the following results show asymptotic nor-
mality. Firstly, Theorem 5.7 proves the result for a MA(2m + 1) process where m is finite; Theorem 5.9

extends it to strictly linear processes.
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Theorem 5.7. Let {X;} be the moving average process
m
Xo= Y e, {a} ~IID(0,0%),
j=—m

where Ele}] = no? < +o00. Let v be the autocovariance function of X. Let V= (*(0),. .., (h))! and
v = (7(0),...,v(h))". Then

7~ AN (3, 'V)

where V' = (Vpq)pg=0,....h is the covariance matriz with entries

Upg = Z Ty = (n—3)y Z (v(B)y(k —p+q) +7(k + q)v(k = p)).

k=—00 k=—o00

Proof This follows directly from the central limit theorem (Theorem 5.3); consider the random h+ 1

vectors
Xt = (XtXt7 XtXt+1, e 7XtXt+h)t

then Y, is a strictly stationary (2m + h) dependent sequence and, taking X; X;+; = 0 for t + ¢ > n,

LSV, = (50, ().
t=1

3

For any linear combination Xl* such that AV A > 0, it follows that {Atzt} satisfies the hypotheses of

Theorem 5.3 and hence

V(A = Aly)
~ = — @) N(0,1)
AVA

from which the result follows. I

Lemma 5.8. Let {X,,n=1,2,...} and Y, ., =1,2,...;n=1,2,... be random k-vectors such that

L njo
1. Y,; =Y, forechj=12...
2.Y; =Y asj — +o0 and

3. imj 4 oo limy sy oo P (|Xn =Y, ;> 6) =0 for every € > 0.

Then

X, =Y n — +00.

n

Proof Clear from the definitions. O

Theorem 5.9. The result of Theorem 5.7 remains true for a process

Xe= Y e {e} ~IID(0,0%)

j=—00

where 3322 [1;] < 400 and Elef] = no® < +oc.
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Proof The proof follows directly by applying Theorem 5.7 to the process

Xim= Y ¥jej  {ej} ~I1ID(0,07).

j=—m
Let

* 1 -
Ym(p) = n § Xim X (t4pym>
t=1

then

nl/Q(’Y:n - rym) — X’m

where v, is the autocovariance function of { Xy, } and the vector notation is as in the previous theorem.
Then Y,, ~ N(0,V,,), where V,, is the covariance matrix from Theorem 5.7. As m — +o0, V;,, = V.
The proof now follows by Lemma 5.8, provided it can be shown that

lim_TimsupP (1297, (p) = 3m(p) = 7" () + 7(p)] > €) =0

mM—+00 ny400

for p=0,1,...,h. This follows by Chebyshev; the probability is bounded by

S Var (1 (p) = " (9) = = (Va3 () + Var(y" () = 20Cov(3;,(6), 7" ()

Firstly,
Gim lim eVar(yy,(p)) = lim  Var(y™(p)) = vpp
e o, MOV O (2,7 (2)) = 22
from which the result follows. OJ

Now, we have already established that X, — g in probability. Therefore, we should expect that
4 —~* = 0. The following proposition establishes that 7 is asymptotically normal, with the same

asymptotic covariance structure as for v*.

Finally, we put all this together to get the main result (the asymptotic distribution of 7).

Proof of Theorem 5.5 or o< p < h, it follows directly from the definition that

Flp) =

1 [n=p n—p »
=~ 2
XeXepp = Xn— | 20 Xe+ D0 Xy +(1—*) X0
o\ t=1 t=1 n
1 oy [nop n—p o
= ) -= Y XeXeyp—Xn— | 2 Xet > xt+p+(1—fxn) .
n o\ t=1 t=1 n

From this, it follows directly that

n—p n—p n
VR(r () = 3(p)) = n'/?X,, (l Z Xigp + % Z Xt + <1 - %) ?n) + L Z Xt Xttp-

1
—E
\/E {

t=n—p+1

Furthermore,
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o 2
n1/27n ~ AN (O,o2 ( Z 'LZJj) )
j=—o00

n—p

1°=r 1 P\ —
S Xt S Xt (1-2) %) o
" oi=1 " oi=1 n

By the weak law of large numbers,

in probability, from which the result follows. O

5.4 Estimating the Autocorrelation Function p(.)

Recall that p(h) = % so that p(.) = g(7(.)) for a suitable function g. Asymptotic results for p are
gl
therefore obtained by applying the delta method to asymptotic results for 7.
For the ACF p(+), the n term disappears.

Theorem 5.10. Let p = (p(1),...,p(h))" and p = (p(1),...,p(h))". Let {X;} satisfy:

Xi=p+ Y, ¥ {a} ~I1ID(0,0%)

j=—o00

where Y322 15 < 0o and E [¢f] < oo, then

p~ AN(p,n 'W)

where W = (wjj)i j=1,..n is the covariance matriz whose entries are given by:

wij = > Ap(k+i)p(k+ j) + p(k — D)p(k + j)

k=—o00

+2p(i)p(5)p* (k) — 2p() p(k)p(k + ) — 2p(5) p(K)p(k + i)} (5.1)

Proof This follows from the Delta Method (see the course Statistics): Let g : R**! — R be defined

by t
o= ((2)-(2)

Let v be the autocovariance of {X}. Then
~ ~ 1 ¢
p=9(7) ~AN(g(7), DVD

where D is the matrix of partial derivatives:

99; _ _9gj .
%T;__% i=1,...,h
% = xflglzk(xj) (j, k) € {1,...,h],~2

giving
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—p(1) 1 0 ... 0

D:L -p(2) 01 ... 0
7(0) :

—p(h) 0 0 1

O

The expression (5.1) is called Bartlett’s formula. It may be re-arranged to obtain the more convenient

form:

wig =Y {p(k+ 1)+ p(k — i) — 2p(i)p(k)} x {p(k + §) + p(k — §) — 2p(j)p(k)}. (5.2)
k=1

The assumption E [eﬂ < o0 is relaxed at the expense of a slightly stronger assumption on the sequence

{¥5}

Theorem 5.11. If {X;} is a strictly linear time series where 3°7° _|1hj| < 0o and 3372 ’1/1J2|j| < 00,
then

p~ AN (B, n71W)

where W 1s given by the previous theorem.

Proof Omitted. I

Using similar techniques, the asymptotic correlations between the estimators can be established;

. o o~y Vij . s~y o Wi
ngrfooCOH(v(l)m(J))—\/W ngrfooCOrr(p(l)m(J)))—\/W-

5.5 The Ljung-Box Test

A very important situation is application to a series of residuals and deciding whether or not a ‘white

noise’ model fits. As ever, p(0) = 1. If the series is white noise, then p(1) = p(2) = ... = p(h) = 0 for
all h > 1. In this situation, the Bartlett formula (5.1) reduces to (for 1 <1i < j < 400):
{ 0 i#j
Wiz = . .
1 1=y

so that p ~ AN(0, %I) Hence, consider testing:

{ Hy : The data are an observed random sample from WN(0, o2)

H;  The data are not an observed random sample from WN(0, o2).

The test statistic
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Q:=n>_ pli)* "= Xk

the null hypothesis is rejected for @ > X%m where X%'a is the value such that P(X > X;QL o) = o for
X ~ X}%-

The Ljung - Box test The Ljung—Box test (named after Greta M. Ljung and George E. P. Box)
modifies the above test, to provide something that has greater accuracy for smaller n. They propose
the test statistic

p° (k)

n

h
Q=n(n+2))

k=1

o

where n is the sample size, p(k) is the sample autocorrelation at lag k, and h is the number of lags

being tested. Under the null hypothesis that the series is i.i.d. N(0,0?), Q@ ~ X}% as n — +oo.
The motivation is as follows: let €7, €s,... be i.i.d. N(0,02) and let

—k
Di-1 €i€jth
YW

(so that r;, = p(k)). By scaling, we can take ¢;’s i.i.d. N(0,1). Clearly E[ry] = 0, so that E[r}] =

Var(rg). Some computation gives Var(ry) = % so that the Ljung Box statistic has the same

TR =

expectation as the y? distribution.
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