Chapter 4

Parameter Estimation for ARMA models

4.1 ACVF of an ARMA processes

Recall that a zero-mean time series { Xy, t € Z} is an ARMA(p,q) process if it is stationary and
¢(B)X; = 0(B)e;, t€Zand {e} ~ WN(0,0?),

where

d(2) =1—1z—... = 2" and 0(z) =14+01z2+ ...+ 6,29,

If the process is causal, then X; has representation X; = Z?’;O Yj€e—j. The ACVF is:

vx () =0 it

=0

4.2 System of Equations for the ACVF of an ARMA Process

Firstly, suppose that the ¢’s and €’s are given; we compute the ACVF ~ in terms of ¢’s and 6’s.
The ARMA equation is:

P q
Xt — Z Qsttfj = €¢ + Z 9]-6,5,]'
7j=1 7j=1

Multiply both sides by X; g, for k > p, and take expectations. This gives (for mean zero ARMA

process):
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where 0p = 1 and 6; = 0 for j > ¢. Consider the set of equations

p
(k) =D ¢iv(k—5)=0  k>max(p,q+1) (4.2)
j=1

and look for solutions v(k) = az*. An expression of this form gives a solution provided:

p
F=D"6 T =0 k> max(p,q+1)
j=1

and hence

p

1= ¢z =0.

j=1
Let y = 27!, then 1 — i ¢;4° = 0. This is a polynomial of degree p. Let &1,...,&, denote its roots
then, by linearity,
'y(k):alfl_k—l—...—kapfgk E>m—p

provides a solution to Equation (4.2), where ay, ..., a, are arbitrary constants. If the roots are distinct,
then this provides all the solutions, otherwise there are others. For this discussion, we only consider the
case of distinct roots. The constants ay, ..., a, and the remaining covariances y(h) for h =0,...,m—p
are determined by Equation (4.1).

This can be used as the basis of a method of moments estimation procedure. Assume we have

estimated 7 for as many lags as necessary.
Example 4.1 (MA(1) process).
Let {X;} be a MA(1) process:
Xi=¢ +0e1, {e} ~WN(0,0?),

where |f| < 1. In this case the equations are:

Y(0) =0?(146%) ~(1) =00
(k) =0 |k| > 2.
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This is the autocovariance function. Using

2@ _ 8
P(l)—w—1+927

it is natural to estimate 6 by the method of moments:

1 8y
0 14 @)%

. gl
p(l) = =
) 3

This equation has a solution for |p(1)] < 4 and it is natural to set:

—1 if p(1) < -1,
~ 1—/1-4p(1)2 .
oL = P flp(1)] < 4
n Qﬁ(l) 1 |:0( )| <3,
1 if p(1) > 3.

The estimate @El) is consistent. Furthermore, it can be shown that:

§Tgl) ~ AN(8,n16%(6)), for large values of n,

where ) . . N
1+6°4+40=+6°+0
2
01 (9) - (1 — 92)2

Example 4.2.

Let {X;} be a causal AR(p) process. Them m = p and Equation (4.1) reduces to

0, k=1,...,p,
V(k) = p1y(k—1) — ... — gpy(k —p) =

which are the Yule-Walker equations. When p = 2, this is:

Here
$(z) =1 — d12 — ¢o2?

and the two solutions to ¢(z) = 0 are:

R /N
" Tag T V163 Ty T
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The general solution is therefore:

1 1
v(h) =a1— + as—.
S

The constants a; and ay are then computed from the second and third listed equations by:

(1- ¢2)(6L1%1 +a2é) —¢1(a; +az) =0
(a1 +a2) — (g + &) — <Z>2(%1% + ZT?) =2

This gives two linear equations with two unknowns and therefore has a unique solution. Ol
The roots &1,...,£, may be obtained numerically and then the remaining equations form a linear
system from which a1, ..., a, may be computed. 1

4.3 Yule-Walker estimation

Consider a causal zero-mean AR(p) process {X;}:

Xi— 01 Xe1— . — $pXep =€, {e&} ~IIDN(0,0%).

The Yule-Walker equations are defined as:

: , : J=1...,p,
1) =G =D = =G —p) =1 _
o J=0,
and these may be obtained quite simply, by considering
EX n(Xi — 01 Xe1 — ... = 0pXi—p)] = E[Xy_pei].
These equations may be rewritten as:
’Y(])? j:]‘7""p7

o1y —D+...+dpy(i —p) = ,
’7(0)_027 J :0>

which gives:

where



Given estimates of the autocovariance function 7(-), the Yule-Walker equations may be used to obtain
moment method estimates of ¢ and o2 by replacing I’y and %, with the estimates fp and ip. These

are known as the Yule-Walker estimates

T,¢=7, and 3> =7(0)-0'7 ,
where (of course)
7(0) p—1) 7(1)
Iy = : and 7, = :
-1 ... 70 V()

The estimator p(-) for the autocorrelation may be obtained simply by dividing the equations for the

autocovariance by 7(-). This gives:

Ryp=p, and 3> =F(0)1-¢'D

where, of course, ﬁp =_1 fp and p = —7 .
7(0) P -
This gives:

_ p-ls ~2 o Dl
=R, 2, and o°=7(0)[1 2, R, Bp]'

The following theorem is stated without proof; asymptotic normality of the sample mean has already

been dealt with and the main techniques for the following result is similar.

Theorem 4.1. Let {X;} be a causal AR(p) process where {e;} ~ IID(0,5?). Let% be the Yule- Walker
estimate of ¢, then

o

%N AN((j), P > ,  for large values of n.

n

The estimator of 02 is asymptotically consistent:

(/7\2 —>(p) 0'2.

Proof Omitted (we’ll deal with this in the next lecture when we consider statistical properties of the
ACVF and ACF estimators). O

Now consider an ARMA(p, q) process where that ¢ > 0. If estimates of the autocovariance function

are available, then the system of equations (4.1) may be used (replacing the autocovariance with the

estimated autocovariance) to obtain moment method estimates of % and 0.
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4.4 The Hannan-Rissanen algorithm

Yule-Walker estimation works well for AR processes. Suppose the underlying process is AR, but p is
unknown. We can proceed as if {X;} is an AR(m) process for m = 1,2,... until it looks as if m > p.

For any fixed m > p, set
¢

Pp

S
I

0
Theorem 4.1 holds with p replaced by m and ¢ by ¢_ .

Now consider the prediction problem. Recall that the best linear predictor X}H_l of X,,41 in terms of
Xl,XQ,...,Xn is

n
Xn+1 = E an,an—i-l—ia n=12...,
i=1

where a,, = Fglﬂyn. It follows from the fact that the partial correlation is 0 for lags greater than p for

a causal AR(p) process that a,, = ((i)) when n > p and therefore the parameters of an AR(p) process

can be estimated from solving the prediction problem.

4.5 The Hannan-Rissanen algorithm

For a causal AR(p) model, with no further distributional assumptions on {e;} ~ WN(0,0?), the

defining equation

Xi =01 Xi1— . —pXip =€

of a causal zero-mean AR(p) can be written on the form

where
X X 5
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Xo X1 ... Xl_p €1

Xn,1 Xn,Q anp €n

The idea in least square estimation is to consider the X}:s as fixed and to minimise €€ with respect to
¢. Assume that X _,1,..., X, are observed. Let % denote the least square estimate, i.e. the value of

¢ which minimises

S(¢) =€e= e = ¥ - X¢|*

Consider the Hilbert spaces

H =spa{Y,zg,...,2, 1} and M =5paf{zg,..., 2, 1}

It follows from the projection theorem that z;AS satisfies:

PuY = Xo.

It follows from the projection theorem that:

@,C,X§) = (z,Y) fork=0,...,p—1

from which
X'X¢=X'Y
giving
%z (X'X)™'X'Y provided X'X is non-singular.
The estimator % has good statistical properties if p << n.

Now let {X;} be a general ARMA(p, q) process with ¢ > 0:

Xi—01 Xe1— ... — ¢pXt—p =e + b0 1+...+ qut_q, {Zt} ~ HD(O, 02).
The problem is that X; is regressed not only onto X;_1, ..., X;_, but also on the unobserved quantities
€—1,--.,€—qg- The main idea in the Hannan—Rissanen algorithm is to first replace €;_1,..., €4 with
their estimates €_1,...,€—4 and then to estimate
e
- 0
by regressing X; onto X;—1,..., Xi—p, €—1,.. ., €—q-.

In more detail:
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Step 1 A high order AR(m) model (with m > max(p,q)) is fitted to the data by Yule-Walker

estimation. If &S\ml, ...y Omm are the estimated coefficients, then ¢, is estimated by

/e\t:Xt_qﬁletfl_---_d)mthfma t=m+1,...,n

Step 2 The vector 3 is estimated by least square regression of X; onto

thl) e 7Xt7p)/6\t717 e ,/E\t,q :
that is, by minimising
n
S(é) = Z (Xt - ¢1Xt—1 e ¢pXt—p - Hlé\t—l e 9(1%—(])2

t=m+1
with respect to 3. This gives the Hannan Rissanen estimator
EZ (le)—lle

., provided Z'Z is non-singular,

where
Xm+1
X, = :
Xn
and
Xm Xm—1 o Xopt1 €m  Em—1 ... Em—gt1
7 =
Xn1 Xn_o ... anp /E\n,1 /E\n,Q e /e\n,q
The Hannan Rissanen estimate of the white noise variance o2 is:
9 S(B)
OHR = :
n—m
An appropriate ARMA(p, ¢) model
X — 91 Xeq1— ... — ¢pXt—p =€ +016_1+ ...+ Hqﬁt_q, {Gt} ~ IID(O, 0'2),

requires an order selection, that is a choice of p and ¢ and, having chosen p and ¢, estimates of the
unknown parameters. Firstly, the mean is estimated, then it is removed, and then, having removed

the mean, estimate:

$1 61
o=1:1; :
Pp 04
As usual, assume that X1, ..., X, are observed. The assumption that {e;} ~ IIDN(0,0?) (rather than

WN(0, 02)) allows for greater precision in the estimates.

and o2.

(S
I
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4.6 Maximum Likelihood and Least Square estimation

If the innovations are assumed to be IID N(0,02) (Gaussian), then it is possible to obtain estimates
using the method of maximum likelihood. Least squares may also be used. The least squares estimator

is obtained by minimising:

" (X X2
j=1

7j—1

where r;_1 = vj,l/cfQ, with respect to ¢ and . This is straightforward and will be outlined below.

The estimates are obtained by recursive methods. The least square estimate of o2 is

~2 S(%}Js ) ELS)

O'L:
5T n-p—gq

where, of course, @LS’ELS) is the estimate obtained by minimizing S(¢, ).
Example 4.3 (MA(1) process).

As usual, for an MA(1) process,

Xi=€e1+0e or e =X1—0¢

Xo=€y+0e1 or e =Xo—0¢

X,=¢€p,+0e,1 or €,=X,—0c,1

If g = 0, then €1, ..., €, can be calculated for a given 6. Since )?k = Oep—1, it follows that v; = o2 and
hence r; = 1 for all j and 2?21 e? can be minimised numerically with respect to 6. Let 5,52) denote

the estimate. Then it can be shown that

~ 162
9,&2) ~ AN (9, ()> , for large values of n.
n

For the general ARMA process, the X 45 may be computed recursively by the innovations algorithm.
Recall (from earlier that X; — )?1,X2 — )A(g, ey X — )A(n are orthogonal. This means that they are
uncorrelated. Under the assumption that the process is Gaussian, this implies that they are independent
and the Mean Squared Prediction Error gives their respective variances.

It follows that, for any fixed values of ¢, 6, and o2, the innovations X -X Tyevns Xn—)A(n are indepen-
dent and normally distributed with zero means and variances vg = 0219 = vx(0), v1 = 02r1,...,Up_1 =
0%rp_1. Thus the density of X; — )?j is

1 22
Fo-5,0) = | g |
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The likelihood function is therefore:

L(g,0.0%2) = []fy 5, (25— %))
J=1

1 1 Z” (z; — ;)2
\/(27TJ ) - 1 20 — T

1
= expy ———
V@rod) gy { 202

Proceeding in the usual way,

S(¢,0)
202

Clearly, o, ...,mn—1 depend on ¢ and 6, but not on o2. For fixed values of ¢ and 0,

1
In L(¢, 0, 02) =5 ln((27ra2)”7“0 CeeTp1) —

Wml@8o") _ n 560

do? =Tz T 2(02)2’
The log likelihood function In L(¢, 6, 0%) is maximized by 2 = n=15(¢, ), from which:

InL(6.0n7'S(6,6) = —3ln((2rn1S(0.0)" 0 1) -

_ _% (nIn(27) + nln(n"'S(6,0)) + Inrg + ...+ Inry_y) —

|3

n
n _ _
= 3 In(n"'S(¢,0)) +n lzzllnrj,l + constant.
j:

It follows that the problem of maximising In L(¢, 0, 0?) is the same as the problem of minimising

U,0) =In(n'S(g,0)) +n "> Inrj_y.
j=1
Numerical methods are required for this.

For a process that is both causal and invertible, r,, — 1 and therefore n=! Z?Zl Inr;_4 is asymptotically
negligible compared with In S(¢,8). It follows that both the least square and the maximum likelihood

methods give asymptotically the same result for causal invertible processes.

4.7 Order selection

Now assume that an ARMA(p, q) process gives a good model for the time series. To begin with,
suppose that ¢ = 0; it is known that an AR(p) process provides a good model, but the value of p is

unknown. A natural approach would be to try fitting AR(m) models for increasing values of m. For
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each m, a quantity that indicates the validity of the model, for example .S @) or L@, 52) is calculated.
If m < p, then S @) should decrease with m; it should remain constant for m > p. Similarly L@, 72%)
should increase for m < p.

The problem with these measures is that they continue to show improvement (reduction in sum
of squares, increase in the log likelihood), even if the parameter being estimated is 0; a model with n
observations and n fitted parameters will have zero residual sum of squares.

Therefore, when fitting an ARMA(p, q) process to data (that is estimating p, ¢, (¢,60) and o?)
a penalty has to be introduced when adding parameters. Consider maximum likelihood estimation;
maximising L(¢, 0, 0?) or, equivalently, minimising —2 In L(¢,0, 02), where L is regarded as a function
also of p and ¢q. The likelihood will be maximised when the total number of parameters p + ¢ is
equal to the number of observations. There are two accepted approaches found in the literature to
penalise additional parameters; the Akaike Information Criterion (AIC) and the Bayesian Information
Criterion (BIC). The Bayesian Information Criterion is almost the same as the Minimum Description
Length (MDL). The form of the AIC commonly used is the AICC criterion, where the additional C

means ‘bias corrected’. The criterion is: choose p, g, and (¢p,Qq), to minimise

{ AIC = —2InL(¢ ,0,,5(¢,,0,)/n) +2(p + ¢ +1)
AICC = =20 L(¢ ,0,,5(0,,0,)/n) +2(p + ¢ + 1) s

where there is the additional requirement (over the AIC) that the minimisation is restricted to the
class of unbiased estimators.

The resulting estimates of the number of parameters p and ¢ are not consistent; they do not satisfy

P—p P and § —) ¢ as n — oo,

The BIC, minimises
BIC = —2In L(Qp,Qq, S(@p,Qq)/n) +2(p+q+1)lnn,

and p, q are consistent with BIC.
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