Chapter 3

ARIMA Processes

The simplest time series model is white noise. A first generalisation of white noise is the mowving average

model.
Definition 3.1 (The MA(q) process). The process { Xy, t € Z} is said to be a moving average of order
q if
Xt = €¢ + 91€t_1 + ...+ qut_q, {Gt} ~ WN(O, 02), (31)
where 01, ...,0, are constants.
Definition 3.2 (The AR(p) process). The process {Xy, t € Z} is said to be an AR(p) autoregressive
process of order p if it is stationary and if
Xt — Cletfl —ee. d)pthp = €, {Et} ~ WN(O,O’2). (32)
A process { X} is an AR(p) process with mean p if {X; — p} is an AR(p) process.
Definition 3.3 (The ARMA(p, q) process). A process { Xy, t € Z} is said to be an ARMA(p, q) process
if it is stationary and
Xi—p1 X —...— ¢pXt—p =g +0eg_1+...+ 9q€t_q, (33)

where {Z;} ~ WN(0,02). A process {X;} is an ARMA(p,q) process with mean u if {X; — p} is an
ARMA(p, q) process.

Clearly, an ARMA(0, q) process is an MA(q) process, while an ARMA ((p, 0) process is an AR(p) process.

Generating Polynomials for the ARMA Process An important tool for analysis of ARMA

processes is the so-called generating polynomial. Equations (3.3) can be written as

¢(B)X; =0(B)e, teZ,

where
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d(z) =1— 12— ... — pp2’,

0(z) =1+6124+...+ 0,27
and B is the backward shift operator. The polynomials ¢(-) and 60(-) are called generating polynomials.
Causal Models An important property of a time series model is that X; depends only on information

available up to and including time t. A linear time series model that satisfies this is said to be causal.

Definition 3.4. An ARMA(p, q) process defined by the equations

#(B)X; =0(B)e; {Z;} ~ WN(0,0?)

is said to be causal if there ewists constants {1);} such that 3772 [¢;| < oo and

o0
X => ey, tel (3.4)
§=0
Another way to express this is to require that

COV(Xt, €t+j) =0 for j = 1, 2, N (35)
The following theorem gives conditions under which an ARMA (p,q) process is causal.

Theorem 3.5. Let {X;} be an ARMA((p,q) for which ¢(-) and 6(-) have no common zeros. Then {X;}
is causal if and only if ¢(z) # 0 for all |z| < 1. The coefficients {1;} in Equation (3.4) are determined
by the relation

|z] < 1.

i 0)
'(/}(Z) = P2 = )
20 =50
Proof Assume that ¢(z) # 0if |z| < 1. Then % is analytic within the unit disc and therefore there

exists a (§;)72, such that 377 [;] < +oo such that

=) & =¢(), <L
The operator £(B) may be applied to both sides of the equation ¢(B)X; = 0(B)e; to give:

Xt =&(B)0(B)et,

which is well defined since ) |{;] < +o00 and 6(z) is a polynomial of degree g.

Now assume that ¢(z) = 0 for some |z| < 1 and consider the power series expansion ﬁ = Y&
The coefficients are not summable, hence X; does not satisfy the definition of a linear time series
model. Ol
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If ¢(B)X; = 0(B)e; and if ¢(z) = 0 for some z with |z] = 1 then there does not exist a stationary
solution. Consider for example X; = X;_1 + €; ¢(2) = 1 — 2 so that ¢(1) = 0. For {¢} ~ WN(0,0?)

and Xy = 0, then X; = 22:1 €; so that Var(X;) = ot, which is clearly not stationary.

Example 3.1 (AR(1) process).

Let {X;} be an AR(1) process:

Xi=e+¢Xi—1 or ¢(z) =1- ¢z

Since 1 — ¢z = 0 gives z = 1/¢ it follows that X is causal if |¢| < 1. For |¢| < 1,

o0
Xi=e+ X1 =€+ d(ei—1+ 0Xi—2) = € + Per—1 + P Xy o = Z Wﬁt—y

It now follows directly from Theorem 2.4 that

o 24lh|
relh) = 3o Mot = T,

J=0

which corresponds to the computation made earlier.

If |¢| > 1, Equation (3.6) may be rewritten as:

=0

Xy =9 e+ Xp1 or Xp=—¢ e + 0 X

It follows that X; has representation

[ee]

Xp=— Z ¢ ety

=1

If |¢| = 1 there does not exist a stationary solution.

Definition 3.6. An ARMA(p, q) process defined by the equations

d(B)X; = 0(B)es, {e} ~ WN(0,0?)

is said to be invertible if there ewists constants {m;} such that 3 22 |mj| < oo

and

0o
ét:Zﬂ'th_j, te’Z.
7=0

(3.6)

(3.7)

(3.8)

Theorem 3.7. Let {X;} be an ARMA(p,q) for which ¢(-) and §(-) have no common zeros. Then {X;}
is invertible if and only if 0(z) # 0 for all |z| < 1. The coefficients {m;} in Equation (3.8) solve the

equation:
—_ i _ 9(2)
= N < .
" =3 md =g s
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Proof The proof follows in the same way as the proof of Theorem 3.5. O
Example 3.2 (MA(1) process).

Let {X;} be an MA(1) process:
Xi=e¢+0e_1 or 0(z)=1+06z.

Since 1+ 0z = 0 gives z = —1/6 it follows that X is invertible if |#| < 1. In that case

o0
=X, =0 1=X;—0(X 1 — e, 5) = > (—1Y0UX, ;.
7=0

From Equation (2.3), with ¢ =1, ¥y = 6 and ¥; = 0 for j # 0,1, it follows that
(1+6%)0% if h=0,

v(h) = { 002 if [h] =1, (3.9)
0 if |n| > 1.

Example 3.3 (ARMA(1,1) process).
Let {X:} be an ARMA(1, 1) process, i.e.
— ¢Xt_1 =€ + Hét_l or ¢(B)Xt = Q(B)Et,

where ¢(z) =1 — ¢z and 0(z) = 1+ 0z. Let |¢| < 1 and |[f] < 1 so that X; is causal and invertible.
Then X; = ¢ (B)e;, where

i 1+62) ¢32371+Z (¢ +0)¢p' !
7=0

j=1
It follows from Equation (2.3) that

o

v(0) = 0221/)]2:02<1 iqﬁ—kﬁ 20— 1)>

J=0

02< ¢+92i¢2]>:02<1+(fj222>.

J=

For h > 0,
v(h) = o Z¢j¢j+h =0 < ¢+ 0)o" 1t + Z b+ 0)> 2(j—1)+h>
7=1

=0

= 02 (040403 (00767 ) =2 (o4 + AT,
=0

1— 42
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Using Equation (2.4), the spectral density may be computed as:

2 —iX)|2 2 L —iA|2 2 2
:imziﬂ—kﬁ e | :il+9 —|—2t9cos()\)7 Ca<a<n (3.10)
21 |pe= )2 2w 1 —¢-e 2 2w 1+ ¢ — 2¢ cos(N)

Ix(N)

O

3.1 ARMA Approximations

This section gives results indicating that any real valued stationary time series { X;} with a well defined
spectral density fx may be approximated arbitrarily closely by an MA(q) process, or by an AR(p)
process. The result is the following:

Theorem 3.8. Let {X;} be a real valued stationary time series with spectral density fx, where fx
is symmetric and continuous. Then for each € > 0, there exist a ¢ < 400 and an invertible MA(q)

process {Yi}, a p < 400 and a causal AR(p) process {U;} such that

lfy(N\) — fx(N)| < e forall X € [—m, 7]

and

lfu(N) — fx(N)] < e forall X € [—m, 7]

There are no ‘difficult’ steps in this theorem, but the proof is rather long and involved and therefore omitted from the
course. I have included it in the notes.

The proof requires the following crucial preliminary results.

Lemma 3.9. Let f be a symmetric, continuous spectral density on [—m,w]. For each € > 0, there ezists a non-negative

integer p and a polynomial
P

a(z):H(l—%) =1l4+aiz+...+apz’
j

j=1

with |n;] > 1 for each j € {1,...,p} and where ax,...,a, are real, such that

)A|a(e*“)\2 - f(A)‘ <e Vre|-mn
where ) .

A= :
2r(l4+a?+...4+a2) J_. (v)dv

Proof of Lemma 3.9 If f(\) = 0, then the result follows with p = 0. Assume that M := sup_, < f(A) > 0.

For any € > 0, set
§=mnd{M,—F
= ) M
2+ = Foa

FO () = max{f(\),6}.

The function f(® is also a symmetric continuous spectral density function. It satisfies f® > ¢ and

and set

0<f9—f<é  Vael|-mnl
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Now use the following standard (and obvious) result: let

Snf(z) = Z fie " fi= % /7r e 7 f(x)dw
lil<n o
then 1

uniformly on [—7, 7| as n — +o0o. From this, there exists an integer r such that

r—1

%Z > g™ — PN <s VAE[-m 7]

J=0 [k|<j

where

1 T i
gk = %/77r FOw)e ™ dv.

By changing the order of summation and using the symmetry of @ it follows that

r—1
%Z Z gee— A = Z (1 _ @) geet

J=0 |k|<j [k|<r

This function is strictly positive for all A\. This follows since £ >4,

Let

Clz)= > ( - ‘Tﬁ) gz

|k|<r

and note that (by symmetry) C(z) =0 < C(27!) = 0. Let p = max{k : g # 0}, then

2C(2) = K f[ <1 - %) (1 — zn)

j=1

for some Ky and 71,...,mp with |n;| > 1, j = 1,...,p. This equation may be written as:

e = K] (-5) ()
crsdIn Il (1-2) (- 55)

j=1  j=1

Kaa(z)a(z™")

where
P z
a(z):1+a1z+...+apzp:H (1——_)
and

Kz = (71)17771 .. ,’I]pKL

Equating the coefficients of z° gives:

bo ! 7O (v)dw.

Ko = =
Tty a2 eCmi+dd+...+ad) /),

Furthermore,
Kola(e™™M> = fPN)| <6 VA
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Also,

ja(e™P  _ 2m(fON) +8) _ dxM
L+af+...+ai = [T fOW)dv = [T fv)dv’
Using A defined as in the statement of the theorem, it follows that

= ([ 00 - rena) P
A7 Mo

S T i

Kala(e™ ™) = Alae™™)P?|

IN

Finally,

47 Mo e
S fw)dv
from the definition of J. O

Ala(e™™)? = f()| < 5+ 6+

Proof of Theorem 3.8: AR process The aim is to prove that for a continuous symmetric spectral density f
and an € > 0, there is a p and a causal AR(p) process
Ut—a1Ut_1 —...—apUt_p:et {€t}NWN(0,O'2)
such that
lfx(A) —fu(N] <e VA€ [-m,n]
Let f(9 = max{f()\), £}, then f(9 > £ and

0< 90N —f\) < VA € [~m, 7.

N ™

Set

- © — i e 1
M-m}z\ixf N 5—m1n{4M2,2M}

Applying Lemma 3.9 to the function which is a spectral density, gives a K and a polynomial such that

1
My’

Kla(e™™)[* -

1
O YA€ [—m, 7]

where the polynomial a(z) = 1+a1z+...4+apz? is non zero for |z| < 1 and K is a positive constant. From the definition
of 9,

1 FEOMN M
- < 2M.
Kla(em™)]2 = 1=6f©O\) — 1—M§ —
It follows that
e~ FOW)| = |Klate ) - SO0 onzs< €
Kla(e=)[? fe )(A) Kla(e=)[? -2
The inequalities now give
The process
2
CL(B)Xt = €t {Ez} ~ WN(O, ?ﬂ-
has spectral density m and the proof is complete. O
The proof of the result for the MA(q) process is left as an exercise. O

For ¢ small, ¢ and p may be rather large. In practice, it is often possible to find an ARMA(p',q’) process where
P’ +4¢" < min(p, q).
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3.1.1 ACVF and causal invertible ARMA processes

The following results shows that if 7 is the ACVF of an ARMA(p,q) process, then there is a causal
invertible ARMA (p,q) with ACVF ~.

Theorem 3.10. Let {X;} be a stationary ARMA(p,q) process with ACVF ~y, then there is a causal
invertible process {X;} with ACVF ~.

Proof. Let ai,...,a, be the roots of ¢(z), so that ¢(z) = H§:1(1 - é) and let by, ..., b, be the roots
of 6(z), so that 0(2) = [[7_,(1 - %) The spectral density is:

A —iX (2

f()\) B LQH?:1(1 - %) . (772 Hj:|bj|>1(1 B ebj )Hj:\bj\<1(1 - %)
= ixy —iX —ix
2 H?:l(l - ea]— ) 2 Hj:|aj|>1(]‘ - %) Hj:\a]'|<1(1 - eaj )

J

—iA i\

—
o? Hj:|bj|>1(1 - %) Hj:|bj|<1 \16;7(1 —bje™"")

J
o Y ixj .
2m Hj:\aj|>1(1 - eaj )Hj:|aj\<1 |€aj|2 (1 - aje ’M)

Now we appeal to the fact that the spectral density is real and hence for each a; (and b;) not real,
there is a root @; of the AR polynomial (and b; of the MA polynomial). This leads to cancellation of

the unwanted e terms. Hence this is the spectral density of a causal invertible ARMA (p,q) process
Hj:\aj|>1 |a’j2>

where we replace roots a; : |aj| < 1 by roots % and replace WN(0,02) by WN (0,02W
Jilbj|>1 193

The ACVF uniquely determines the spectral density and vice versa.
3.2 The ARIMA Process

The ARIMA process is defined as follows:

Definition 3.11 (The ARIMA(p, d, q) process). Let d be a non-negative integer. The process { Xy, t €
7} is said to be an ARIMA(p,d, q) process if VX, is a causal ARMA(p,q) process.

A causal ARIMA (p,d, q) process {X;} satisfies:

¢(B)X; = ¢*(B)(1 — B)'X; = 0(B)es, {er} ~ WN(0,0%), (3.11)

where ¢*(2) # 0 for all |z| < 1. The process Y; := V¢X; = (I — B)?X; satisfies:

Example 3.4 (Random Walk).
Consider the simple random walk process:
Xi=Xi1+e {e;} ~ WN(0,0?) 0<o0? < +00.
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This is not a stationary process; Var(X;) = to? i +o00; the central limit theorem gives that

t{f—/g tii&o) N(0,0?). A stationary process may be obtained from X by differencing; let

Yi=VX; =X, —X;-1=({ - B)X;.
then Y; is a stationary process;
Y; = ¢ ~ WN(0, 02).
It follows that the random walk {X; : ¢ € Z,} is an ARIMA(0,1,0) process. O
It is clear that, for d > 1 there are no stationary solutions of Equation (3.11). Furthermore, neither the
mean nor ACVF of {X;} are determined by (3.11), since any process X; + Y;, where Y; disappears by

differencing d times, satisfies equation (3.11). For example, if Y is a random variable, then V(X;+Y") =
VX;.

For |¢| < 1, the process

X;— X 1=¢  {e&} ~WN(0,0?)

is a causal AR(1) process and is stationary, while for ¢ = 1, the process is not stationary, but is an
ARIMA(0,1,0) process.

Recall that a causal AR(1) process has autocorrelation function

p(h) =", o] <1.
and hence, for any h,

lim [p(h)| = 1.
limn (1)

Similarly it holds for any ARMA process that its ACVF decreases slowly if some of the roots of
¢(z) = 0 are near the unit circle. From a sample of finite length, it is difficult to distinguish between
an ARIMA(p,1,q) process and an ARMA(p + 1,q) where ¢(z) has a root near the unit circle. An
estimated ACVF that decreases slowly indicates that differencing may be advisable.

Suppose that {X;} is a causal and invertible ARMA(p, ¢) process:

#(B)X; =0(B)Z;, {e} ~ WN(0,0?),

where 6(z) # 0 for all |z| <1 and ¢(2) has no roots in the unit circle. Then

¢(B)VX; = ¢(B)(1 — B)X; =0(B)(1 — B)es, {e} ~ WN(0,0%),

from which it follows that VX; is a causal, but non-invertible ARMA(p, ¢ + 1) process. A unit root in

the moving average polynomial indicates that X; has been overdifferenced.
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3.2.1 Testing for Unit Roots

For given time series data, there are tests available to indicate whether or not there are unit roots
present. One common test is the Dickey Fuller test, introduced by Dickey and Fuller (1979), which has
been refined to produce the Augmented Dickey Fuller Test (abbrieviated to ADF). This is a relatively
straightforward test. It assumes that {e;} ~ ITDN(0,0?) (independent, identically distributed normal
random variables) and works on the principles of linear regression.

The disadvantage of this test is that presence of a unit root is the null hypothesis. In statistics,
a null hypothesis is never accepted; the result of a hypothesis test is either ‘reject the null hypothesis
and accept the alternative hypothesis’, or ‘do not reject the null hypothesis’.

Failure to reject a null hypothesis does not imply that the hypothesis is true; it simply means that
there is not enough evidence to establish the alternative.

There is a test, known as the KPSS test, which states the presence of a unit root as the alternative

hypothesis; rejecting the null hypothesis of no unit root establishes that there is a unit root.

The Dickey Fuller Test Consider the AR(1) model:

X, =0X; 1 +ea  {e} ~WN(0,0?%).

Subtracting X;_; from both sides gives:

VXi=(p-D)Xs1+6=VX,=BX;1+e  {a) ~WN(0,07).

The Dickey Fuller test simply takes a linear regression of {VX;} against X; 1 and estimates the
parameter 8 in the model, with error bounds. The test may also include a constant, and a deterministic
drift; using linear regression, assuming {¢} ~ IIDN(0,02), one tests whether the parameter j3 is
significant in either

VX =a+ 0Xi—1+ €

or
VXi =ag+ ait + 8Xi 1 + €.

While standard multiple linear regression techniques may be used, the approach by Dickey and Fuller
represents a refinement where the estimates are made in a different way and the distribution of the
test statistic DF; := ﬁ@ turns out not to be exactly t distributed. The distribution is known as the
Dickey Fuller distribution.

The tests have low statistical power; they cannot distinguish between a true unit-root (8 = 0) and

near unit-root (8 close to zero). This is called the ‘near observation equivalence’ problem.

The Augmented Dickey Fuller Test The testing procedure for the ADF test is the same as for
the Dickey—Fuller test but it is applied to the model

VXt =aqap + ot + 6Xt—1 + 51VXt_1 + -+ 5p_1VXt_p+1 + € {Gt} ~ HDN(O, 0'2)
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The lag length p is determined when applying the test, using standard model building techniques from
multiple linear regression analysis. The unit root test is then carried out under the null hypothesis
8 = 0 against the alternative hypothesis 8 < 0. The test statistic
DF, = 6A

sd(3)

is computed it can be compared to the relevant critical value for the Dickey Fuller test.

The KPSS Test The KPSS test was introduced by Kwiatkoski, Phillips, Schmidt and Shin in 1992
(Biometrics vol. 54 pp 159 - 178). It is based on the LM (Lagrange Multiplier) test in regression for
omitted variables.

Assume that a time series {Y;} can be decomposed into a linear trend ¢, a random walk Ry and a

stationary error process X;:

Y, =&+ Ry + X,
Ri=Ri1+e  {e}~IIDN(0,0%)

Ry is fixed. The hypothesis that Y; — &t is stationary is equivalent to the hypothesis that o = 0.

For the test statistic, it is assumed that {X;} ~ IIDN(0,0%). Let (et)t>1 denote the residuals from
an OLS regression Y; = Bo + Bit + €, let 32 the estimate of the error variance from this regression and
Sy = Zle e;. The LM statistic for Y7,..., Y is:

T 2

LM — >i—1 5%

P

Under the assumption that o2 = 0, the distribution (or at least the asymptotic distribution) of

7 Ele S? may be computed explicitly and 52 Totpo o%.

Testing for unit roots using R The following gives a demonstration of a unit root test. Consider
the log series of U.S. quarterly GDP from 1947.1 to 2008.1V. The file is found in q-gdp4708.txt in the
course directory. The data is plotted in Figure 3.1.

The following indicates that the unit root test cannot be rejected. The test used is the KPSS test.

> q.gdp4708 <- read.table(www, header=T)
> a = ur.kpss(q.gdp4708$xrate,type = "tau")
> summary(a)

ittt S
# KPSS Unit Root Test #
ittt S S

Test is of type: tau with 3 lags.
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Figure 3.1: US quarterly GDP 1947 - 2008

Value of test-statistic is: 0.2444

Critical value for a significance level of:
10pct b5pct 2.5pct 1pct
critical values 0.119 0.146 0.176 0.216

The test statistic is larger than the 1% critical value. We may safely reject the null hypothesis of no

unit root and accept the alternative of unit root. In fact, we can see that the unit root has multiplicity
2

> library("forecast")

> auto.arima(q.gdp4708$gdp)
Series: q.gdp4708$gdp
ARIMA(0,2,1)

Coefficients:
mal

-0.6438

s.e. 0.0685

sigma”~2 estimated as 1361: 1log likelihood=-1236.89
AIC=2477.79  AICc=2477.84 BIC=2484.8
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3.3 SARIMA Processes

Seasonal series are characterised by a strong serial correlation at the seasonal lag and multiples thereof.

Seasonal ARIMA models allow for randomness in the seasonal pattern from one cycle to the next.

Definition 3.12 (The SARIMA(p,d, q) x (P, D,Q)s Process). A process {X;} is said to be a Seasonal
ARIMA (p,d,q)x (P,D,Q) process with period s if the differenced process

Y, := (1 - B)4(1 - BPX,

s a causal ARMA process,

¢(B)®(B*)Y; = 0(B)O(B*)er  {et} ~ WN(0,0%)
where
d(z) =1— 1z —...— pp2P
B(2)=1—812° —... — dp2l™
0(z) =14+01z+ ...+ 6,27
O(2) =14+ 012° + ... + 0gz?.

Note that the process {Y;} is causal if and only if both ¢(z) # 0 and ®(z) # 0 for all |z| < 1.

Note The SARMA process is a stationary process; the mean zero SARMA process satisfies E[X;] = 0
for all t.

Therefore, the stationary SARMA process is not suitable for the situation where the process has a
deterministic stationary component (so that E[X;] = s;, where s; is a deterministic periodic function).
What is in view here is a process where the autocovariance is seasonal.

The SARMA process is therefore not suitable for modelling, for example, a situation where there

is a ‘January effect’, when trade increases in January due to January sales.
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