Chapter 2

Linear Time Series Models

2.1 Linear Time Series Models

Prediction can be improved with better understanding of the stationary process. Very often, the
stationary component is not WN(0,02); there are correlations. The next task is to build a suitable
family of models for the stationary process. The classical models for the stationary process are linear

processes.

Definition 2.1 (Linear process, Strictly Linear Process). A process {X;, t € Z} is said to be a linear

process if it has representation

Xe=p+ > Ve, {ea}~ WN0,0%), (2.1)

j=—o0

where Z;o:_oo || < 0co. A stationary time series {X;} is strictly linear if it has the representation

oo
Xe=p+ > Vi, {a} ~1D0,0%.

j=—o0
where 3 [1;] < +oo.
This representation is taken to mean the following: let

Xim=p+ > e {a} ~IID(0,06%) or {e} ~WN(0,0%).

j=—m

Then for each t,
lim  sup E[[Xim, — Xem,|*] =0.

mi1—-+o0o mQZml
The following lemma gives conditions under which an infinite sum may be approximated by a finite

sum.

Lemma 2.2. Let {X;} be sequence of random variables (possibly complex valued) that satisfies

sup E[| X;[?] < oo.
t
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If

D Juyl < oo,

j=—oc0

then the sequence

Yin= > ;X1

j=—n

is Cauchy in L?, in the sense that

21 _
ol i = Y0} =0

Proof Suppose that sup, E[|X;|?] < co. Then

2

n+m
EHKﬁ,n-ﬁ-m_Kf,nH = K Z ijt—j
|7l=n+1
n+m n+m n+m 2
= > UaE XX <supE[|Xt|] > 1wl
l7|l=n+1 |k|=n+1 l7]=n+1

from which the result follows, since

n+m o]
hm sup Z ;] < ngr—ll—loo Z || = 0.
ljl=n+1 ljl=n+1

2.1.1 The Spectral Density
The spectral density of a stationary process is defined as follows:

Definition 2.3 (Spectral Density). Let v be the ACVF for a stationary time series. The function f
defined by

1
2

=—00

is the spectral density of . It is well defined if > ;2 |y(h)| < cc.

fA) = e"My(h), —m<A<m, (2.2)

The ACVF may be recovered from the spectral density:

- LA
[emiman= [7 oo 3 @t hman= o 3 ) [ et Pran— ).
—7 —7 k 0 —7

The spectral density satisfies (among other things):
1 (o]
F(0) = o, Z
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Properties of Autocovariance and Spectral Density The following result gives the autocovari-

ance and spectral density in terms of 1 and 2.

Theorem 2.4. A linear process { Xy, t € Z} with representation given by (2.1) is stationary with mean

1, autocovariance function

yx(h) =0® > i,

j=—o0

and spectral density

o? ;
Fx () = o lw(e™™)P,
where ¥(2) = 372 V2.

Proof Taking expectations,

HXAZEAHj§:¢Mﬁ :M+ z:¢ﬁ¥wﬂ:M

J=—00 J=—00

and

vx(h) = E[(Xpon—m)(X;—p) =E (

j=—o0

= > D viUnElerin e i)

j=—00 k=—00

i ¢j€t+hj>< i wketk>

k=—o00

= Z Z VYjYrElenir—jeo] = Z Z VYntjrE[er—jeo]

j=—00 k=—00 Jj=—00 k=—00
(o)
= > ¥nitEleoc],
j=—oc

and (2.3) follows since E[epeg] = o2.

Equation (2.2) now gives:

00 9

) = = S eymy =7 e ST i

27 .
h=—o0 h=—0o0 j=—00

e 2

_ ;77 Z Z 6_ihA¢jwj+h:;7r Z Z AT TRy

h=—00 j=—00 h=—00 j=—00

© s .. . 0’2 . . 0'2 .
Do > P = u(eu(e™) = (e

j=—00 k=—00
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2.2 Prediction of random variables

Here we consider the problem of predicting a random variable Y from arbitrary random variables
Wi, ..., W,. The application will be to time series where we aim to predict X, 1 from X,,..., X;.
Since we expect the most recent observations to be more important for prediction, it is useful to
consider a reverse order of the indices.

Consider any random variables Wi, Wy, ..., W,, and Y with finite means and variances. Set u; =
E[W;] and p = E[Y] and set I'y.j = Cov(Wy—ijt1, Wn—j41). Let T', denote the matrix with entries
Dpiij- Let 7 = (71,...,7)", where v; = Cov(Wy—jt1,Y).

The aim is to establish a linear predictor me/) (Y) of Y in terms of Wy, Wa, ..., W,; that is, a random
variable Pff:? (Y) of the form

Pf<w>(Y) =ap+a Wy, +...+a,Wi. (2.5)
1:n

Let Y = P]_.(W)(Y) denote the predictor of Y. For convenience, and without loss of generality (since
1:n
the means are assumed to be known), this may be centred:

Y — = ag+ar(Wan — i) + ..+ an (W1 — ).

Here ag = ag + p — Z?:1 ajlin—j;; the problems are equivalent.
Set S(ag,ai,...,a,) = E {(Y—?)Q} and choose ag,ay,...,a, that minimise S(ag,a,...,a,). It
follows from the definition that

S(ag, ai,...,an) = E [((Y — ) — o — a1(Wi — in) — . — an(Wy — ,Ll))2]

= GBHE[(Y =) — aa(Wo— pn) = .. — an(W1 — ))*]

From this, it follows directly that ag = 0 (and hence, in the problem with arbitrary means, ag =

[t = D5y @jfin—j). For the others,

oS
90, = 2EIWasivr = pn-is1) (Y = ) = ar(Wo = pin) = ... = an(W1 = 111))]
K
= -2 %—Zajf‘n;i,j N i=1,...,n.
j=1
Since S is quadratic in (ao, . .., ayn) and goes to infinity as each |a;| — 400, it follows that the minimum

is attained when all the partial derivatives are equal to zero;

oS
Oa;

n

=0 < Yi = Z(Ljrnﬂ',j, 1=1,...,n. (26)
j=1

Set
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ay

an

Equation (2.6) may then be rewritten as:

7,, =I'na, or,if I'; is non-singular, a, = F;lln. (2.7)

It remains to show the predictor Y is uniquely determined also when I',, is singular. Assume that I, is

singular and that y = anﬁf) for i =1,2. Let Y@ for i = 1,2 be the corresponding predictors. Then

Var(Y M — V@) = (a® — ¢V, (V) — a®) = (a® —a®)t(y —~ ) =0,

from which it follows that Y1) = Y2,

Note that if T',, is singular, then a(!) and (?) may be different; all solutions a give the same predictor.

Furthermore, it follows from the above that the following result (known as the projection theorem)
holds:

Theorem 2.5 (Projection Theorem). Let Y be the linear predictor of Y based on W1,..., Wy, then
Y satisfies:

Coo(Y —Y,W;) =0, for i=1,...,n. (2.8)

Proof Without loss of generality, let ¢ = p1 = ... = p, = 0. From above, the linear predictor

Y = Z?:l a; Wy ;11 satisfies E?Ti = 0, which is equivalent to

O:EW@MJY—W} i=1....n

so that
OZEWNY—?ﬂ:cmm@Y—ﬁ Vi=1,...,n.

Since the problem with arbitrary known means is equivalent, from now on, only py =1 = ... = p, =0

will be considered. Consider the mean-square prediction error

zm:EU?—Wﬂ:VM&—Y)
If T, is non-singular, then it follows from equation ((2.8)) that
Var(Y) = Var(Y =Y +Y) = Var(Y — Y) + Var(Y).
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It follows that

v, = Var(Y —Y) = Var(Y) = Var(Y) = Var(Y) — ' Tna,, = Var(Y) — lifglln. (2.9)

Now consider all random variables mean zero, predicting Y from Wi,..., W,. The linear predictors
are of the form

Y =a1Wn + ...+ a, W, (2.10)
Let

M={a W, +...4+a, W1, a=(ay,...,an)t € R?}

and

H={bY +aiW,+...+a,W1, beR, a=(a,...,ay)t € R?}

where the notation A is used to denote the closure of the space A. The predictor Y may be considered
as the point in M closest to Y, where distances in H are measured in terms of variances. A Hilbert

space structure may be introduced to H by taking the inner product to be the covariance;

(X,Y) = Cov(X,Y).

It follows that for X and Z two random variables in H,

X 1Z&Cov(X,Y)=0; X 1 Z < Var(X + Z) = Var(X) + Var(2).

In this framework, Equation (2.8) states that Y is determined by ¥ — Y L M, hence Theorem 2.5 is

referred to as the projection theorem.

It is clear that (X,Y’) := Cov(X,Y) satisfies the hypotheses for an inner product and that the spaces
‘H and M are Hilbert spaces. The following notation will be used throughout: for a collection of
random variables C, M(C), or more simply M when the collection C is understood from the context,
will denote the Hilbert space spanned by the variables C. If the collection of variables is F éf), then
the Hilbert space will be denoted by Mgz). The notation Pycy(Y) or PpmY when C is understood
from the context will be used interchangeably to denote exactly the same thing; the projection of the
random variable Y onto the Hilbert space M(C). This is also equal to P¢(Y) defined earlier. Note

that:

Y = PranY =Py,

The norm for the Hilbert space || - || is defined by: || X|| = y/Var(X). In particular,
Y = Y|? = Var(Y - Y).

The Hilbert space MgVZ) is called the Hilbert space spanned by Wi,..., W,.
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2.3 Partial correlation

Let Y7 and Ys be two random variables. The strength of the linear relationship between them may be

measured by the correlation coefficient

COV(Yl, Y2)

/Var (Y1) Var(Y3)

In many situations, a large correlation between Y; and Y5 can be explained through other variables,
Wi, ..., Wg.

p(Yl’ YQ) =

Suppose that Y] and Y, are random variables (for example, two time points in a time series) and

Wi, ..., Wy are other random variables (indicating, for example, other time points in the series). Let

Y1 = PsITa{l,Wl,...,Wk}(Yl) and Yy = Pspia{l,Wl,.‘.,Wk}(YQ)
where spa denotes ‘span’ and the overline denotes closure. Therefore Yi is simply the projection of Y;

onto (1,W7i,..., W), and similiarly for Ys.

Definition 2.6 (Multiple Correlation Coefficient, Partial Correlation Coefficient). Let Y7 and

Wi, ..., Wy be random wvariables. The multiple correlation coefficient between Y7 and Wy, ..., Wy is
defined by p(Y7, }A’l) Let Y1, Yo and W1, ..., Wy be random variables. The partial correlation coefficient
of Y1 and Yy with respect to Wy, ..., Wy is defined by

a(Y1,Y2) == p(Y1 — Y1, Y, — Y2). (2.11)
Example 2.1 (Partial correlation with respect to a single variable).

When k£ = 1 (the partial correlation with respect to one variable W), then )A/l = a1 + bW and
Y = ag + byW. Furthermore, from the projection theorem, Cov(Y1, W) = Cov(Y, W) = by Var(W)
and Cov(Ya, W) = byVar(W), so p(Y1,W) = by Varw) g p(Yo, W) = bV VAIW) pla (2.11)

v/ Var(v1) v/ Var(vz)
reduces to:
a(Vi.Yy) — Cov(Y7, 1:2) + Cov(Y1, Yzj — Cov(Y1,Y3) — C(iv(Yg, Y1) _
\/Var(Y1) + Var(¥1) — 2Cov(¥3, 1)/ Var(Ya) + Var(¥) — 2Cov(Ya, 7o)
Cov(Y1,Y2) — bibgVar(W)
v/ Var(Yy) — b3Var(W)y/Var(Yz) — b3Var(W)
_ p<Y17Y2) _p(YlaW)p(Y27W)
V1= p(Y1, W)3)(1 = p(Y2,W)?)
provided [p(Y1,W)| < 1 and |p(Y2, W)| < 1. O

Example 2.2. Let
Yi=W+W, and Yo=W + W,
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where W, Wl, Wg are independent random variables, each with mean 0. Then

Yi = Pspagwy(Ye) = Pspagny (W + Wi) = Pspaguy (W) + Pspagwy(We) = W +0 =W,

from which
a(Yl)Yv?) = p(W17 WQ) =0.
O
Example 2.3. This example shows that uncorrelated variables may, in fact, be completely partially

correlated. Let Y7 and Y be independent, each with mean 0 and the same variance o2. Let W = Y;+Y5.
Then

o _o W N+
2 2 7
from which

N Y: — Y- N
N-Yi= 2o = (Y- V).

It follows that a(Y7,Y2) = —1.

2.4 Prediction for Stationary Time Series

Let {X;} be a stationary time series with mean 0 and autocovariance functiony(.) and consider the
problem of predicting Y = X,,4+1 based on Xj,...,X,. Then, denoting the predictor by )?nH, define
¢n,; such that

n
Xpy1 = Z OnjXni1—j-
Jj=1

In the notation of before,

i = Cov(Xpp1—i, Xny1—5) = v(Ji — j|)

and

v = COV(Xn+1,Xn+1—j> = '7(])

For v(0) > 0 and limj_, 1 v(h) = 0, T, is non-singular (exercise).

Using notation from before, it is clear that:

h—1

-----

=1
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Notation The following notation will be used: Pp(X;yp) will be used to denote Pf(x)(Xt+h), the
1:t

notation )?t+1 will be used for the one step predictor P (Xy1) = P_x) (Xt41)-
1:t

2.5 Partial autocorrelation

Definition 2.7. Let {Xy, t € Z} be a zero-mean stationary time series. The partial autocorrelation
function (PACF) of {X;} is defined by

a(0) =1
a(l) = p(1)
a(h) = p(Xn+1 — Pspagxs,...x,} (Xn+1): X1 — Pepagx,,.. x,3(X1))  h>2.

Example 2.4 (AR(p) Process).

An AR(p) process is defined by:

p
Xt — Z i Xi—j + e {e;} ~WN(0,0?).
=1

In the next section, we discuss conditions under which this process is well defined. If this equation
defines a stationary process with E[X;] = 0 and Var(X;) < 400 such that Corr(Xs, e) = 0for ¢t > s+1,
then it follows almost directly from the definition that the partial autocorrelation function a(h) for an

AR(p) process is equal to 0 for |h| > p.

2.6 The Wold decomposition

Let {X; :t € Z} be a zero-mean stationary time series. Let

My =5pa{Xi, t<n}l, Moo= () My 0 =E|[Xpi1 — Pat, (Xas1)[?]

n=—oo

Definition 2.8. The process {X;} is called deterministic if 0® = 0, or equivalently if Xy € M_o
Vt € Z. The process {X} is called purely non-deterministic if
M_ ={0}.

Theorem 2.9 (The Wold decomposition). Let {X; : t € Z} be a zero-mean stationary time series,
with My, M_o and o? defined above. Suppose 0® > 0. Then X; can be expressed as

[e.e]
X = Z'l/]jftfj + Vi, (2.12)

J=0

where
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1. Yyo=1 and E?io 1/}? < 00;
2. {e;} ~ WN(0,02);

3. ¢ € My foreacht € Z;

4. EleVi] =0 for all s,t € Z;
5 Vie M_y foreacht€eZ;

6. {Vi} is deterministic, where the definition of ‘deterministic’ is given in Definition 2.8.

The sequences {1}, {e} and {V;} are uniquely determined by {X;} and the conditions.
Note The final two statements are not the same, since M_o, is defined in terms of {X;}, not {V;}.

Proof of Theorem 2.9 Firstly, it is shown that the sequences defined by:

€ = X; — PMt,l(Xt)
bj = 72 ( Xty &) (2.13)
Vi=X — Z;io Vj€t—j

satisfy Equation (2.12) along with the six conditions of the theorem. The proof is then completed by
establishing the uniqueness of the thre sequences.

Firstly, € defined in Equation (2.13) is an element of M; and is orthogonal to M;_1, by definition.
It follows that

GgEME, CME,CLL.

so that, for all s < t, E[ese/] = 0. The second and third conditions of the theorem are therefore
established. Next,

Pm{ej:jgt} (X1) = tjer—j (2.14)

where 1); is defined by Equation (2.13) and Zjoil %2 < 400. The coefficients 1); are independent of ¢
by stationarity and

1 1
Yo = §<Xt7Xt — Py, (Xy)) = ;HXt — Pum,, (Xp)|? =1

The third equation of (2.13) together with Equation (2.14) give:
(Vi,es) =0 Vs < t.

For s > t, ¢5 € Mﬁ;l C M. Since V; € My, it follows that
(Viyes) =0 Vs > t.
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To establish the last two conditions, it is sufficient to show that

spa{Vj:j <t} =M_ Vt € Z. (2.15)

Since V; € My = M;_1 @ spa{e} and since (V4 ¢) = 0, it follows that V; € M;_1. Using inductively
Mg = M1 & 5pafes}, it follows that V3 € M;_; for all j > 0 and hence V; € M_,. It follows that

spa{V; :j <t} C M_ Vt € Z.

It follows from the third equation of (2.13) that:

M; =5spafe; 1 j <t} @spa{V;:j <t}
IfY e M_, then Y € M;_ for each s € Z and therefore (Y, e5) = 0 for each s € Z. It follows that
Y espa{Vj:j <t}. This implies that
M_o Cspa{V;:j<t} VteZ

This establishes Equation (2.15) and hence the existence part of the result.

To establish uniqueness: let {e;} and {V;} be any two sequences with the desired properties. Then

M1 Cspafej:j<t—1}@spa{V;:j<t—1}

from which it follows that ¢, L M;_; (using the second and fourth property). From projecting each
side of Equation (2.12) onto M;_; and subtracting the resulting equation from (2.12), it follows that
{€:} satisfies the first equation of (2.13). By taking inner products of each side of equation (2.12) with
€t—j, it follows that ¢; must satisfy the second of (2.13). Finally, for (2.12) to hold, it is clear that V'
satisfies the third of (2.13), hence uniqueness has been established. Ol
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