Chapter 1

Time Series Modelling

1.1 Introduction

An observed time series is a set of observations (z;)ie7 where 7 denotes an indexing set of finite size;
each observation x; is recorded at a specific time, related to the index t. z; may be vector-valued if we
are considering a multivariate time series, where the components may be influencing each other.

This course deals with Time Series models and their applications. We consider four areas of

application:

1. The forecasting of future values of a time series from current and past values.

2. Computing a transfer function of a system, which shows the effect on the output of a system on

any given series of inputs.

3. The use of indicator input variables in transfer function models to represent and assess the effects

of unusual intervention events on the behaviour of a time series.

4. Examining relationships between several related time series of interest and establishing multi-

variate dynamic models to represent these joint relationships over time.

For now, we consider univariate time series; each x; € R. We consider vector valued time series later.

1.2 Time Series Models

Definition 1.1 (Time Series Model). A time series model for the observed data {x; : t € T} is the
hypothesis that the observed data is an observation of a sequence of random variables {X; : t € T} and

the specification of its joint probability distribution, or possibly only its expectations and covariances.

A time series can only be observed at a finite number of times, (2;)}7_; and the n observations are a
realisation of an n dimensional random vector X = (X1, X2,...,X,). These random variables may be

considered to come from an infinite sequence {X;, t € Zy or Z}, a stochastic process.
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Definition 1.2 (Stochastic Process). A stochastic process is a family of random variables {X; : t € T},
indexed by a set T, which is defined on a probability space (Q2, F,P).

Example 1.1 (The binary process).
A simple example of a stochastic process {X;, t € Z,} is a process where the variables are i.i.d.
(independent identically distributed) satisfying
PX;=1)=P(X;=-1)= .
For this process, the finite dimensional marginals are well defined; for any i1 < ... < iy,
]P)(X’u - jla Xi2 - j2) “ee 9Xin - jn) - 27”
for any {j1,...,jn} € {—1,1}". ]

Definition 1.3 (IID noise). A process { Xy, t € Z} is said to be an IID noise with mean p and variance

o?, written

{Xt} ~ IID(:“’? 0-2)7

if the random wvariables Xy are independent and identically distributed with E[X;] = p and Var(X;) =

a2

Usually, we are interested in IID(0, o) noise.

Notation Througout, Var(.) will be used to denote variance.
The binary process is clearly an example of an IID(0, 1) noise, since the variables are independent,
E[X;] =—-1x $+1x%=0and Var(X;) = E[X}] - E[X}] = E[X?] = 1.

In many situations, the complete specification of the underlying stochastic process is not required; the
methods will generally rely only on its means and covariances. Sometimes even less general assumptions

are needed, but these will not be treated here.

Definition 1.4 (Mean function, Covariance function). Let {Xy, t € T} be a stochastic process with
Var(X;) < oo for each t € T. The mean function of {X;} is denoted by px, or simply p when there

18 no danger of ambiguity:

ux(t) =E[X)], teT (1.1)

The covariance function of {X;} is denoted by Cx or C when there is no danger of ambiguity and is
defined as:

Cx(r,s) = Cov(X,, Xs), r,seT. (1.2)
The symbol Cov will be used to denote covariance.
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1.3 Stationarity and Strict Stationarity

A stochastic process is said to be stationary, if its statistical properties do not change with time.

Formally, stationarity is defined in the following way.

Definition 1.5 (Stationary, Strictly Stationary, Wide sense stationary). A time series {Xy, t € Z} is

said to be weakly stationary, or wide sense stationary, or simply stationary if

1. Var(Xy) < oo forallt € Z,
2. ux(t)=p forallteZ,

3. Cx(r,r +h)=Cx(0,h) forallr,h € Z.

A process is said to be strictly stationary if any finite collection (X,,,, ..., Xp,) has the same distribution

as (Xn 4t -, Xnyt+t) for any k> 1 and any (n1,...,nk, t) € Z.

In many practical situations, only weak stationarity is considered; usually only expectation and covari-
ance, at most, can reasonably be assessed from data. In some situations, though (for example ARCH
and GARCH processes, which arise in the analysis of financial time series) it is worthwhile placing

additional modelling assumptions on the data generation mechanism.

The third point in the definition of weak stationarity implies that Cx(r, s) depends on r and s only

through r — s. It is therefore convenient to define

vx (h) := Cx(h,0).

When only one time argument appears in +, then it denotes the autocovariance (ACVF) function of a

stationary process. The value h is referred to as the lag.

Definition 1.6. Let { Xy, t € Z} be a stationary time series. The autocovariance function (ACVF) of
{X:} is defined as
vx (h) = Cov(Xyin, Xt).

The autocorrelation function (ACF) is defined as:

o vx (h)
px(h) = 7x(0)°

A simple example of a stationary process is the so-called white noise.

Definition 1.7 (White noise). A process {Xy, t € Z} is said to be a white noise with mean p and

2

variance o<, written

{Xt} ~ WN(N’? 02)7

if E[X:] = u for allt € Z and



o2 ifh=0,
0 ifh#0.

y(h) =

Note that IID noise is an example of white noise, but not necessarily vice versa; the underlying
distribution can be different even if the mean and covariance structures are the same; strictly stationary
time series {Xy, t € Z} with Var(X;) < oo is stationary, but a stationary time series {Xy, t € Z} does
not need to be strictly stationary

From now on, the term ‘stationary’ will be used to denote ‘weakly’ or ‘wide sense stationary’; the term

strictly stationary will be used for the stronger assumption.
Example 1.2 (AR(1) process).

Autoregressive (AR) processes will be considered in more detail later. A process {X;,t € Z} is said to
be AR(1) if it stationary and satisfies:

Xi=0Xe 1+ 2 {Z} ~WN(0,0?%).

For this process, the autocovariance may be computed as follows: by squaring up both sides and using
7x(0) = Var(Xy),

o2

vx(0) = ¢*vx(0) + 0 = vx(0) = T—g

for h > 1,

vx (h) = Cov(Xiqn, Xt) = ¢Cov(Xiyn—1,Xt) + Cov(Zpgn, Xi) = dyx(h — 1)

so that, since vx(—h) = vx(h),

(1) = Tl
Tx\n) = .
(1—-¢%)
Its autocorrelation function (ACF) is
px(h) = ¢l".
Note that the AR(1) process is not well defined if |¢| > 1. O

1.4 Trends and Seasonal Components
The classical decomposition model is:
Xt = e+ st + €,

where



e 1 is a slowly changing function (the trend);
e s; is a function with known period d (the ‘seasonal component’);

® ¢; is a stationary time series.

The aim is to extract the deterministic components p; and s; and estimate them and then check

whether or not the residual component ¢; is a stationary time series.

1.4.1 No Seasonal Component

Assume that

Xt:,ut—ket, tzl,...,n

where, without loss of generality, E[e;] = 0 (since the mean of the stationary process is systematic and
is therefore considered to be part of the trend).
There are several methods for estimating p. Three are considered here; least squares, moving

average and differencing.

Method 1 : Least Squares estimation of ; The function p; is modelled by a function with as few
parameters as necessary for accurate modelling and the parameters are estimated by the least squares
technique. For example, suppose that j; can be modelled by a quadratic function, j; = ag+ a1t + aot?.

The parameters (ay)%_, are estimated by (@y)?_,, chosen to minimise
n
Z(xt —ag — art — agt?)?.
t=1

Method 2 : Smoothing by means of a moving average Let ¢ be a non-negative integer and
consider a smoothed version of X defined by
1 q

Xivi 1<t<n-—q.
2‘1+1qu i ¢+1<t<n-—gq

t =

If it turns out that p is approximately linear over the time interval [t — ¢,t 4 ¢] and also that ¢ is

sufficiently large so that ﬁ Z?:_q Yy ~ 0, then

1 1 1 g

W, = i+ Yie: >~ .

v quMHJ + 90+ 1 qu t+j =t
For t < g and ¢t > n — ¢, W has to be defined in a different way. For example,

1 t
Wt_{ 2+1 Zj:—tXt+j t=1,...,q
- 1 n—t B

ij:_(n_t)Xt—j t=n—-q+1,...,n.

Unless p; is a straight line and the stationary time series component Y is very small, it will not be

possible to find a ¢ satisfying both the conditions that u is approximately linear over the interval

1

T Zifg Y; ~ 0 (requiring large q).

[t — q,t + q] (requiring small ¢) and such that
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Definition 1.8 (Linear Filter). A linear filter is defined as a linear combination:
fir =Y a;Xiyj,
J
where Y aj; =1 and a; = a_;.
A linear filter will allow a linear trend pu; = a9 + aqt to pass without distortion since

Z(Lj(ao +Ot1(t+j)) = (Oé(] +oz1t)2aj +a12ajj = qag + aqt.
J J J

It is possible to choose the weights {a;} so that a larger class of trend functions pass without distortion.

For example, the Spencer 15-point moving average, defined as

[ag, ax1, ..., a+7] = 535(74,67,46,21,3, -5, —6, —3]
a; =0 for |j] > 7

allows a cubic trend to pass without distortion. That is, applied to j; = at® + bt? 4 ct + d,

e = Zant+j = Zajﬂt+j + ZantJrj ~ Zaj,“t+j = 1.

Conditions required for a filter to pass a trend which is polynomial of degree k without distortion are

found in the exercises. Moving average methods will be considered in greater detail later.

1.5 Linear filters

A linear process may be regarded as a linear filter. Let {X;} be a time series. A filter is an operation
on a time series in order to obtain a new time series {Y;}. {X;} is called the input and {Y;} the output.

A linear filter C is the following operation:

C(X)=Yi= > cpXe. (1.3)

k=—00

We only consider the situation were E [Xf] <ooand E [Y}Z] < oo.

A linear filter is said to be time-invariant if c¢; ;, = c¢;—j, in which case it may be written as:

o)
}/t: Z Cth,j.

j=—o00

A time-invariant linear filter (TLF) is said to by causal if

c; =0 for j <O,

When the input {X;} of a time invariant linear filter is stationary, then the output {Y;} is also stationary

provided Y, |ex| < +o0.



Definition 1.9 (Stable Linear Filter). A TLF of the form (1.3) is stable if >"72 _ |ex| < oc.
Definition 1.10 (Transfer function, Power function). Consider a stable linear filter and set

c(z) = Z ;2.

j=—o00

The function c(e™™) := Z;‘;_m cje_i)‘j is known as the transfer function, while the function |c(e=")|?

18 known as the power transfer function.

A filter may be written as ¢(B), in the sense that
}/;f = C(B)Xt
where B as usual denotes the backward shift operator.

A linear process is a linear filter where the input is WN(0, o2).

Impulse Response Function In general, for a stationary process {X; : t € Z}, where the variables

{X:} are functions of impulses {¢; : t € Z}, the impulse response function g(s) is defined as:

a)(szrs
8et

In the case of a causal linear filter X; = 3, cjer—j, g(t;s) = g(s) = cs.

g(t;s) = (1.4)

The impulse response function may be extended to vectors; if {X, : ¢t € Z} is an m-vector valued

process which is a function of vector impulses {e, : t € Z}, then

aXtJrs,i
e,

9ij(t, s) = : (1.5)

If {X,} is a linear causal vector valued process satisfying X;; = > <o Dk Cjk;s€t—sk then
9ij(t,8) = gij(s) = cijis-

Method 3: Differencing to generate stationarity Let B denote the backward shift operator;
(BX); = X;_1, with powers given by (B’X); = X;—_;. In other words, applying B’ to X pushes it
back j time units. Strict stationarity means that B"X has the same distribution for all h € Z,.

The difference operator V is defined by
VX, =X, — X1 =(1-B)Xy,

where B is the backward shift operator. That is, (BX); = X;_1. For positive integer k, V¥ is defined
by: by:



VEX, = V(VF1X),.

For example,
VX, =VX — VX1 = (X — Xm1) — (Xim1 — Xeo) = Xy — 2X41 + Xyo.
Using the backward shift operator, this may be expressed as:
VX, =(1-B)>*X,=(1-2B+B)X, = X; — 2X;_1 + X;o.
For a linear trend p; = a + bt,
VX; =V +VYi=a+bt—a—-bt—1)+ VY, =b+ VY,

For the covariance,

Cov(VY,, VY,) = Cov(¥;,Y;) — Cov(Yi1,Ys) — Cov(Ys, Yio1) + CovY_1, Yy_1)
Y(t—s)—pw(t—s—1)—wt—s+1)+yv(t—s)
= 2y(t—s)—wlt—s+1)—w(t—s—1).

It follows that VX, is stationary with
pox =b  yvx(h) =2y (h) =y (h+1) =y (h—1).

In general, if u; = Z?:o cjt’, then
VEX, = kleg + V*Y,,

which is stationary.

1.5.1 Trend and Seasonality

Now consider the model with a seasonal component:

X =+ s¢ + Y,
where E[Y;] = 0, s;1.q4 = s¢ and Zizl s = 0. For simplicity in the representation, assume that n/d is

an integer; in any reasonable modelling situation, n and d will be chosen so that n/d is an integer.

In models with a seasonal component, the data is often indexed by period and time-unit;

. n
xj,k:xk+d(j—1)7 kZl,...,d,jZl,...,E.

In this notation, x; is the observation at the k:th time-unit of the j:th period.
Three methods for dealing with seasonal components will be considered; the small trend method,

the moving average estimation method and the differencing at lag d method.
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Method S1: Small trends If the trend is considered to be constant during each period, the model

may be written as:

Xjk = pj + sk + Yk

A natural way to estimate the trend is:

1 d

and a natural method for the seasonal component is:

d n/d
Sk = ;(xj,k — Hj).

Method S2: Moving average estimation For a known period d, the trend is estimated by
applying a moving average to eliminate the seasonal component and to reduce the noise. For d even
set ¢ = d/2. The trend is estimated by:

~ 0.5.7)157(] + Tt—q+1 + -+ Tttq—1 + O-5mt+q
Mt = d .

For for d odd, set ¢ = (d — 1)/2. The trend is estimated by:

o Tt—q T Tt—gy1 T+ Tpqg—1 + Titg
Ht = d ’

forg+1<t<n-—gq.

The seasonal component s is then estimated in the following way. Set

1 ~
Wi = E LTh+jd — Mk+jd)-
number of summands ( + Hhti )

q—k .n—q—k

IS

The seasonal component satisfies Zzzl 5 = 0 and therefore the estimates are:
1 d
Sk :wk—E;wi, k=1,...,d.

Method S3: Differencing at lag d Define the lag-d difference operator V4 by
VaXi =Xy = Xi-q = (1 - B)X,.

Then
VaXt = Vaus + VaYs.

This has no seasonal component and the methods for dealing with time series without a seasonal

component may be applied.



1.6 Autocovariance and Spectral Density of a stationary time series

Recall Definition 1.5 of a weakly stationary time series. It follows directly from the definition that:

7(0) > 0,
[v(h)| <~(0) forall h € Z, (1.6)
~v(h) =~(=h) forall h € Z.

An autocovariance function is clearly non-negative definite, since 2?21 Y opoq ajagpy(t; — tx) is the

variance of Y1) a;j Xy,

Definition 1.11. A function k : Z — R is said to be non-negative definite, or positive semi-definite,
if
n
Z aiajn(ti - tj) Z 0
ij=1
for all n and all vectors a € R™ and t € Z".

Theorem 1.12. The autocorrelation function of a stationary time series is a real valued, even non
negative definite function defined on Z. For any real valued even mon negative definite function k
defined on Z and for any N > 1, there exists a sequence of random variables (X_n, ..., Xn) such that
Cov(X;, X;) = k(i — j).

Proof Let «(-) be the autocovariance function of a stationary time series X;. Then for any (¢1,...,t,)

and any (aly ey an)7

n
0 < Var Z a;j Xy, | = Zajaky(tj — tk).
Jj=1 Jk

For the other way, Let Z = (Z_n,...,Zn) be a vector of i.i.d. N(0, 1) variables. Let K denote the
2N + 1 x 2N + 1 matrix with entries K;; = k(i — j). Then K is a non negative definite matrix.
It follows that K has a decomposition PAP! where P is an orthonormal matrix and A is a diagonal
matrix whose entries are the eigenvalues. Let K1/2 = PAY/2Pt then (K1/2)2 =K. Let X = K27,

then X is a random vector with covariance K as required. I

1.7 Holt Winters Filtering
No trend, no seasonal component Given observations X1, Xo,..., X, from the model:

Xe=p+2  {Z}~WN(0,0?%

where p is considered to be approximately constant. The method of ezponential smoothing is to

compute a smoothed series:

X; =2 +(1-XNX,.1  Ae(0,1) (1.7)
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where A is the smoothing parameter. The forecast for time ¢ 4+ h given the series up to time ¢ is
Xt+h|t = Xt.

The quantity X, is the estimate of w at time ¢; the assumption is that the underlying value of p will
not change between ¢ and ¢ + h.

Linear trend, no seasonal component Holt and Winters independently extended this idea
(Holt (1959) and Winters (1960)) to deal with the model

Xe=p+2Z  {Z} ~WN(0,0%)
under the assumption that the trend is approximately linear. Let m; = 3 — pe—1. Then the equations

suggested by Holt and Winters are:

Xi=MXi+ (1= \) (Xt—l + 77%—1) (1.8)
mi = A2 <)~(t - )?t—l) + (1= Xo)my—1 .

where my is the estimate of m; at time ¢. The h-step ahead forecasts are then given by:
Xt+h‘t - Xt + hffl/t

Holt Winters with linear trend and additive seasonal component Now suppose that {X;} is

a time series with both trend and seasonal component where the seasonal component {s;} has period
d:

Xt = Wt + S¢ + Zt {Zt} ~ WN(O, 0'2)

The Holt-Winters algorithm accommodates the seasonal component in the following way: let Y; =

X — s¢, then §7t is an approximation of y; and

Vi=M(X: —5-a) + (1= 2)(Yie1 + my1)
my = Xo(Y; —Yi—1) + (1 — Xo)my—y
S5t =M(Xy = Y) + (1 = A3)84—4q

The initial conditions are:

Vi1 = Xa
Mgy = 5(Xgp1 — X1)
giZXi—(X1+T7Ld+1(i—1)) i=1,...,d+1

The predictors are:

Xt+h‘t:?vt+hﬁbt+,§t+h h:1,2,
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The parameters Aj, A2, A3 € (0,1) may be chosen by minimising the sum of squares of the one-step

prediction error on data that has already been observed:

Z <Xi - )?i|i—1>2

i=d+2

Holt Winters Seasonal Multiplicative The multiplicative model is simply: X; = exp{us+s:+e:}
so that

log X¢ = pe + 8¢ + €t {e:} ~WN(0,02).

If P denotes the period, then the forecasting model for time ¢ + 7 with forecasting origin ¢ is:

i‘\t,t—‘rT = (at + Tbt)St+T—P

where:

ar =\ (§ij> +(1— A1) (atﬂ +/l;t71>

by = Xo(ay —ap—1) + (1 — )\2)?5}71
8= (%) + (1= 29)3p.

The justification of this is left as an exercise.

1.8 Time Series in R

1.8.1 Extracting the Trend, Seasonal Component and Noise in R

The stl command may be used to decompose a time series into trend, seasonal component and noise.
The computation of ‘trend’ is based on moving average. For illustration, consider the carbon dioxide

data from Mauna Loa in the file atmospheric-carbon-dioxide-recor.csv .

> WWW =
"https://www.mimuw.edu.pl/“noble/courses/TimeSeries/data/atmospheric-
carbon-dioxide-recor.csv"

> carbon = read.csv(www)

Delete observation 611 which is ‘na’:

> carbon = carbon[-611,]

(this deletes the last row, which is ‘na’).

> y = carbon$MaunaloaC02
> MaunLoaCo2 = ts(data = y, frequency = 12)

(this gets it into an appropriate format - each row represents a year)
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> output.stl = stl(MaunLoaCo2, s.window = "periodic")

> plot(output.stl)
This gives a plot of the original data, the seasonal component, the trend and the ‘remainder’.

> a <- output.stl$time.series

> acf(a)

The time.series part of the stl output gives a decomposition into trend, the seasonal and the noise. The
acf gives the autocorrelation for each of these; the trend, seasonal and noise, while the off-diagonals
show the cross autocorrelations.

The dotted blue lines indicate ‘error’ bars. The plot of interest is the residual (or ‘remainder’). The

acf indicates clear correlations between the residuals; they are not WN(0, 02). The plot is in Figure 1.1

seasonal ssnl & trnd ssnl & rmnd
5'“1 ..... d“L ..... i R Ao
Eg_,l’-_ ik gy “O?_ ”OI’-_
00 05 1.0 15 00 05 1.0 15 00 05 1.0 15
al Lag Lag
trnd & ssnl trend trnd & rmnd
pe Y Ln_U“:”U:l“.-U“:UU:l“Ll Yoy A,
< <1 T
45 ' 05 ' 00 05 10 15 00 05 1.0 15
Lag Lag Lag
rmnd & ssnl rmnd & trnd remainder
Eg_ g_ g_lJLrl][l-l LIJlL'_In_“ |
[ T T T T [ T T T T [ T T T
-1.5 -0.5 -15 -0.5 0.0 05 1.0 15
Lag Lag Lag

Figure 1.1: Mauna Loa: estimated acf for decomposition
To get the sample standard deviation of each column in the time series, try:

> apply(a,2,sd)
seasonal trend remainder
2.0402413 21.0085895 0.2735003

This indicates that the remainder is small compared with the trend and seasonal components.

1.8.2 Holt Winters Filtering: Implementation in R

The ‘Air Passengers’ data set is included in the data sets that come with R. Implementation of Holt-

Winters can be carried out as follows: Type

> data(AirPassengers)
> AP <- AirPassengers
> str(AP)
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Time-Series [1:144] from 1949 to 1961: 112 118 132 129 121 135 148 148 136 119

The data set is now loaded. Type
> 7HoltWinters

to obtain the syntax for the command. Note that values for A, A2 and A3 may be given; if the user
does not give the values, then they are computed by minimising the sum of squares of the one-step

prediction errors as outlined above. To make a multiplicative seasonal Holt Winters, try:

> AP.hw <- HoltWinters(AP,seasonal="mult")
> plot (AP.hw)
> legend("topleft",c("observed","fitted"),lty=1,col=1:2)

This gives a plot showing both the original data and the one-step predictors. The plot is in Figure 1.2.

Holt-Winters filtering

| — observed
— fitted

Observed / Fitted
100 300 500
|

| T T T T |
1950 1952 1954 1956 1958 1960

Time

Figure 1.2: Air Passenger data with Holt Winters filtering

Prediction is made quite simply using the ‘predict’ command, which makes the arithmetical computa-
tions from the Holt Winters object. The following shows the predictions for the next four years.

> AP.predict <-predict(AP.hw,n.ahead=4%12)
> ts.plot (AP,AP.predict,lty=1:2)

The plot is found in Figure 1.3.
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Figure 1.3: Air Passenger data: Holt Winters prediction

15



