Tutorial 8

1. Let X be a single observation from a distribution with density

$$p_X(x) = \theta x^{\theta - 1} \qquad 0 \le x \le 1.$$

- (a) Let $Y = -\frac{1}{\log X}$. Evaluate the confidence level of the interval estimator $\left[\frac{Y}{2}, Y\right]$.
- (b) Find a pivotal quantity and use it to set up an interval estimator.
- 2. Let X_1, \ldots, X_n be a sample from a $N(\mu, \sigma^2)$ population, both μ and σ^2 unknown.
 - (a) Let Z_1, \ldots, Z_n be i.i.d. N(0,1) variables. The distribution of $W = Z_1^2 + \ldots + Z_n^2$ is χ_n^2 . Let $\underline{Z} = (Z_1, \ldots, Z_n)^t$ where t denotes transpose. Let $Y_j = Z_j \overline{Z}$ and let $\underline{Y} = (Y_1, \ldots, Y_n)^t$. Let $\underline{Y} = M_n \underline{Z}$ for a symmetric matrix M_n . What is M_n ? Prove that $M_n^2 = M_n$. From this, what do you conclude about the eigenvalues of M_n ? Use the fact that the sum of the eigenvalues is equal to the sum of the trace for symmetric matrices.

Now consider the expression $M_n = PDP^t$ where D is diagonal and P is orthonormal. What is the distribution of $P^t\underline{Z}$? Hence what is the distribution of $\underline{Z}^tM_n^tM_n\underline{Z}$?

Hence conclude that

$$\frac{\sum_{j=1}(X_j - \overline{X})^2}{\sigma^2} \sim \chi_{n-1}^2.$$

(b) Show that

$$\overline{X} \perp X_1 - \overline{X}, \dots, X_n - \overline{X}.$$

- 3. Let $Z \sim N(0,1)$ and let $V \sim \chi_m^2$. Let $Z \perp V$. Let $T = \frac{Z}{\sqrt{V/m}}$. Compute the density function for T.
- 4. Let X_1, \ldots, X_n be a random sample from a $N(1, \sigma^2)$ population ($\mu = 1$ is known). Construct a symmetric 1α interval estimator for σ , with as many degrees of freedom as possible.
- 5. Let X_1, \ldots, X_n be independent $N(\mu, \sigma^2)$ random variables. Using a pivot based on $\sum_{j=1}^n (X_j \overline{X})^2$, construct a symmetric confidence interval with confidence level 1α for $\log \sigma^2$.
- 6. Suppose that Y_1, \ldots, Y_n are independent and that

$$Y_i \sim N(x_i\beta, \sigma^2),$$

where x_1, \ldots, x_n are given, σ is known and β is an unknown parameter.

- (a) Compute the least squares estimator $\widehat{\beta}_{LS}$ of β .
- (b) Compute a confidence interval for β of the form $[\hat{\beta}_{LS} c, \hat{\beta}_{LS} + c]$ with confidence level $1 \alpha = 0.95$.

7. Let

$$X_i = \frac{\theta}{2}t_i^2 + \epsilon_i \qquad i = 1, \dots, n$$

where ϵ_i are i.i.d. $N(0, \sigma^2)$ variables, where σ is known.

- (a) Compute the MLE of θ .
- (b) Using a pivot based on the MLE of θ , find a symmetric confidence interval for θ with confidence level 1α .
- (c) Suppose the values for t_i may be chosen freely subject to the constraint that $0 \le t_i \le 1$ for each i = 1, ..., n. What values of t_i should be chosen to make the symmetric confidence interval as short as possible?
- 8. Let X_1, \ldots, X_n be i.i.d. $N(\mu, \sigma_1^2)$. Suppose a lower confidence bound $\overline{X} c$, intended to be of confidence level 1α is computed under the assumption that $X_j \sim N(\mu, \sigma_0^2)$. What is the actual confidence level?
- 9. (a) Let X_1, \ldots, X_n be a $N(\mu, \sigma^2)$ sample, where μ and σ^2 are both unknown. Show that the symmetric 1α confidence interval is given by

$$\left[\overline{X} \pm \frac{S}{\sqrt{n}} t_{n-1;\alpha/2}\right]$$

where $S^2 = \frac{1}{n-1} \sum_{j=1}^n (X_j - \overline{X})^2$ and $t_{n,\alpha}$ denotes the number such that $\mathbb{P}(T > t_{n,\alpha}) = \alpha$ where $T \sim t_n$.

(b) Suppose we want to select a sample size N such that the interval in part (a) has length at most l=2d for some preassigned length. Stein's two stage procedure (1945) is the following: Begin by taking a fixed number $n_0 \geq 2$ of observations, calculate $\overline{X}_0 = \frac{1}{n_0} \sum_{j=1}^{n_0} X_j$ and $S_0^2 = \frac{1}{n_0-1} \sum_{j=1}^{n_0} (X_j - \overline{X}_0)^2$. Then take $N-n_0$ further observations where N is the smallest integer greater than or equal to n_0 and greater than or equal to $(S_0 t_{n_0-1;(\alpha/2)}/d)^2$.

Show that

$$\frac{\sqrt{N}(\overline{X} - \mu)}{S_0} \sim t_{n_0 - 1}$$

where $S_0^2 = \frac{1}{n_0 - 1} \sum_{j=1}^{n_0} (X_j - \overline{X}_0)^2$ and $\overline{X} = \frac{1}{N} \sum_{j=1}^N X_j$. It follows that $\left[\overline{X} \pm \frac{S_0}{\sqrt{N}} t_{n_0 - 1; \alpha/2} \right]$ is a confidence interval with confidence level $1 - \alpha$ for μ of length at most 2d.

Hint recall that $\overline{X} \perp S^2$ where \overline{X} is the estimator of μ and S^2 is the estimator of σ^2 based on a sample size n from a $N(\mu, \sigma^2)$ distribution. Consider the definition of a t distribution.

10. Let X_1, \ldots, X_n be a random sample from a Rayleigh distribution

$$p(x,\sigma) = \begin{cases} \frac{x}{\sigma^2} \exp\left\{-\frac{x^2}{2\sigma^2}\right\} & x \ge 0\\ 0 & x < 0 \end{cases}$$

where $\sigma > 0$ is an unknown parameter.

- (a) Compute the maximum likelihood estimator of σ^2 .
- (b) Compute a symmetric confidence interval, confidence level $1-\alpha$ of the form

$$\left[c_n\widehat{\sigma^2}_{ML}, d_n\widehat{\sigma^2}_{ML}\right]$$

for σ^2 . Express your answer in terms of quantiles of an appropriate χ^2 distribution.

11. Let X_1, \ldots, X_n be a $N(\mu, \sigma^2)$ random sample where σ is known. Show that the interval of shortest length of confidence $1 - \alpha$ of the form

$$\left[\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha_1}, \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha_2}\right] \qquad \alpha_1 + \alpha_2 = \alpha$$

is obtained by taking $\alpha_1 = \alpha_2 = \frac{\alpha}{2}$.

Answers

1. (a) Coverage probability is:

$$\mathbb{P}_{\theta} \left(\frac{Y}{2} \le \theta \le Y \right) = \mathbb{P} \left(\theta \le Y \le 2\theta \right) = \mathbb{P} (e^{-1/\theta} \le X \le e^{-1/(2\theta)})$$
$$= \theta \int_{e^{-1/\theta}}^{e^{-1/(2\theta)}} x^{\theta - 1} dx = e^{-1/2} - e^{-1}.$$

(b) X has c.d.f.

$$\mathbb{P}_{\theta}(X \le x) = \begin{cases} 0 & x < 0 \\ x^{\theta} & 0 \le x \le 1 \\ 1 & x \ge 1. \end{cases}$$

Let $Z = -\theta \log X$ then:

$$\mathbb{P}_{\theta}(Z \le z) = \mathbb{P}_{\theta}(-\theta \log X \le z) = \mathbb{P}(X \ge \exp\{-\frac{z}{\theta}\}) = \begin{cases} 1 - e^{-z} & z \ge 0\\ 0 & z < 0. \end{cases}$$

Hence $Z = -\theta \log X \sim \text{Exp}(1)$ is a natural pivot variable (its distribution does not depend on θ). Then

$$\mathbb{P}(Z \le z_1) = \alpha_1 \Rightarrow 1 - e^{-z_1} = \alpha_1 \Rightarrow z_1 = \log \frac{1}{1 - \alpha_1}$$
$$\mathbb{P}(Z \ge z_2) = \alpha_2 \Rightarrow e^{-z_2} = \alpha_2 \Rightarrow z_2 = \log \frac{1}{\alpha_2}$$

so that

$$1 - (\alpha_1 + \alpha_2) = \mathbb{P}_{\theta} \left(\log \frac{1}{1 - \alpha_1} \le -\theta \log X \le \log \frac{1}{\alpha_2} \right)$$

giving

$$\mathbb{P}_{\theta} \left(\frac{\log \frac{1}{1 - \alpha_1}}{-\log X} \le \theta \le \frac{\log \frac{1}{\alpha_2}}{-\log X} \right) = 1 - (\alpha_1 + \alpha_2)$$

An interval estimator with coverage probability $1 - (\alpha_1 + \alpha_2)$ is:

$$\left\lceil \frac{\log(1-\alpha_1)}{\log X}, \frac{\log \alpha_2}{\log X} \right\rceil.$$

For a symmetric interval with coverage probabiltiy $1 - \alpha$, take $\alpha_1 = \alpha_2 = \frac{\alpha}{2}$.

Alternatively, from the c.d.f. for X, another pivot is: $W = X^{\theta}$ which has U(0,1) distribution (which does not depend on θ).

Using $X^{\theta} \sim U(0, 1)$, for any $0 \le a < b \le 1$,

$$\mathbb{P}(a \le X^{\theta} \le b) = b - a$$

$$b - a = \mathbb{P}(\log a \le \theta \log X \le \log b) = \mathbb{P}\left(\frac{\log b}{\log X} \le \theta \le \frac{\log a}{\log X}\right)$$

an interval estimator with confidence level b-a is

$$\left[\frac{\log b}{\log X}, \frac{\log a}{\log X}\right].$$

If we want a *symmetric* confidence interval with confidence level $1 - \alpha$, then $a = \frac{\alpha}{2}$ and $b = 1 - \frac{\alpha}{2}$; interval is:

$$\left\lceil \frac{\log(1-\alpha/2)}{\log X}, \frac{\log(\alpha/2)}{\log X} \right\rceil.$$

2. (a) Let I_n denote the $n \times n$ identity matrix and let $\mathbf{1}_n$ denote a column vector, length n, with each entry 1. Then $\mathbf{1}_n \mathbf{1}_n^t$ is the $n \times n$ matrix with each entry 1. Then

$$M_n = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^t.$$

It follows that

$$M_n^2 = (I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^t)^2 = I_n - \frac{2}{n} \mathbf{1}_n \mathbf{1}_n^t t + \frac{1}{n^2} \mathbf{1}_n \mathbf{1}_n^t \mathbf{1}_n \mathbf{1}_n^t = M_n$$

using the fact that $\mathbf{1}_n^t \mathbf{1}_n = n$.

 M_n is symmetric, hence has decomposition $M_n = PDP^t$ where D is diagonal and P is orthonormal. So $M_n^2 = M_n$ implies

$$M_n^2 = PDP^tPDP^t = PD^2P^t = PDP^t = M_n \Rightarrow D^2 = D^2$$

hence all the eigenvalues are 0 or 1. Using the fact that the sum of eigenvalues is equal to the trace, the sum of eigenvalues is n-1. Hence 1 has multiplicity n-1 and 0 has multiplicity 1.

Use: If $\underline{X} \sim N(\mu, \Sigma)$ then $A\underline{X} + \underline{b} \sim N(A\mu + \underline{b}, A\Sigma A^t)$. Then

$$\underline{Y} := P^t \underline{Z} \sim N(P^t \underline{0}, \sigma^2 P^t I P) = N(0, \sigma^2 I)$$

since P is orthonormal (so that $P^tP = I$).

Take the columns of P such that $D = \text{diag}(1, \dots, 1, 0)$ (the 0 in the nth position). It follows that

$$\underline{Z}^t M_n^t M_n \underline{Z} = \underline{Y}^t D \underline{Y} = \sum_{j=1}^{n-1} Y_j^2 \sim \chi_{n-1}^2.$$

(b) Let $\Sigma^{(X)} = \sigma^2 I$ denote the covariance matrix of \underline{X} . Clearly, $\underline{Y} := (X_1 - \overline{X}, \dots, X_n - \overline{X}, \overline{X})^t = A\underline{X}$ is a normal random vector, since it is a linear transformation of \underline{X} . Let $\Sigma^{(Y)}$ denote the covariance matrix of Y. Here $A_{ij} = -\frac{1}{n}$ for $j \neq i$, $i = 1, \dots, n$, $A_{ii} = 1 - \frac{1}{n}$, $i = 1, \dots, n$, $A_{n+1,j} = \frac{1}{n}$, $j = 1, \dots, n$. Use:

$$\Sigma^{(Y)} = A\Sigma^{(X)}A^t = \sigma^2 A A^t$$

For $j \neq n+1$, $(AA^t)_{n+1,j} = \sum_{k=1}^n A_{n+1,k} A_{j,k} = \frac{1}{n} \sum_{k=1}^n A_{j,k} = 0$ hence $\mathbf{C}(\overline{X}, X_j - \overline{X}) = 0$.

3. Density of χ_m^2 is:

$$p_V(v) = \frac{1}{2^{m/2}\Gamma(m/2)} v^{(m/2)-1} e^{-v/2} \mathbf{1}_{[0,+\infty)}(v)$$

SC

$$\mathbb{P}(T \leq t) = \mathbb{P}(Z \leq t\sqrt{V/m}) = \frac{1}{2^{m/2}\Gamma(m/2)} \int_0^\infty dv \left(\int_{-\infty}^{t\sqrt{v/m}} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz \right) v^{(m/2)-1} e^{-v/2}$$

Density of T is

$$p_T(t) = \frac{d}{dt} \mathbb{P}(T \le t) = \frac{1}{m^{1/2} \pi^{1/2} 2^{(m+1)/2} \Gamma(m/2)} \int_0^\infty dv \left(v^{(m-1)/2} e^{-(1+(t^2/m))(v/2)} \right)$$

Now make the substitution $z = (1 + \frac{t^2}{m})(v/2)$ to get:

$$p_T(t) = \frac{1}{m^{1/2}\pi^{1/2}\Gamma(m/2)} \frac{1}{(1+t^2/m)^{(m+1)/2}} \int_0^\infty z^{(m-1)/2} e^{-z} dz = \frac{\Gamma(\frac{m+1}{2})}{m^{1/2}\pi^{1/2}\Gamma(\frac{m}{2})(1+t^2/m)^{(m+1)/2}}$$

4. Here $\frac{\sum_{j=1}^{n}(X_{j}-1)^{2}}{\sigma^{2}}\sim\chi_{n}^{2}$. The interval estimator is

$$\left[\sqrt{\frac{\sum_{j=1}^{n}(X_{j}-1)^{2}}{k_{n,(\alpha/2)}}},\sqrt{\frac{\sum_{j=1}^{n}(X_{j}-1)^{2}}{k_{n,1-(\alpha/2)}}}\right]$$

where $k_{n,\alpha}$ is the value such that $\mathbb{P}(V > k_{n,\alpha}) = \alpha$, $V \sim \chi_n^2$.

5.

$$\frac{\sum_{j=1}^{n} (X_j - \overline{X})^2}{\sigma^2} \sim \chi_{n-1}^2$$

and this is the pivot variable. Using tail probabilities $\mathbb{P}(V \geq k_{n,\alpha}) = \alpha$ for $V \sim \chi_n^2$,

$$\mathbb{P}\left(k_{n-1,1-(\alpha/2)} \le \frac{\sum_{j=1}^{n} (X_j - \overline{X})^2}{\sigma^2} \le k_{n-1,(\alpha/2)}\right) = 1 - \alpha$$

$$\mathbb{P}\left(\log \sum_{j=1}^{n} (X_j - \overline{X})^2 - \log k_{n-1,(\alpha/2)} \le \log \sigma^2 \le \log \sum_{j=1}^{n} (X_j - \overline{X})^2 - \log k_{n-1,1-(\alpha/2)}\right) = \alpha$$

A symmetric interval for σ with coverage probability $1-\alpha$ is therefore:

$$\sigma \in \frac{1}{2} \left[\log \sum_{j=1}^{n} (X_j - \overline{X})^2 - \log k_{n-1,(\alpha/2)}, \log \sum_{j=1}^{n} (X_j - \overline{X})^2 - \log k_{n-1,1-(\alpha/2)} \right].$$

6. (a) Least squares estimator minimises $\frac{1}{\sigma^2} \sum_{j=1}^n (Y_i - x_i \beta)^2$ since $\mathbb{E}[Y_i] = x_i \beta$ and $\text{Var}(Y_i) = \sigma^2$ for each i. It follows that

$$\widehat{\beta}_{LS} = \frac{\sum_{i=1}^{n} x_i Y_i}{\sum_{i=1}^{n} x_i^2}$$

(b) Since $\mathbb{E}\left[\frac{\sum_{i=1}^{n} x_i Y_i}{\sum_{i=1}^{n} x_i^2}\right] = \frac{\sum_{i=1}^{n} x_i^2 \beta}{\sum_{i=1}^{n} x_i^2} = \beta$ and

$$\operatorname{Var}\left(\widehat{\beta}_{LS}\right) = \frac{\sigma^2}{\sum_{i=1}^n x_i^2}$$

$$\widehat{\beta}_{LS} \sim N\left(\beta, \frac{\sigma^2}{\sum_{i=1}^n x_i^2}\right)$$

giving a $1 - \alpha$ confidence interval of

$$\beta \in \left[\widehat{\beta}_{LS} \pm \frac{\sigma}{\sqrt{\sum_{i=1}^{n} x_i^2}} z_{\alpha/2} \right]$$

where z_{α} denotes the value such that $\mathbb{P}(Z \geq z_{\alpha}) = \alpha$ for $Z \sim N(0, 1)$. Here $\frac{\alpha}{2} = 0.025$ and $z_{0.025} = 1.96$ so interval is:

$$\beta \in \left[\widehat{\beta}_{LS} \pm 1.96 \frac{\sigma}{\sqrt{\sum_{i=1}^{n} x_i^2}} z_{\alpha/2} \right]$$

7. (a) $X_i \sim N(\frac{\theta}{2}t_i^2, \sigma^2)$.

$$L(\theta; x_1, \dots, x_n) = \frac{1}{(2\pi)^{n/2} \sigma^n} \exp\left\{-\frac{1}{2\sigma^2} \sum_{j=1}^n \left(x_j - \frac{\theta}{2} t_j^2\right)^2\right\}$$

Maximum

$$\sum_{j=1}^{n} \frac{t_j^2}{2} \left(x_j - \frac{\theta}{2} t_j^2 \right) = 0 \Rightarrow \widehat{\theta}_{ML} = \frac{2 \sum_{j=1}^{n} t_j^2 X_j}{\sum_{j=1}^{n} t_j^4}$$

(b)

$$\hat{\theta}_{ML} \sim N\left(\theta, \frac{4\sigma^2}{\sum_{j=1}^n t_j^4}\right).$$

$$Z = \frac{2\sum_{j=1}^n t_j^2 X_j - \theta \sum_{j=1}^n t_j^4}{2\sigma \sqrt{\sum_{j=1}^n t_j^4}} \sim N(0, 1)$$

$$I = \left[\frac{2\sum_{j=1}^{n} t_j^2 X_j}{\sum_{j=1}^{n} t_j^4} \pm \frac{2\sigma}{\sqrt{\sum_{j=1}^{n} t_j^4}} z_{\alpha/2} \right]$$

(c) $t_i = 1$ $i = 1, \ldots, n$.

8. $c = \frac{\sigma}{\sqrt{n}} z_{\alpha}$. Let $1 - \gamma$ denote the actual confidence level, σ_0 the assumed value of σ and σ_1 the true value. Then

$$\gamma = \mathbb{P}\left(\mu < \overline{X} - \frac{\sigma_0}{\sqrt{n}} z_\alpha\right) = \mathbb{P}\left(\frac{\sqrt{n}(\overline{X} - \mu)}{\sigma_1} > \frac{\sigma_0 z_\alpha}{\sigma_1}\right) = 1 - \Phi\left(\frac{\sigma_0 z_\alpha}{\sigma_1}\right)$$

- 9. (a) Follows directly from $\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t_{n-1}$.
 - (b) N depends only on (X_1, \ldots, X_{n_0}) and does so only through S_0 . S_0 is independent of $\overline{X}_0 := \frac{1}{n_0} \sum_{j=1}^{n_0} X_j$ and also of $(X_{n_0+j})_{j\geq 1}$.

$$\overline{X} = \frac{n_0 \overline{X}_0 + \sum_{j=1}^{N-n_0} X_{n_0+j}}{N}$$

For $n \ge n_0 + 1$, let

$$Z_n = \frac{\sqrt{n}((\frac{1}{n}\sum_{j=1}^n X_j) - \mu)}{\sigma}.$$

Then for any borel set $A \in \mathcal{B}(\mathbb{R})$.

$$\mathbb{P}\left(\frac{\sqrt{N}(\overline{X}-\mu)}{\sigma}\in A\mid N=n,S_0\right)=\mathbb{P}\left(Z_n\in A|N=n,S_0\right)=\mathbb{P}(Z_n\in A).$$

The conditioning may removed, because Z_n depends on X_1, \ldots, X_{n_0} only through \overline{X}_0 , hence is independent of S_0 hence is independent of N. From this, it follows that

$$\frac{\sqrt{N}(\overline{X} - \mu)}{\sigma} \sim N(0, 1), \qquad \frac{\sqrt{N}(\overline{X} - \mu)}{\sigma} \perp S_0.$$

Since $\frac{(n_0-1)S_0^2}{\sigma^2} \sim \chi_{n_0-1}^2$ and independent of $\frac{\sqrt{N}(\overline{X}-\mu)}{\sigma}$, it follows that

$$\frac{\sqrt{N}(\overline{X} - \mu)}{S_0} \sim t_{n_0 - 1}.$$

10. (a)

$$\log L(\sigma; x_1, \dots, x_n) = -2n \log \sigma + \sum_{j=1}^n \log x_j - \frac{1}{2\sigma^2} \sum_{j=1}^n x_j^2$$

Take derivative with respect to σ and set to 0 for ML (convexity gives that the result is the MLE)

$$-\frac{2n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^{n} x_j^2 = 0 \Rightarrow \widehat{\sigma^2}_{ML} = \frac{1}{2n} \sum_{i=1}^{n} X_j^2$$

If there is at least one $x_i > 0$, then log likelihood function is strictly concave, $\to -\infty$ for $\sigma \to 0$ and $\sigma \to +\infty$ hence maximum. If all $x_i = 0$, then likelihood maximised at $\sigma = 0$ as required.

(b) Distribution of $\widehat{\sigma^2}_{ML}$: let $Y = \frac{X^2}{\sigma^2}$ then

$$\begin{split} \mathbb{P}\left(Y>y\right) &= \mathbb{P}\left(\frac{X^2}{\sigma^2}>y\right) = \mathbb{P}\left(X>\sigma\sqrt{y}\right) \\ &= \int_{\sigma\sqrt{y}}^{\infty} \frac{x}{\sigma^2} e^{-x^2/2\sigma^2} dx = \int_{y}^{\infty} \frac{1}{2} e^{-z/2} dz = \exp\{-\frac{1}{2}y\} \qquad Y \sim \exp(\frac{1}{2}) \end{split}$$

so $\frac{X^2}{\sigma^2} \sim \operatorname{Exp}(\frac{1}{2})$ and $\frac{1}{\sigma^2} \sum_{j=1}^n X_j^2 \sim \Gamma(n, \frac{1}{2}) = \chi_{2n}^2$. Let $W \sim \chi_{2n}^2$, then $\widehat{\sigma^2}_{ML} \stackrel{(d)}{=} \frac{\sigma^2}{2n} W$ so that

$$\frac{\alpha}{2} = \mathbb{P}(\sigma^2 < c_n \sigma^2 \frac{W}{2n}) = \mathbb{P}(W > \frac{2n}{c_n}) \Rightarrow \frac{2n}{c_n} = k_{2n,(\alpha/2)} \Rightarrow c_n = \frac{2n}{k_{2n,(\alpha/2)}}.$$
$$d_n = \frac{2n}{k_{2n,1-(\alpha/2)}}.$$

 $k_{2n,\alpha}$ denotes the value such that $\mathbb{P}(W > k_{2n,\alpha}) = \alpha$ for $W \sim \chi^2_{2n}$.

11. length is $\frac{\sigma}{\sqrt{n}}(z_{\alpha_2}+z_{\alpha_1})$ so the aim is to find $\alpha_1\in[0,\alpha]$ that maximises

$$z_{\alpha_1} + z_{\alpha - \alpha_1}.$$

$$\alpha = \int_{z_{\alpha}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx \Rightarrow 1 = -\frac{dz_{\alpha}}{d\alpha} \frac{1}{\sqrt{2\pi}} e^{-z_{\alpha}^2/2} \Rightarrow \frac{dz_{\alpha}}{d\alpha} = \sqrt{2\pi} e^{z_{\alpha}^2/2}$$

$$\frac{d}{d\alpha_1} (z_{\alpha - \alpha_1} + z_{\alpha_1}) = \sqrt{2\pi} \left(e^{z_{\alpha_1}^2/2} - e^{z_{\alpha - \alpha_1}^2/2} \right) = 0 \Rightarrow z_{\alpha_1} = z_{\alpha - \alpha_1} \Rightarrow \alpha_1 = \alpha - \alpha_1 = \frac{\alpha}{2}.$$