Tutorial 4

- 1. Express the following families as exponential families, identifying the terms in the expression:
 - (a) The beta family:

$$p(x; \beta_1, \beta_2) = \frac{\Gamma(\beta_1 + \beta_2)}{\Gamma(\beta_1)\Gamma(\beta_2)} x^{\beta_1 - 1} (1 - x)^{\beta_2 - 1} \qquad 0 \le x \le 1 \qquad \beta_1 > 0, \quad \beta_2 > 0.$$

(b) The gamma family:

$$p(x;\alpha,\lambda) = \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha-1} e^{-\lambda x} \qquad x \ge 0, \quad \lambda > 0, \alpha > 0$$

- 2. Which of the following are exponential families? Prove or disprove.
 - (a) The $U(0,\theta)$ family for $\theta > 0$. That is, $X \sim U(0,\theta)$ if it has density

$$p(x;\theta) = \begin{cases} \frac{1}{\theta} & 0 \le x \le \theta \\ 0 & \text{other} \end{cases}$$

(b) The family of densities:

$$p(x; \theta) = \mathbf{1}_{[0,\theta]}(x) \exp\{-2\log\theta + \log(2x)\}\$$

where $\theta > 0$.

(c) The family of discrete probability mass functions

$$p(x;\theta) = \frac{1}{9}$$
 $x \in \{0.1 + \theta, 0.2 + \theta, \dots, 0.9 + \theta\}$ $\theta \in \mathbb{R}$

- (d) The $N(\theta, \theta^2)$ family, $\theta > 0$
- (e)

$$p(x; \theta) = \frac{2(x+\theta)}{1+2\theta}$$
 $0 < x < 1, \quad \theta > 0$

- (f) $p(x,\theta)$ is the conditional probability mass function for a binomial (n,θ) variable, conditioned on X>0. (recall binomial has probability mass function $\binom{n}{k}\theta^k(1-\theta)^{n-k}$).
- 3. The inverse Gaussian density $IG(\mu, \lambda)$, is:

$$f(x; \mu, \lambda) = \left(\frac{\lambda}{2\pi}\right)^{1/2} \frac{1}{x^{3/2}} \exp\left\{-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right\} \mathbf{1}_{\{x>0\}} \qquad \mu > 0, \lambda > 0.$$

(a) Show that this is an exponential family generated by $T(X) = -\frac{1}{2}(X, \frac{1}{X})$ and $h(x) = \frac{1}{(2\pi)^{1/2}x^{3/2}}$.

(b) Show that the canonical parameters (η_1, η_2) are

$$\eta_1 = \frac{\lambda}{\mu^2}, \qquad \eta_2 = \lambda$$

and that the log partition function is:

$$A(\eta_1, \eta_2) = -\left(\frac{1}{2}\log(\eta_2) + \sqrt{\eta_1\eta_2}\right), \qquad \mathcal{E} = \mathbb{R}_+^2$$

(c) Find the moment generating function of T and show that

$$\mathbb{E}[X] = \mu, \quad \operatorname{Var}(X) = \frac{\mu^3}{\lambda}, \quad \mathbb{E}\left[\frac{1}{X}\right] = \frac{1}{\mu} + \frac{1}{\lambda}, \quad \operatorname{Var}\left(\frac{1}{X}\right) = \frac{1}{\lambda\mu} + \frac{2}{\lambda^2}.$$

- 4. Let $\mathcal{P} = \{\mathbb{P}_{\theta} : \theta \in \Theta\}$ be a canonical exponential family generated by (T, h) and $\mathcal{E}^0 \neq \phi$. Show that T is minimal sufficient.
- 5. Let $p(x, \eta)$ be a one parameter canonical exponential family generated by T(x) = x and h(x): $x \in \mathcal{X} \subset \mathbb{R}$, such that $\mathbb{E}_{\eta}[X]$ is well defined for all $\eta \in \mathcal{E}^0$. Let $\psi(x)$ be a non-constant, non-decreasing function which satisfies $\int |x\psi(x)|p(x;\eta)dx < +\infty$ for all $\eta \in \mathcal{E}^0$. Show that $\mathbb{E}_{\eta}[\psi(X)]$ is strictly increasing in η .

Hint: Let Cov denote covariance. Show that

$$Cov(X,Y) = \frac{1}{2}\mathbb{E}\left[(X - X')(Y - Y')\right]$$

where (X,Y) and (X',Y') are independent, identically distributed. Compute $\frac{\partial}{\partial \eta} \mathbb{E}_{\eta} [\psi(X)]$ in terms of $\text{Cov}_{\eta} (\psi(X), X)$.

6. Logistic Regression In the following, Y_1, \ldots, Y_n are the outcomes of random experiments $i = 1, \ldots, n$. For experiment i, you fix the values of covariates z_{i1}, \ldots, z_{id} . For example, suppose you are trying to find a cure for Coronavirus. For trial i, you choose the quantities of d different chemicals; these quantities are z_{i1}, \ldots, z_{id} . There are unknown parameters β_1, \ldots, β_d . You run experiment i on n_i individuals (who are independent of each other) and Y_i represents the number who are successfully cured and $n_i - Y_i$ the number for whom the treatement is not successful.

If the model is correct, then you would like estimates $\widehat{\beta}_1, \dots, \widehat{\beta}_p$ of the unknown parameters and, from this, estimate the success rate of the treatment for a given covariate vector (z_1, \dots, z_d) .

 $(z_{1,..}, Y_1), \ldots, (z_{n,..}, Y_n)$ are observed, where $z_{1,..}, \ldots, z_{n,..}$ are d-row vectors and Y_1, \ldots, Y_n are independent and $Y_j \sim \text{Binomial}(n_j, \lambda_j)$. The success probability λ_j depends on the vector $z_{j,..}$ The function

$$l(u) = \log \frac{u}{1 - u}$$

is called the *logit* function. In logistic regression, it is assumed that

$$l(\lambda_i) = z_{i..}\beta$$

where $\beta = (\beta_1, \dots, \beta_d)^t$ is the parameter vector.

Show that $Y = (Y_1, \ldots, Y_n)$ is an exponential family of rank d if and only if $z_{.,1}, \ldots, z_{.,d}$ are linearly independent.

Note The family is of rank k if and only if

$$\mathbb{P}\left(\sum_{j=1}^{k} c_j T_j(X) = c_0\right) < 1$$

for all $(c_0, c_1, ..., c_k) \not\equiv 0$.

7. Let $(X_1, X_2, \dots X_n)$ be a stationary Markov chain with two states, 0 and 1. That is,

$$\mathbb{P}(X_i = x_i | X_1 = x_1, \dots, X_{i-1} = x_{i-1}) = \mathbb{P}(X_i = x_i | X_{i-1} = x_{i-1}) = p_{x_{i-1}, x_i}$$

where $\begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix}$ is the matrix of transition probabilities. Suppose, furthermore, that

- $p_{00} = p_{11} = p$, so that $p_{10} = p_{01} = 1 p$,
- $\mathbb{P}(X_1 = 0) = \mathbb{P}(X_1 = 1) = \frac{1}{2}$.
- (a) Show that if $0 is unknown, this is a full-rank one-parameter exponential family with <math>T = N_{00} + N_{11}$, where N_{ij} denotes the number of transitions from i to j. For example, the sequence 01011 has $N_{01} = 2$, $N_{11} = 1$, $N_{00} = 0$ and $N_{10} = 1$.
- (b) Show that $\mathbb{E}[T] = (n-1)p$.
- 8. Let X = (Z, Y) where $Y = Z + \theta W$, $\theta > 0$, Z and W are independent N(0, 1) variables. Let X_1, \ldots, X_n be i.i.d. as X. Write the density of X_1, \ldots, X_n as a canonical exponential family and identify T, h, η , A and \mathcal{E} . Find the expected value and variance of the sufficient statistic.
- 9. The entropy h(p) of a random variable X with density p is defined by:

$$h(p) = \mathbb{E}\left[-\log p(X)\right] = -\int_{S} p(x)\log p(x)dx.$$

where $S = \{x : p(x) > 0\}.$

(a) Show that the canonical k parameter exponential family density

$$p(x,\eta) = \exp\left\{\sum_{j=1}^{k} \eta_j r_j(x) - A(\eta)\right\} \qquad x \in S$$

maximises h(p) subject to the constraints

$$p(x) \ge 0$$
, $\int_S p(x)dx = 1$, $\int_S p(x)r_j(x)dx = \alpha_j$, $1 \le j \le k$

for given $\alpha_1, \ldots, \alpha_k$ for which a solution exists, where η_1, \ldots, η_k are chosen so that p satisfies the constraints.

Hint This is very easy using Lagrange multipliers; maximise the integrand

- (b) Find the maximum entropy densities when $r_j(x) = x^j$ in the following cases:
 - i. $S = (0, +\infty), \quad \alpha_1 > 0$
 - ii. $S = \mathbb{R}, k = 2, \alpha_1 \in \mathbb{R}, \quad \alpha_2 \in \mathbb{R}_+$
 - iii. $S = \mathbb{R}, k = 3, \alpha_1 \in \mathbb{R}, \alpha_2 > 0, \alpha_3 \in \mathbb{R}.$
- 10. Suppose that $p(x, \theta)$ is a positive density on the real line, which is continuous in x for each θ and such that if X_1, X_2 is a sample of size 2 from $p(., \theta)$ then $X_1 + X_2$ is sufficient for θ . Show that $p(., \theta)$ corresponds to a one-parameter exponential family of distributions with T(x) = x.

Answers

1. (a)

$$p(x; \beta_1, \beta_2) = \exp\left\{ (\beta_1 - 1) \log x + (\beta_2 - 1) \log(1 - x) - \log \frac{\Gamma(\beta_1)\Gamma(\beta_2)}{\Gamma(\beta_1 + \beta_2)} \right\}$$

$$h(x) = 1, \quad T_1(x) = \log x, \quad \eta_1(\beta) = \beta_1 - 1, \quad T_2(x) = \log(1 - x), \quad \eta_2(\beta) = \beta_2 - 1,$$

$$B(\beta_1, \beta_2) = \log \frac{\Gamma(\beta_1)\Gamma(\beta_2)}{\Gamma(\beta_1 + \beta_2)}$$

(b)

$$p(x; \alpha, \lambda) = \exp \{ (\alpha - 1) \log(x) - \lambda x - (\log \Gamma(\alpha) - \alpha \log(\lambda)) \}$$

$$h(x) \equiv 1, \quad T_1(x) = \log(x), \quad \eta_1(\theta) = (\alpha - 1), \quad T_2(x) = x, \quad \eta_2(\theta) = -\lambda$$

$$B(\theta) = \log \Gamma(\alpha) - \alpha \log(\lambda)$$

2. (a) no: $p(x;\theta) = \theta^{-1} \mathbf{1}_{[0,\theta]}(x)$. For an exponential family:

$$p(x;\theta) = h(x) \exp\{\eta(\theta)T(x) - B(\theta)\}\$$

so that

$$h(x) = \exp\{-\eta(\theta)T(x) + B(\theta) - \log \theta\}\mathbf{1}_{[0,\theta]}(x)$$

so that h(x) = 0 for all $x > \theta$. Since h does not depend on θ , $x \in [0,1]$ and $\Theta = (0, +\infty)$, hence h(x) = 0 for all $x > \theta$ for all $\theta > 0$, hence h(x) = 0 for all x > 0, so that $p(x; \theta) \equiv 0$, which is a contradiction.

(b) no: same as for (a): assume it is exponential family then:

$$h(x)e^{(T(x),\eta(\theta))-B(\theta)} = \mathbf{1}_{[0,\theta]}(x)\exp\{-2\log\theta + \log(2x)\}$$

so that

$$h(x) = \mathbf{1}_{[0,\theta]}(x) \exp\{B(\theta) - 2\log\theta + \log(2x) - (T(x), \eta(\theta))\}\$$

Here $\Theta = (0, +\infty)$ and h(x) = 0 for all $x > \theta$. This holds for all $\theta > 0$ hence $h(x) \equiv 0$ so that $p(x; \theta) \equiv 0$ which is a contradiction.

(c) no;

$$p(x;\theta) = \frac{1}{9} \sum_{i=1}^{9} \mathbf{1}_{0.1j}(x-\theta) = p(x-\theta;0)$$

so that

$$h(x) \exp{\{\eta(\theta)T(x) - B(\theta)\}} = h(x - \theta) \exp{\{\eta(0)T(x - \theta) - B(0)\}}.$$

If we take $\theta = 0$, we see that h(x) has support (i.e. is non-zero for) $x \in \{0.1, 0.2, \dots, 0.9\}$. That is, h(x) = 0 for any x which does not belong to this set of values. Now, let us consider arbitrary θ , we see that h(x) has support $\{0.1 + \theta, \dots, 0.9 + \theta\}$; h(x) = 0 for any x which does not belong to this set of values. Since $\Theta = \mathbb{R}$, therefore so that $h \equiv 0$, which gives a contradiction.

(d)
$$p(x;\theta) = \exp\left\{-\frac{x^2}{2\theta^2} + \frac{x}{\theta} - \frac{1}{2} - \frac{1}{2}\log(2\pi) - \log\theta\right\}$$

This does (technically) satisfy the definition of an exponential family, so the answer is YES. Note, however, that Θ is one-dimensional, yet we need a two-dimensional sufficient statistic $(T_1(x), T_2(x)) = (-x^2, x)$ and a two functions $\eta_1(\theta) = \frac{1}{2\theta^2}$ and $\eta_2(\theta) = \theta$. This is known as a *curved* exponential family.

(e)
$$p(x;\theta) = 2\exp\{\log(x+\theta) - \log(1+2\theta)\}\mathbf{1}_{[0,1]}(x)$$

no; the canonical parameter is infinite dimensional.

$$p(x;\theta) = 2x \exp\{\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \frac{\theta^n}{x^n} - \log(1+2\theta)\} \mathbf{1}_{[0,1]}(x)$$

giving a sufficient statistic of $T(x) = (\frac{-1^{n-1}}{x^n})_{n\geq 1}$ and a canonical parameter vector of $\eta = (\theta^n)_{n\geq 1}$. For an exponential family, these have to be finite dimensional.

(f)
$$\mathbb{P}_{\theta}(X > 0) = 1 - (1 - \theta)^{n}$$

$$p(x, \theta) = \frac{1}{1 - (1 - \theta)^{n}} \binom{n}{x} \theta^{x} (1 - \theta)^{n - x} = \binom{n}{x} \exp\left\{x \log \frac{\theta}{1 - \theta} + n \log(1 - \theta) - \log(1 - (1 - \theta)^{n})\right\}$$
yes

3. (a) Comes from expanding

$$-\frac{\lambda(x-\mu)^2}{2\mu^2x} = -\frac{\lambda x}{2\mu^2} + \frac{\lambda}{\mu} - \frac{\lambda}{2x}$$

which gives sufficient statistic $-\frac{1}{2}(x,\frac{1}{x})$ and canonical coordinates $(\eta_1,\eta_2)=(\frac{\lambda}{\mu^2},\lambda)$. The $h(x)=\frac{1}{(2\pi)^{1/2}x^{3/2}}$ comes directly from the first part of the expression for the density and the log partition function is:

$$B(\mu, \lambda) = -\frac{\lambda}{\mu} - \frac{1}{2} \log \lambda.$$

(b) For $T(x) = -\frac{1}{2}(x, \frac{1}{x})$, the above expansion also gives $\eta_1 = \frac{\lambda}{\mu^2}$, $\eta_2 = \lambda$ and

$$A(\eta_1, \eta_2) = -\frac{\lambda}{\mu} - \frac{1}{2} \log \lambda = -\sqrt{\eta_1 \eta_2} - \frac{1}{2} \log \eta_2.$$

(c) Using $M_T(s) = \exp \{A(\eta + s) - A(\eta)\}$ we have:

$$M_{T,\eta}(s_1, s_2) = \left(\frac{\eta_2}{\eta_2 + s}\right)^{1/2} \exp\left\{\sqrt{\eta_1 \eta_2} - \sqrt{(\eta_1 + s_1)(\eta_2 + s_2)}\right\}$$

To compute expectations and variances, use $\dot{A}(\eta) = \mathbb{E}_{\eta}[T]$ and $\ddot{A}(\eta) = \Sigma_T$.

$$\dot{A}(\eta_{1}, \eta_{2}) = -\begin{pmatrix} \frac{1}{2} \frac{\eta_{2}^{1/2}}{\eta_{1}^{1/2}} \\ \frac{1}{2} \frac{\eta_{1}^{1/2}}{\eta_{2}^{1/2}} + \frac{1}{2\eta_{2}} \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} \mathbb{E}[X] \\ \mathbb{E}\left[\frac{1}{X}\right] \end{pmatrix}$$

$$\mathbb{E}[X] = \mu, \qquad \mathbb{E}\left[\frac{1}{X}\right] = \frac{1}{\mu} + \frac{1}{\lambda}$$

$$\ddot{A}(\eta_{1}, \eta_{2}) = \frac{1}{4} \begin{pmatrix} \eta_{1}^{-3/2} \eta_{2}^{1/2} & -\eta_{1}^{-1/2} \eta_{2}^{-1/2} \\ -\eta_{1}^{-1/2} \eta_{2}^{-1/2} & \eta_{1}^{1/2} \eta_{2}^{-3/2} + \frac{2}{\eta_{2}} \end{pmatrix}$$

$$\operatorname{Var}(X) = \frac{\mu^{3}}{4\lambda} \qquad \operatorname{Var}\left(\frac{1}{X}\right) = \frac{1}{\mu\lambda} + \frac{2}{\lambda^{2}}.$$

4.

$$p(x,\theta) = h(x) \exp\left\{\sum_{j=1}^{k} T_j(x)\theta_j - A(\theta)\right\}$$
$$\log L(\theta, x) - \log L(\theta, y) = (\log h(x) - \log h(y)) + \sum_{j=1}^{k} (T_j(x) - T_j(y))\theta_j$$

clearly does not depend on θ if and only if T(x) = T(y).

5. For a one-parameter exponential family,

$$p(x; \eta) = h(x) \exp{\{\eta T(x) - A(\eta)\}}$$

and here T(x) = x so that

$$\frac{\partial}{\partial \eta} \mathbb{E}_{\eta} [\psi(X)] = \frac{\partial}{\partial \eta} \int h(x) e^{\eta x - A(\eta)} \psi(x) dx = \int h(x) \left(\frac{d}{d\eta} e^{\eta x - A(\eta)} \right) \psi(x) dx
= \int h(x) e^{\eta x - A(\eta)} (x - \dot{A}(\eta)) \psi(x) dx
= \int p(x; \eta) x \psi(x) dx - \dot{A}(\eta) \int p(x; \eta) \psi(x) dx.$$

To exchange $\frac{\partial}{\partial \eta}$ with \int for all $\eta \in \mathcal{E}^0$, then for each $\eta \in \mathcal{E}^0$ we need an $\epsilon > 0$ and an integrable function H(x) such that $\sup_{\xi \in (\eta - \epsilon, \eta + \epsilon)} \left| \frac{\partial}{\partial \xi} h(x) e^{\xi x - A(\xi)} \psi(x) \right| \leq H(x)$ for all $\eta \in \mathcal{E}$ and such that $\int H(x) dx < +\infty$. Now,

$$\frac{\partial}{\partial \xi} h(x) e^{\xi x - A(\xi)} \psi(x) = (x - \dot{A}(\xi)) \psi(x) h(x) e^{\xi x - \dot{A}(\xi)}$$

so, for a given $\eta \in \mathcal{E}^0$, choose an ϵ such that $(\eta - \epsilon, \eta + \epsilon) \subset \mathcal{E}^0$, let $C = \sup_{\xi \in (\eta - \epsilon, \eta + \epsilon)} |\dot{A}(\xi)|$ and let:

$$H(x) = h(x)e^{(\eta + \epsilon)x}(|x| + C)|\psi(x)|\mathbf{1}_{[0, +\infty)}(x) + h(x)e^{(\eta - \epsilon)x}(|x| + C)|\psi(x)|\mathbf{1}_{(-\infty, 0]}(x)$$

Then $\int H(x)dx < +\infty$ and satisfies the criterion, so that the derivative and integral may be exchanged.

Therefore, using $\dot{A}(\eta) = \mathbb{E}_{\eta}[T(X)]$:

$$\frac{\partial}{\partial \eta} \mathbb{E}_{\eta}[\psi(X)] = \mathbb{E}_{\eta}[X\psi(X)] - \mathbb{E}_{\eta}[\psi(X)]\mathbb{E}_{\eta}[X] = \operatorname{Cov}(X, \psi(X)).$$

Under the conditions placed on ψ , $(x-y)(\psi(x)-\psi(y))$ is non negative and positive with positive probability. The result follows.

6. Using the notations of the question, and setting $z_{j.} = (z_{j1}, \ldots, z_{jd})^t$,

$$p(y_1, \dots, y_n, \underline{\beta}) = \left(\prod_{j=1}^n \binom{n_j}{y_j}\right) \exp\left\{\sum_{i=1}^d \beta_i \left(\sum_{j=1}^n y_j z_{ji}\right) - \sum_{j=1}^n n_j \log(1 - \lambda_j)\right\}$$

The family is of rank k if and only if

$$\mathbb{P}(\sum_{j=1}^{k} c_j T_j(X) = c_0) < 1$$

for all (c_0, c_1, \ldots, c_k) . Here

$$\mathbb{P}\left(\sum_{i=1}^{d} c_i T_i(Y) = c_0\right) = \mathbb{P}\left(\sum_{j=1}^{n} \left(\sum_{i=1}^{d} c_i z_{ji}\right) Y_j = c_0\right)$$

If the (column) vectors $z_{.1}, \ldots, z_{.d}$ are not linearly independent, then (by definition) c_1, \ldots, c_d may be found so that $\sum_{i=1}^d c_i z_{.,i} = 0$.

If they are linearly independent, then clearly the family is of rank d.

7. (a) $\mathbb{P}((X_1, \dots, X_n) = (x_1, \dots, x_n)) = \frac{1}{2} p_{00}^{n_{00}} p_{01}^{n_{01}} p_{10}^{n_{10}} p_{11}^{n_{11}}$

where $n_{00} + n_{01} + n_{10} + n_{11} = n - 1$, the total number of transitions. It follows that

$$\mathbb{P}((X_1, \dots, X_n) = (x_1, \dots, x_n)) = \frac{1}{2} \exp\{(n_{00} + n_{11}) \log p + (n_{01} + n_{10}) \log(1 - p)\}$$
$$= \frac{1}{2} \exp\{(n_{00} + n_{11}) \log \left(\frac{p}{1 - p}\right) + (n - 1) \log(1 - p)\}$$

The result now follows from the formula for an exponential family; $h(x) = \frac{1}{2}$, $T(x) = n_{00} + n_{11}$, $\eta(p) = \log\left(\frac{p}{1-p}\right)$, $B(p) = -(n-1)\log(1-p)$.

(b) Let $Y_i = 1$ if transition i is either $0 \mapsto 0$ or $1 \mapsto 1$ and let $Y_i = 0$ otherwise. Then

$$T = Y_1 + \dots Y_{n-1}.$$

Since $\mathbb{E}[Y_j] = p$, the result follows.

8. $X = {Z \choose Y} \sim N\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1+\theta^2 \end{pmatrix}\right)$. Covariance matrix is $\Sigma = \begin{pmatrix} 1 & 1 \\ 1 & 1+\theta^2 \end{pmatrix}$ so $|\Sigma| = \theta^2$ and $\Sigma^{-1} = \frac{1}{\theta^2}\begin{pmatrix} 1+\theta^2 & -1 \\ -1 & 1 \end{pmatrix}$. It follows that

$$f_{(Z,Y)}(z,y) = \frac{1}{2\pi|\theta|} \exp\left\{-\frac{1}{2\theta^2}(z^2 + (1+\theta^2)y^2 - 2zy)\right\}$$

giving:

$$f_{X_1,\dots,X_n}(x_1,\dots,x_n) = \frac{1}{(2\pi)^n |\theta|^n} \exp\left\{-\frac{1}{2\theta^2} \sum_{j=1}^n (z_j - y_j)^2 - \frac{1}{2} \sum_{j=1}^n y_j^2\right\}$$

so that

$$T(x_1, \dots, x_n) = \sum_{j=1}^n (z_j - y_j)^2, \qquad h(x_1, \dots, x_n) = \frac{1}{(2\pi)^n} e^{-\sum_{j=1}^n y_j^2}, \qquad \eta = -\frac{1}{2\theta^2}$$
$$A(\eta) = -\frac{n}{2} \log \frac{1}{\theta^2} = -\frac{n}{2} \log(-2\eta), \qquad \mathcal{E} = (0, +\infty)$$

Hence

$$\mathbb{E}_{\eta}[T] = \frac{dA}{d\eta} = -\frac{n}{2\eta} = n\theta^2$$

$$\operatorname{Var}_{\eta}(T) = \frac{d^2 A}{dn^2} = \frac{n}{2n^2} = 2n\theta^4$$

9. (a) Lagrange method of multipliers: if we maximise the integrand pointwise, then this maximises the integral. Maximise

$$-p(x)\log p(x) - \lambda_0 p(x) - \sum_{j=1}^k p(x)r_j(x)\lambda_j$$

then choose $\lambda_0, \lambda_1, \dots, \lambda_k$ to satisfy constraints. Taking derivative w.r.t. p(x), maximum satisfies:

$$-\log p(x) - 1 - \lambda_0 - \sum_{j=1}^{k} r_j(x)\lambda_j = 0$$

so that p is of the form:

$$p(x) = \exp\left\{-(1+\lambda_0) - \sum_{j=1}^k \lambda_j r_j(x)\right\}$$

Choose $\lambda_0, \lambda_1, \ldots, \lambda_k$ so that the constraints are satisfied. For an exponential family, this is clearly the case if $\lambda_j = -\eta_j$ for $j = 1, \ldots, k$ and $A(\eta) = 1 + \lambda_0$.

(b) i. $p(x) = \frac{1}{\alpha_1} \exp\{-x/\alpha_1\}$ $x \in (0, +\infty)$

$$p(x) = \exp\{\eta_1 x + \eta_2 x^2 - A(\eta)\}\$$

No solution for $\alpha_2 < \alpha_1^2$; this would require random variables which satisfy: $\mathbb{E}[X^2] < \mathbb{E}[X]^2$. It follows that α_2 satisfies $\alpha_2 > \alpha_1^2$. Set $\sigma^2 = \alpha_2 - \alpha_1^2$, then

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\alpha_1)^2}{2\sigma^2}\right\} \qquad -\infty < x < +\infty$$

iii.

$$p(x) = \exp \{ \eta_1 x + \eta_2 x^2 + \eta_3 x^3 - A(\eta) \}$$
 $-\infty < x < +\infty$

Clearly it doesn't exist!

10. It follows from the factorisation theorem that

$$p(x_1, \theta)p(x_2, \theta) = h(x_1, x_2)q(x_1 + x_2, \theta).$$

Fix a point θ_0 and let $r(x,\theta) = \log p(x,\theta) - \log p(x,\theta_0)$. Let $q(z,\theta) = \log g(z,\theta) - \log g(z,\theta_0)$. Then

$$r(x_1, \theta) + r(x_2, \theta) = q(x_1 + x_2, \theta)$$

so that $r(.,\theta)$ and $q(.,\theta)$ are linear in x;

$$r(x, \theta) = a(\theta) + b(\theta)x.$$

It follows that

$$p(x, \theta) = p(x, \theta_0) \exp \{a(\theta) + b(\theta)x\}$$

Let $h(x) = p(x, \theta_0)$, then this density is an exponential family with T(x) = x.

Establishing linearity in x The density is continuous and positive, hence so are r and q. Since $q(x_1 + x_2) = r(x_1) + r(x_2)$, it follows that q(x) = r(x) + r(0) so that q(0) = 2r(0) and $q(x_1 + x_2) = q(x_1) + q(x_2) - q(0)$. Now set f(x) = q(x) - q(0) so that

$$f(x_1 + x_2) = f(x_1) + f(x_2).$$

It follows that for any x_1, \ldots, x_n ,

$$f(x_1 + \ldots + x_n) = f(x_1) + \ldots + f(x_n).$$

In particular,

 $f(1) = nf\left(\frac{1}{n}\right) \Rightarrow f\left(\frac{1}{n}\right) = \frac{1}{n}f(1)$

and

$$f\left(\frac{k}{n}\right) = \frac{k}{n}f(1).$$

It follows that for x rational, f(x) = xf(1) and hence, by continuity, it follows that f(x) = xf(1) for all x. It follows that q(x) = a + bx for constants a and b and hence that $r(x) = \frac{a}{2} + bx$.