

Tutorial 13

1. Let X_1, \dots, X_n be i.i.d. $U(0, \theta)$; that is, the density is therefore:

$$p(x; \theta) = \frac{1}{\theta} \mathbf{1}_{[0, \theta]}(x)$$

Let $l(\theta; x) = -\log p(x; \theta)$.

(a) Show that $\frac{d}{d\theta} l(\theta, x) = \frac{1}{\theta}$ for $\theta > x$ and is undefined for $\theta \leq x$. If $X \sim U(0, \theta)$, conclude that $\frac{d}{d\theta} l(\theta, X)$ is defined with \mathbb{P}_θ probability 1, but that

$$\mathbb{E}_\theta \left[\frac{d}{d\theta} l(\theta; X) \right] = \frac{1}{\theta} \neq 0.$$

(b) Recall that $\hat{\theta}_{ML} = \max\{X_1, \dots, X_n\}$. Show that: $n(\theta - \hat{\theta}) \xrightarrow{n \rightarrow +\infty} \mathcal{L}_\theta \text{Exp}(1/\theta)$ (\mathcal{L}_θ denotes the law when the parameter value is θ).

2. Suppose $\lambda : \mathbb{R} \rightarrow \mathbb{R}$ satisfies $\lambda(0) = 0$, is bounded and has bounded second derivative λ'' . Show that if X_1, \dots, X_n are i.i.d. with $\mathbb{E}[X_1] = \mu$ and $\mathbf{V}(X_1) = \sigma^2 < +\infty$, then

$$\left| \sqrt{n} \mathbb{E} [\lambda(|\bar{X} - \mu|)] - \lambda'(0) \sigma \sqrt{\frac{2}{\pi}} \right| \xrightarrow{n \rightarrow +\infty} 0$$

3. Let $V_n \sim \chi_n^2$. Show that $(\sqrt{V_n} - \sqrt{n}) \xrightarrow{n \rightarrow +\infty} \mathcal{L} N(0, \frac{1}{2})$ (\mathcal{L} denotes law).

4. Suppose that X_1, \dots, X_n are i.i.d. variables each with probability function

$$p_X(0) = \theta^2 \quad p_X(1) = 2\theta(1-\theta) \quad p_X(2) = (1-\theta)^2$$

(a) Find a and b (in terms of n and θ) such that $Z_n = \frac{\bar{X} - a}{b} \xrightarrow{n \rightarrow +\infty} \mathcal{L} N(0, 1)$.

(b) Find c and d (in terms of n and θ) such that $Y_n = \frac{\sqrt{\bar{X}} - c}{d} \xrightarrow{n \rightarrow +\infty} \mathcal{L} N(0, 1)$.

5. Let X_1, \dots, X_n be a sample from a population with mean μ and variance $\sigma^2 < +\infty$. Let h be a function and let $h^{(j)}$ denote its j th derivative. Suppose that h has a second derivative continuous at μ and that $h^{(1)}(\mu) = 0$.

(a) Show that $\sqrt{n}(h(\bar{X}) - h(\mu)) \xrightarrow{n \rightarrow +\infty} 0$, while $n(h(\bar{X}) - h(\mu)) \xrightarrow{n \rightarrow +\infty} \frac{1}{2}h^{(2)}(\mu)\sigma^2 V$ where $V \sim \chi_1^2$.

(b) Use part (a) to show that when $\mu = \frac{1}{2}$, then

$$n(\bar{X}(1 - \bar{X}) - \mu(1 - \mu)) \xrightarrow{n \rightarrow +\infty} -\sigma^2 V \quad V \sim \chi_1^2$$

6. Show that if X_1, \dots, X_n are i.i.d. $N(\mu, \sigma^2)$ and $S^2 = \frac{1}{n-1} \sum_{j=1}^n (X_j - \bar{X})^2$, then

$$\sqrt{n} \begin{pmatrix} \bar{X} - \mu \\ S^2 - \sigma^2 \end{pmatrix} \xrightarrow{n \rightarrow +\infty} \mathcal{L} N \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma^2 & 0 \\ 0 & 2\sigma^4 \end{pmatrix} \right)$$

7. Let $X_{ij} : i = 1, \dots, p, j = 1, \dots, k$ be independent with $X_{ij} \sim N(\mu_i, \sigma^2)$.

(a) Show that the MLEs of μ_i and σ^2 are:

$$\bar{\mu}_i = \frac{1}{k} \sum_{j=1}^k X_{ij} \quad \widehat{\sigma^2} = \frac{1}{kp} \sum_{i=1}^p \sum_{j=1}^k (X_{ij} - \bar{\mu}_i)^2$$

(b) Show that if k is fixed and $p \rightarrow +\infty$, then

$$\widehat{\sigma^2} \xrightarrow{p \rightarrow +\infty, \mathcal{L}} \left(1 - \frac{1}{k}\right) \sigma^2.$$

That is, the MLE $\widehat{\sigma^2}$ is not consistent.