
Tutorial 12

1. Let X1, . . . , Xn1 and Y1, . . . , Yn2 be independent N(µ1, σ
2) and N(µ2, σ

2) random samples re-

spectively.

(a) Find the MLE of θ := (µ1, µ2, σ
2). Let cn be the value such that S2 = cnσ̂

2 is an unbiased

estimator of σ2. What is cn? What is S2?

(b) Consider testing H0 : µ1 ≤ µ2 versus H1 : µ1 > µ2. Assume that α < 1
2 . Show that the

likelihood ratio test is equivalent to the test with critical (rejection) region

x− y ≥ s

√
1

n1
+

1

n2
tn1+n2−2,α.

Here tp,α is the value such that P(T > tp,α) = α for T ∼ tp.

(c) Compute a normal approximation to the power function and use it to find the sample size

n needed for the level 0.01 test to have power 0.95 when n1 = n2 =
n
2 and µ1−µ2

σ = 1
2 .

2. Consider the linear Gaussian model Y = Xβ + ǫ where ǫ ∼ N(0, σ2In), put into canonical

coordinates via an orthonormal transform U = AY where Ui ∼ N(ηi, σ
2) for i = 1, . . . , r and

Ui ∼ N(0, σ2) for i = r + 1, . . . , n with unknown parameters η = (η1, . . . , ηr)
t and σ2, and log

likelihood function:

logL(η, σ2;u) = − 1

2σ2

r∑

i=1

(ui − ηi)
2 − 1

2σ2

n∑

i=r+1

u2i −
n

2
log(2πσ2).

Show that the MLE for (η, σ2) does not exist if n = r and that it is given by

(U1, . . . , Ur,
1
n

∑n
i=r+1 U

2
i ) if n ≥ r + 1. Show, in particular, that σ̂2ML = 1

n |Y − µ̂|2

3. Consider a Gaussian linear model Y = Xβ + ǫ, where Y is an n-vector, X is n × r of rank r

(r < n) and ǫ ∼ N(0, σ2I) and β is an r-vector of unknown parameters. σ2 is unknown. Recall

(from lectures) that the OLS estimator of β̂ is:

β̂ = (XtX)−1XtY.

Show that β̂i is UMVU for each i = 1, . . . , r and that S2 = 1
n−r

∑n
j=1(Yj − Ŷj)

2 is an UMVU

estimator of σ2, where Ŷ = X(XtX)−1XtY .

4. Consider simple linear regression; there is one explanatory variable and

Yi = β0 + β1xi + ǫi ǫi ∼ N(0, σ2) i.i.d. i = 1, . . . , n

where x1, . . . , xn are not all equal. Express this as a Gaussian linear model

Y = Xβ + ǫ

identifying X and β.
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(a) Show that

(XtX)−1 =
1∑n

j=1(xj − x)2

(
x2 −x
−x 1

)

where x = 1
n

∑n
j=1 xj and x2 = 1

n

∑n
j=1 x

2
j .

(b) Let
(β̂0
β̂1

)
denote the maximum likelihood estimator of β =

(
β0
β1

)
. What is the distribution of

(β̂0
β̂1

)
?

(c) Let

S2 =
1

n− 2

n∑

j=1

(Yj − β̂0 − β̂1xj)
2.

What is the distribution of (n−2)S2

σ2 ?

(d) Suppose

Y (z) = β0 + β1z + ǫ ǫ ∼ N(0, σ2).

Let s denote the observed value of S. Using tp,α to denote the value such that P(T > tp,α) =

α for T ∼ tp, show that a symmetric confidence interval for E[Y (z)] is given by:

(
β̂0 + β̂1z ± s

√
1

n
+

(x− z)2∑n
j=1(xj − x)2

tn−2,α/2

)
.

(e) Let Y∗ = β0 + β1z + ǫ∗ where ǫ∗ ∼ N(0, σ2) is independent of ǫ1, . . . , ǫn (Y∗ is a new

observation with explanatory variable set at z). Let Y = 1
n

∑n
j=1 Yj and let Ŷ ∗ = β̂0 + β̂1z

(the predictor of Y∗ based on Y1, . . . , Yn). Show that, if β1 = 0, then

E[(Y ∗ − Ŷ ∗)2] ≥ E[(Y ∗ − Y )2]

5. Consider the one way layout problem

Yij = βi + ǫij i = 1, . . . , p j = 1, . . . , ni

where ǫij are i.i.d. N(0, σ2) and n = n1 + . . .+ np.

(a) Show that

S2 =

∑p
i=1

∑ni
j=1(Yij − Y i.)

2

∑p
i=1(ni − 1)

is an unbiased estimator of σ2 and that

∑p
i=1

∑ni
j=1(Yij − Y i.)

2

σ2
∼ χ2

n−p.
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(b) Show that a level 1− α confidence intervals for βj − βi is:

βj − βi ∈
(
Y j. − Y i. ± Stn−p;α/2

√
ni + nj
ninj

)

where S2 is the unbiased estimator of σ, Y k. =
1
nk

∑nk
i=1 Yki and tp,α denotes the value such

that P(T > tp,α) = α if T ∼ tp. Show that the level 1−α confidence interval for σ2 is given

by:
(n− p)s2

kn−p;(α/2)
≤ σ2 ≤ (n− p)s2

kn−p;1−(α/2)

where kq,β is the value such that P(V ≥ kq,β) = β if V ∼ χ2
q .

(c) Find confidence intervals for ψ = 1
2(β2+β3)−β1 and σ2ψ := V(ψ̂) where ψ̂ = 1

2(β̂2+β̂3)−β̂1.

6. Show that if C is an n × r matrix of full rank r, r ≤ n, then the r × r matrix CtC is of rank r

and hence non singular.

Hint: Because Ct is of rank r, it follows that for any r-vector x, xtCt = 0 implies x = 0. Use

this to show that if x is a non zero r-vector, then xtCCtx > 0.

7. Consider the one-way layout model: k groups of observations, all random variables independent.

For group j, Y1,j , . . . , Ynj ,j ∼ N(µj , σ
2). Let n = n1 + . . . + nk denote the total number of

observations.

(a) Compute the likelihood ratio test statistic for H0 : µ1 = . . . = µk versus H1 : µi 6= µj for

some i 6= j.

(b) Let Qres =
∑k

j=1

∑nj

i=1(Yij−Y .j)
2 where Y .j =

1
nj

∑nj

i=1 Yij , the sample average from group

j. Let QM =
∑k

j=1 nj(Y .j −Y ..)
2 where Y .. =

1
n

∑k
j=1

∑nj

i=1 Yij (the overall average). Here

Qres denotes the residual sum of squares, while QM denotes the model sum of squares. Show

that the likelihood ratio test is equavalent to reject H0 for F := QM/(k−1)
Qres/(n−k)

> c for some

c > 0.

(c) Show that the statistic F has Fk−1,n−k distribution.
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Answers

1. (a) Computing maximum likelihood estimators for normal distribution parameters should be

straightforward. The log-likelihood function is:

logL(µ1, µ2, σ
2) = −n

2
log(2π)− n

2
log σ2 − 1

2σ2




n1∑

j=1

(xj − µ1)
2 +

n2∑

j=1

(yj − µ2)
2


 .

This is maximised for:

µ̂1 = X, µ̂2 = Y ,

σ̂2ML =
1

n1 + n2




n1∑

j=1

(Xj −X)2 +

n2∑

j=1

(Yj − Y )2




This estimator is biased; recall that

∑n1
j=1(Xj −X)2

σ2
∼ χ2

n1−1

∑n2
j=1(Yj − Y )2

σ2
∼ χ2

n2−1

and that, for V ∼ χ2
m, E[V ] = m. Therefore:

E[σ̂2ML] =
n1 + n2 − 2

n1 + n2
σ2 ⇒ cn =

n1 + n2
n1 + n2 − 2

The unbiased estimator required in the question is therefore:

S2 =
1

n1 + n2 − 2




n1∑

j=1

(Xj −X)2 +

n2∑

j=1

(Yj − Y )2




(b) Recall H0 : µ1 ≤ µ2 versus H1 : µ1 > µ2. The log likelihood ratio test statistic is:

λ(x, y) =
supµ1,µ2,σ∈H0

L(µ1, µ2, σ;x, y)

supµ1,µ2,σ L(µ1, µ2, σ;x, y)
=
L(µ̂0,1, µ̂0,2, σ̂0)

L(µ̂1, µ̂2, σ̂)

where (µ̂1, µ̂2, σ̂) are the MLE estimators for the full space

Θ = {(µ1, µ2, σ2) : (µ1, µ2, σ2) ∈ R
2 × R+} = R

2 × R+.

These were computed in the previous part of the exercise. The values (µ̂0,1, µ̂0,2, σ̂0) are the

values which maximise the likelihood over the null hypothesis space

Θ0 = {(µ1, µ2, σ2) ∈ R
2 × R+ : µ1 ≤ µ2}.

If X ≤ Y , then (clearly) (µ̂01, µ̂02, σ̂
2
0) = (µ̂1, µ̂2, σ̂

2) and hence λ(x, y) = 1 for x < y.
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Now consider the other case, where x > y. The maximiser clearly does not lie in the interior

of the space; in this case there are no solutions to the likelihood equations ∇θ logL(θ) = 0

in the space Θ0. Therefore the maximiser lies on the boundary.

Clearly, as µ1 → −∞ or µ2 → +∞, logL(µ1, µ2, σ) → −∞, so the maximiser does not lie

on the part of the boundary where parameter values are ±∞. Therefore, the maximiser lies

on the boundary µ1 = µ2. Therefore, for x > y, µ̂0,1 = µ̂02 = µ̂0 where (µ̂0, σ̂
2
0) are the

values which maximise

logL(µ, σ) = −(n1 + n2)

2
log(2π)− (n1 + n2)

2
log σ2− 1

2σ2




n1∑

j=1

(xj − µ)2 +

n2∑

j=1

(yj − µ)2


 .

From this,

µ̂0 =
1

n1+n2
(
∑n1

j=1Xj +
∑n2

j=1 Yj)

σ̂20 = 1
n1+n2

(∑n1
j=1(Xj − µ̂0)

2 +
∑n2

j=1(Yj − µ̂0)
2
)

To compute the likelihood ratio:

L(µ̂1, µ̂2, σ̂
2) =

1

(2π)(n1+n2)/2σ̂n1+n2
exp



− 1

2σ̂2




n1∑

j=1

(xj − µ̂1)
2 +

n2∑

j=1

(yj − µ̂2)
2







=
1

(2π)(n1+n2)/2σ̂n1+n2
exp

{
−(n1 + n2)

2

}

The last simplification comes from the formula for σ̂2. Similarly, for the case x > y,

L(µ̂0,1, µ̂0,2, σ̂
2
0) =

1

(2π)(n1+n2)/2σ̂n1+n2
0

exp



− 1

2σ̂20




n1∑

j=1

(xj − µ̂0)
2 +

n2∑

j=1

(yj − µ̂0)
2







=
1

(2π)(n1+n2)/2σ̂n1+n2
0

exp

{
−n1 + n2

2

}

using µ̂01 = µ̂02 = µ̂0.

The LRT is therefore:

λ(x, y) =





1 x ≤ y(
σ̂
σ̃

)n1+n2

x > y

Test: reject H0 for λ(x, y) < c where c < 1, (so a necessary condition for rejection is: x > y).

To get it into the format required in the question, use:
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(n1 + n2)σ̂
2
0 =

n1∑

j=1

(Xj − µ̂0)
2 +

n2∑

j=1

(Yj − µ̂0)
2

=

n1∑

j=1

(Xj −X)2 + n1(X − µ̂0)
2 +

n2∑

j=1

(Yj − µ̂0)
2 + n2(Y − µ̂0)

2

= (n1 + n2)σ̂
2 +

n1n2
n1 + n2

(X − Y )2

so that

σ̂20 = σ̂2 +
n1n2

(n1 + n2)2
(X − Y )2.

Therefore:

λ(x, y) < c⇔ σ̂20
σ̂2

>
1

c2/(n1+n2)
⇔
(
1 +

n1n2
(n1 + n2)2

(X − Y )2

σ̂2

)
>

1

c2/(n1+n2)

Since σ̂2 = n1+n2−2
n1+n2

S2 also need X − Y > 0 to reject H0, this gives a test of reject H0 if

and only if
X − Y

S
> k

for a suitable value of k, which depends on the significance level α. Since

(X − Y )− (µ1 − µ2)

S
√

1
n1

+ 1
n2

∼ tn1+n2−2

it follows that Pµ1,µ2

(
X−Y
S > k

)
is increasing as µ1 − µ2 increases and the result follows.

(c) The test is: Reject H0 for (x−y)

S
√

1
n1

+ 1
n2

> tn1+n2−2;α, where tn1+n2;α is the value such that

P(T > tn1+n2−2;α) = α.

Let θ = µ2 − µ1, then X − Y ∼ N
(
θ, σ2

(
1
n1

+ 1
n2

))
and hence

Z :=
(X − Y )− θ

σ
√

1
n1

+ 1
n2

∼ N(0, 1).

The power of the test is

β(θ) := P


 (X − Y )

S
√

1
n1

+ 1
n2

> tn1+n2−2;α

∣∣∣∣∣∣
µ2 − µ1 = θ




= P


 (X − Y )− θ

S
√

1
n1

+ 1
n2

> tn1+n2−2;α − θ

S
√

1
n1

+ 1
n2

∣∣∣∣∣∣
µ2 − µ1 = θ



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For large n1, n2, S ≃ σ (law of large numbers) and tn1+n2;α ≃ zα where P(Z > zα) = α for

Z ∼ N(0, 1), so

β(θ) ≃ P(Z ≥ zα − θ

σ
√

1
n1

+ 1
n2

)

For the numbers given, α = 0.01 and

0.95 = β(
σ

2
) ≃ 1− Φ(z0.01 −

√
n

4
)

Using z0.01 = 2.33 and z0.05 = 1.64, we have:

−1.64 = 2.33−
√
n

4
⇒ n = 253

2. Likelihood equations obtained by: ∂
∂ηi

logL = 0, i = 1, . . . , r and ∂
∂σ logL = 0. These give

directly that the ML estimate has to satisfy:

{
η̂i = Ui i = 1, . . . , r
1
σ̂2

∑n
j=r+1 U

2
j = n

For r = n, η̂i = Ui so that the log likelihood evaluated at η̂ is:

logL(η̂, σ2) = −n
2
log(2πσ2)

which is maximised for σ = 0, which is not in the (open) parameter space (0,+∞), hence σ̂ML

does not exist. Hence no solution for n = r.

For n ≥ r + 1,

σ̂2 =
1

n

n∑

j=r+1

U2
j .

Let U =
(
U(1)

U(2)

)
where U (1) = (U1, . . . , Ur)

t and U (2) = (Ur+1, . . . , Un)
t. Let A =

(
A(1)

A(2)

)
where

A(1) is r×n and A(2) is n− r×n. Note that µ̂ = A(1)tU (1) so that Y − µ̂ = A(2)tU (2). It follows

that
n∑

j=r+1

U2
j = U (2)tU (2) = U (2)tA(2)A(2)tU (2) = |Y − µ̂|2.

3. Unbiased follows directly from lectures:

β̂ = (XtX)−1XtY

so that

E[β̂] = (XtX)−1Xt
E[Y ] = (XtX)−1XtXβ = β.
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For the sample standard deviation, let H = X(XtX)−1Xt then H is idempotent, of rank r and

hence H = PDP t where P is orthonormal and D = diag(1, . . . , 1, 0, . . . , 0) where 1 appears with

multiplicity r. Hence

Y − Ŷ = (I −H)Y = (I −H)Xβ + (I −H)ǫ = (I −H)ǫ.

Let η = P tǫ then η ∼ N(0, σ2I). Also,

(Y − Ŷ )t(Y − Ŷ ) = ηt(I −D)η =
n∑

r+1

η2j

so that

(n− r)S2

σ2
=

n∑

r+1

(ηj
σ

)2
∼ χ2

n−r.

From this, E[S2] = σ2 so that the estimator is unbiased.

Now to show that the estimators are UMVU:

p(y1, . . . , yn) =
1

(2π)n/2σn
exp

{
− 1

2σ2
(y −Xβ)t(y −Xβ)

}

and the argument inside exp{−1
2(.)} is:

1

σ2
(yty − ytXβ − βtXty + βtXtXβ).

The sufficient statistic is therefore:

T (y) = (yty,

n∑

j=1

Xjiyj : i = 1, . . . , r).

β̂i =
∑

jk(X
tX)−1

ij Xkjyk is clearly a linear function of the sufficient statistics. For the standard

deviation:

(Y − Ŷ t)(Y − Ŷ ) = Y tY − Ŷ tŶ

This holds since

Y tŶ = Y tHY = Y tHtHY = Ŷ tŶ

Now Ŷ = X(XtX)−1XtY which is a (linear) function of the sufficient statistics and hence
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E[S2|T (Y )] = S2.

The result follows by the Lehman-Scheffé theorem.

4. The purpose of this question is to see all the abstract results for Y = Xβ + ǫ in the concrete

setting of a single explanatory variable. Here the formulae are more transparent and we can see

(for example) what happens when there is ill-conditioning in the X matrix.

(a) The matrix X is:

X =




1 x1

1 x2
...

...

1 xn




and the parameter vector is:

β =

(
β0
β1

)
.

To get (X ′X)−1 (so that - for example - we can compute the covariance of the parameter

vector estimator):

(XtX) =

(
n

∑n
j=1 xj∑n

j=1 xj
∑n

j=1 x
2
j

)
= n

(
n x

x x2

)

Using the usual formula for inverting a 2× 2 matrix together with the obvious identity:

det(X ′X) = n(x2 − x2) =

n∑

j=1

(xj − x)2

gives:

(XtX)−1 =
1∑n

j=1(xj − x)2

(
x2 −x
−x 1

)

(b) The MLE is equal to the least squares estimator. From lectures,

β̂ = (XtX)−1XtY

Plugging in (XtX)−1 which has been computed gives:

(
β̂0

β̂1

)
= (XtX)−1

(
nY

nxY

)

=
1

1
n

∑n
j=1(xj − x)2

(
x2Y − xxY

xY − xY

)

=




Y − x
∑n

j=1(xj−x)(Yj−y)∑n
j=1(xj−x)

2
∑n

j=1(xj−x)(Yj−y)∑n
j=1(xj−x)

2


 .
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This gives the best fitting straight line in the least squares sense. Note that

β̂0 = Y − β̂1x.

(c) For the standard deviation estimate,

(n− 2)S2

σ2
=

|Y − µ̂|2
σ2

∼ χ2
n−2.

Note: n− 2 degrees of freedom is obtained from the previous exercise.

We may also see it directly: the argument goes as follows: Ŷ = X(XtX)−1XtY so that the

residuals are:

Y − Ŷ = (I −X(XtX)−1Xt)Y = (I −H)ǫ

where H = X(XtX)−1Xt and ǫ ∼ N(0, σ2I). This is because Y = Xβ + ǫ and HX =

X. Note that H2 = H (straightforward computation). It therefore follows that all the

eigenvalues are either 0 or 1. Therefore, since X is rank 2 it follows that H is of rank 2; 2

e-values are 1, the remaining are 0 and it is straightforward that that I −H is rank n− 2;

the eigenvalues of matrix I −H are n− 2 1’s and 2 0’2. Let D = diag(1, . . . , 1, 0, 0) and let

I −H = PDP t where P is orthonormal. Then

∑
(Yi − β̂0 − xiβ̂1)

2 = (Y − Ŷ )t(Y − Ŷ ) = ǫtPDP tǫ =

n−2∑

j=1

η2j

where η = P tǫ. Since P is orthonormal, it follows that η ∼ N(0, σ2I).

Therefore, it follows that:

(n− 2)S2

σ2
∼ χ2

n−2.

β̂ ∼ N(β, (XtX)−1σ2)

(d) Let v = (1, z)t then

E[Y (z)] = vtβ

vtβ̂ − vtβ

σ
√
vt(XtX)−1v

∼ N(0, 1)

vtβ̂ − vtβ

S
√
vt(XtX)−1v

∼ tn−2

with 1− α confidence,

vtβ ∈
(
vtβ̂ ± s

√
vt(XtX)−1vtn−2;α/2

)
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and

vt(XtX)−1v =
x2 − 2zx+ z2∑n
j=1(xj − x)2

=
1
n

∑n
j=1(xj − x)2 + (x− z)2
∑n

j=1(xj − x)2

and the result follows.

(e) From the previous part,

E[(Y ∗ − Ŷ ∗)2] = V(Y ∗ − Ŷ ∗) = V(Y ∗) +V(Ŷ ∗) = σ2

(
1 +

1

n
+

(x− z)2∑n
j=1(xj − x)2

)

while, under the assumption β1 = 0,

E[(Y ∗ − Y )2] = V(Y ∗) +V(Y ) = σ2
(
1 +

1

n

)

and the result is clear.

5. (a)

Y j. − Y i. ∼ N(βj − βi, σ
2(

1

nj
+

1

ni
))

S2 =
1

n− p

p∑

i=1

n∑

j=1

(Yij − Y i.)
2 n− p d.f.

is the unbiased estimator of σ2. Then

(Y j. − Y i.)− (βj − βi)

S
√

ni+nj

ninj

∼ tn−p

and the confidence interval follows. The confidence interval for σ follows from:

(n− p)S2

σ2
∼ χ2

n−p

hence the 1− α confidence bound is given by:

kn−p;1−(α/2) ≤
(n− p)s2

σ2
≤ kn−p;(α/2)

from which the result follows.

(b)

ψ̂ ∼ N

(
ψ, σ2

(
1

4n2
+

1

4n3
+

1

n1

))

the estimator of σ2 is S2 = Qresn− p given above with n− p degrees of freedom and hence

1

2
(β2 + β3)− β1 ∈

(
1

2

(
Y 2. + Y 3.

)
− Y 1. ± stn−p,α/2

√
n1n3 + n1n2 − 4n2n3

4n1n2n3

)

Similarly,

V(ψ̂) =
n1n3 + n1n2 + 4n2n3

4n1n2n3
σ2
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hence the confidence interval is:

n1n3 + n1n2 + 4n2n3
4n1n2n3

(n− p)s2

kn−p;(α/2)
≤ V(ψ̂) ≤ n1n3 + n1n2 + 4n2n3

4n1n2n3

(n− p)s2

kn−p;1−(α/2)

6. xtCtCx = 0 implies that xtCt = 0 which implies that x = 0 so that if x 6= 0 then xtCtCx 6= 0

hence CtC is (strictly) positive definite.

7. (a) Let n = n1 + . . .+ nk denote the total number of experimental units. For H0 : µ1 = . . . =

µk = µ, we have the maximiser µ̃ = 1
n

∑k
j=1

∑nj

i=1 Yij and

σ̃2 =
1

n

k∑

j=1

nj∑

i=1

(Yij − µ̃)2

and the maximum likelihood under the constraint H0 is: 1
(2π)n/2σ̃n e

−n/2.

For the unconstrained problem, the likelihood is maximised at µ̂j =
1
nj

∑nj

i=1 Yij and

σ̂2 =
1

n

k∑

j=1

nj∑

i=1

(Yij − µ̂j)
2.

The maximum likelihood for the unconstrained problem is: 1
(2π)n/2σ̂n e

−n/2 and hence the

likelihood ratio statistic is:

λ(y) =

(
σ̂

σ̃

)n
.

(b) Pythagorean identity: note that Y .j = µ̂j and Y .. = µ̃ from previous part.

k∑

j=1

nj∑

i=1

(Yij − µ̃)2 =
k∑

j=1

nj∑

i=1

(Yij −Y .j +Y .j −Y ..)
2 =

k∑

j=1

nj∑

i=1

(Yij −Y .j)
2+

k∑

j=1

nj(Y .j −Y ..)
2

so:

nσ̃2 = Qres +QM nσ̂2 = Qres.

Therefore, the likelihood ratio test is:

λ(y) < c⇔ Qres
QM +Qres

< c2/n ⇔ QM/(k − 1)

Qres/(n− k)
>

(
n− k

k − 1

)(
1− c2/n

c2/n

)
= k

establishing the result.

(c) It follows from the canonical representation (lectures) that QM ⊥ Qres. Under H0 : µ1 =

. . . = µk, it follows that QM

σ2 ∼ χ2
k−1 since the parameter space for µ1, . . . , µk is k-dimensional

and the parameter space for the mean under the null hypothesis is 1-dimensional, and
Qres
σ2 ∼ χ2

n−k. The result follows from Proposition 11.4.
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