

## Tutorial 12

- Let  $X_1, \dots, X_{n_1}$  and  $Y_1, \dots, Y_{n_2}$  be independent  $N(\mu_1, \sigma^2)$  and  $N(\mu_2, \sigma^2)$  random samples respectively.
  - Find the MLE of  $\theta := (\mu_1, \mu_2, \sigma^2)$ . Let  $c_n$  be the value such that  $S^2 = c_n \hat{\sigma}^2$  is an unbiased estimator of  $\sigma^2$ . What is  $c_n$ ? What is  $S^2$ ?
  - Consider testing  $H_0 : \mu_1 \leq \mu_2$  versus  $H_1 : \mu_1 > \mu_2$ . Assume that  $\alpha < \frac{1}{2}$ . Show that the likelihood ratio test is equivalent to the test with critical (rejection) region

$$\bar{x} - \bar{y} \geq s \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} t_{n_1+n_2-2, \alpha}.$$

Here  $t_{p, \alpha}$  is the value such that  $\mathbb{P}(T > t_{p, \alpha}) = \alpha$  for  $T \sim t_p$ .

- Compute a normal approximation to the power function and use it to find the sample size  $n$  needed for the level 0.01 test to have power 0.95 when  $n_1 = n_2 = \frac{n}{2}$  and  $\frac{\mu_1 - \mu_2}{\sigma} = \frac{1}{2}$ .
- Consider the linear Gaussian model  $\underline{Y} = \underline{X}\underline{\beta} + \underline{\epsilon}$  where  $\underline{\epsilon} \sim N(\underline{0}, \sigma^2 I_n)$ , put into canonical coordinates via an orthonormal transform  $\underline{U} = \underline{A}\underline{Y}$  where  $U_i \sim N(\eta_i, \sigma^2)$  for  $i = 1, \dots, r$  and  $U_i \sim N(0, \sigma^2)$  for  $i = r+1, \dots, n$  with unknown parameters  $\underline{\eta} = (\eta_1, \dots, \eta_r)^t$  and  $\sigma^2$ , and log likelihood function:

$$\log L(\underline{\eta}, \sigma^2; \underline{u}) = -\frac{1}{2\sigma^2} \sum_{i=1}^r (u_i - \eta_i)^2 - \frac{1}{2\sigma^2} \sum_{i=r+1}^n u_i^2 - \frac{n}{2} \log(2\pi\sigma^2).$$

Show that the MLE for  $(\underline{\eta}, \sigma^2)$  does not exist if  $n = r$  and that it is given by

$(U_1, \dots, U_r, \frac{1}{n} \sum_{i=r+1}^n U_i^2)$  if  $n \geq r+1$ . Show, in particular, that  $\hat{\sigma}_{ML}^2 = \frac{1}{n} |\underline{Y} - \hat{\underline{\mu}}|^2$

- Consider a Gaussian linear model  $\underline{Y} = \underline{X}\underline{\beta} + \underline{\epsilon}$ , where  $\underline{Y}$  is an  $n$ -vector,  $\underline{X}$  is  $n \times r$  of rank  $r$  ( $r < n$ ) and  $\underline{\epsilon} \sim N(\underline{0}, \sigma^2 I)$  and  $\underline{\beta}$  is an  $r$ -vector of unknown parameters.  $\sigma^2$  is unknown. Recall (from lectures) that the OLS estimator of  $\hat{\underline{\beta}}$  is:

$$\hat{\underline{\beta}} = (\underline{X}^t \underline{X})^{-1} \underline{X}^t \underline{Y}.$$

Show that  $\hat{\beta}_i$  is UMVU for each  $i = 1, \dots, r$  and that  $S^2 = \frac{1}{n-r} \sum_{j=1}^n (Y_j - \hat{Y}_j)^2$  is an UMVU estimator of  $\sigma^2$ , where  $\hat{\underline{Y}} = \underline{X}(\underline{X}^t \underline{X})^{-1} \underline{X}^t \underline{Y}$ .

- Consider *simple* linear regression; there is one explanatory variable and

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i \quad \epsilon_i \sim N(0, \sigma^2) \quad \text{i.i.d.} \quad i = 1, \dots, n$$

where  $x_1, \dots, x_n$  are not all equal. Express this as a Gaussian linear model

$$\underline{Y} = \underline{X}\underline{\beta} + \underline{\epsilon}$$

identifying  $\underline{X}$  and  $\underline{\beta}$ .

(a) Show that

$$(X^t X)^{-1} = \frac{1}{\sum_{j=1}^n (x_j - \bar{x})^2} \begin{pmatrix} \bar{x}^2 & -\bar{x} \\ -\bar{x} & 1 \end{pmatrix}$$

where  $\bar{x} = \frac{1}{n} \sum_{j=1}^n x_j$  and  $\bar{x}^2 = \frac{1}{n} \sum_{j=1}^n x_j^2$ .

(b) Let  $\begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{pmatrix}$  denote the maximum likelihood estimator of  $\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}$ . What is the distribution of  $\begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{pmatrix}$ ?

(c) Let

$$S^2 = \frac{1}{n-2} \sum_{j=1}^n (Y_j - \hat{\beta}_0 - \hat{\beta}_1 x_j)^2.$$

What is the distribution of  $\frac{(n-2)S^2}{\sigma^2}$ ?

(d) Suppose

$$Y(z) = \beta_0 + \beta_1 z + \epsilon \quad \epsilon \sim N(0, \sigma^2).$$

Let  $s$  denote the observed value of  $S$ . Using  $t_{p,\alpha}$  to denote the value such that  $\mathbb{P}(T > t_{p,\alpha}) = \alpha$  for  $T \sim t_p$ , show that a symmetric confidence interval for  $\mathbb{E}[Y(z)]$  is given by:

$$\left( \hat{\beta}_0 + \hat{\beta}_1 z \pm s \sqrt{\frac{1}{n} + \frac{(\bar{x} - z)^2}{\sum_{j=1}^n (x_j - \bar{x})^2} t_{n-2,\alpha/2}} \right).$$

(e) Let  $Y_* = \beta_0 + \beta_1 z + \epsilon_*$  where  $\epsilon_* \sim N(0, \sigma^2)$  is independent of  $\epsilon_1, \dots, \epsilon_n$  ( $Y_*$  is a new observation with explanatory variable set at  $z$ ). Let  $\bar{Y} = \frac{1}{n} \sum_{j=1}^n Y_j$  and let  $\hat{Y}^* = \hat{\beta}_0 + \hat{\beta}_1 z$  (the predictor of  $Y_*$  based on  $Y_1, \dots, Y_n$ ). Show that, if  $\beta_1 = 0$ , then

$$\mathbb{E}[(Y^* - \hat{Y}^*)^2] \geq \mathbb{E}[(Y^* - \bar{Y})^2]$$

5. Consider the one way layout problem

$$Y_{ij} = \beta_i + \epsilon_{ij} \quad i = 1, \dots, p \quad j = 1, \dots, n_i$$

where  $\epsilon_{ij}$  are i.i.d.  $N(0, \sigma^2)$  and  $n = n_1 + \dots + n_p$ .

(a) Show that

$$S^2 = \frac{\sum_{i=1}^p \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i.})^2}{\sum_{i=1}^p (n_i - 1)}$$

is an unbiased estimator of  $\sigma^2$  and that

$$\frac{\sum_{i=1}^p \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i.})^2}{\sigma^2} \sim \chi_{n-p}^2.$$

(b) Show that a level  $1 - \alpha$  confidence intervals for  $\beta_j - \beta_i$  is:

$$\beta_j - \beta_i \in \left( \bar{Y}_{j\cdot} - \bar{Y}_{i\cdot} \pm St_{n-p;\alpha/2} \sqrt{\frac{n_i + n_j}{n_i n_j}} \right)$$

where  $S^2$  is the unbiased estimator of  $\sigma^2$ ,  $\bar{Y}_{k\cdot} = \frac{1}{n_k} \sum_{i=1}^{n_k} Y_{ki}$  and  $t_{p,\alpha}$  denotes the value such that  $\mathbb{P}(T > t_{p,\alpha}) = \alpha$  if  $T \sim t_p$ . Show that the level  $1 - \alpha$  confidence interval for  $\sigma^2$  is given by:

$$\frac{(n-p)s^2}{k_{n-p;(\alpha/2)}} \leq \sigma^2 \leq \frac{(n-p)s^2}{k_{n-p;1-(\alpha/2)}}$$

where  $k_{q,\beta}$  is the value such that  $\mathbb{P}(V \geq k_{q,\beta}) = \beta$  if  $V \sim \chi_q^2$ .

(c) Find confidence intervals for  $\psi = \frac{1}{2}(\beta_2 + \beta_3) - \beta_1$  and  $\sigma_\psi^2 := \mathbf{V}(\hat{\psi})$  where  $\hat{\psi} = \frac{1}{2}(\hat{\beta}_2 + \hat{\beta}_3) - \hat{\beta}_1$ .

6. Show that if  $C$  is an  $n \times r$  matrix of full rank  $r$ ,  $r \leq n$ , then the  $r \times r$  matrix  $C^t C$  is of rank  $r$  and hence non singular.

Hint: Because  $C^t$  is of rank  $r$ , it follows that for any  $r$ -vector  $x$ ,  $x^t C^t = 0$  implies  $x = 0$ . Use this to show that if  $x$  is a non zero  $r$ -vector, then  $x^t C C^t x > 0$ .

7. Consider the one-way layout model:  $k$  groups of observations, all random variables independent. For group  $j$ ,  $Y_{1,j}, \dots, Y_{n_j,j} \sim N(\mu_j, \sigma^2)$ . Let  $n = n_1 + \dots + n_k$  denote the total number of observations.

(a) Compute the likelihood ratio test statistic for  $H_0 : \mu_1 = \dots = \mu_k$  versus  $H_1 : \mu_i \neq \mu_j$  for some  $i \neq j$ .

(b) Let  $Q_{\text{res}} = \sum_{j=1}^k \sum_{i=1}^{n_j} (Y_{ij} - \bar{Y}_{j\cdot})^2$  where  $\bar{Y}_{j\cdot} = \frac{1}{n_j} \sum_{i=1}^{n_j} Y_{ij}$ , the sample average from group  $j$ . Let  $Q_M = \sum_{j=1}^k n_j (\bar{Y}_{j\cdot} - \bar{Y}_{..})^2$  where  $\bar{Y}_{..} = \frac{1}{n} \sum_{j=1}^k \sum_{i=1}^{n_j} Y_{ij}$  (the overall average). Here  $Q_{\text{res}}$  denotes the *residual* sum of squares, while  $Q_M$  denotes the *model* sum of squares. Show that the likelihood ratio test is equivalent to reject  $H_0$  for  $F := \frac{Q_M/(k-1)}{Q_{\text{res}}/(n-k)} > c$  for some  $c > 0$ .

(c) Show that the statistic  $F$  has  $F_{k-1, n-k}$  distribution.

## Answers

1. (a) Computing maximum likelihood estimators for normal distribution parameters should be straightforward. The log-likelihood function is:

$$\log L(\mu_1, \mu_2, \sigma^2) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \left( \sum_{j=1}^{n_1} (x_j - \mu_1)^2 + \sum_{j=1}^{n_2} (y_j - \mu_2)^2 \right).$$

This is maximised for:

$$\hat{\mu}_1 = \bar{X}, \hat{\mu}_2 = \bar{Y},$$

$$\hat{\sigma}_{ML}^2 = \frac{1}{n_1 + n_2} \left( \sum_{j=1}^{n_1} (X_j - \bar{X})^2 + \sum_{j=1}^{n_2} (Y_j - \bar{Y})^2 \right)$$

This estimator is biased; recall that

$$\frac{\sum_{j=1}^{n_1} (X_j - \bar{X})^2}{\sigma^2} \sim \chi_{n_1-1}^2 \quad \frac{\sum_{j=1}^{n_2} (Y_j - \bar{Y})^2}{\sigma^2} \sim \chi_{n_2-1}^2$$

and that, for  $V \sim \chi_m^2$ ,  $\mathbb{E}[V] = m$ . Therefore:

$$\mathbb{E}[\hat{\sigma}_{ML}^2] = \frac{n_1 + n_2 - 2}{n_1 + n_2} \sigma^2 \Rightarrow c_n = \frac{n_1 + n_2}{n_1 + n_2 - 2}$$

The unbiased estimator required in the question is therefore:

$$S^2 = \frac{1}{n_1 + n_2 - 2} \left( \sum_{j=1}^{n_1} (X_j - \bar{X})^2 + \sum_{j=1}^{n_2} (Y_j - \bar{Y})^2 \right)$$

(b) Recall  $H_0 : \mu_1 \leq \mu_2$  versus  $H_1 : \mu_1 > \mu_2$ . The log likelihood ratio test statistic is:

$$\lambda(x, y) = \frac{\sup_{\mu_1, \mu_2, \sigma \in H_0} L(\mu_1, \mu_2, \sigma; x, y)}{\sup_{\mu_1, \mu_2, \sigma} L(\mu_1, \mu_2, \sigma; x, y)} = \frac{L(\hat{\mu}_{0,1}, \hat{\mu}_{0,2}, \hat{\sigma}_0)}{L(\hat{\mu}_1, \hat{\mu}_2, \hat{\sigma})}$$

where  $(\hat{\mu}_1, \hat{\mu}_2, \hat{\sigma})$  are the MLE estimators for the full space

$$\Theta = \{(\mu_1, \mu_2, \sigma^2) : (\mu_1, \mu_2, \sigma^2) \in \mathbb{R}^2 \times \mathbb{R}_+\} = \mathbb{R}^2 \times \mathbb{R}_+.$$

These were computed in the previous part of the exercise. The values  $(\hat{\mu}_{0,1}, \hat{\mu}_{0,2}, \hat{\sigma}_0)$  are the values which maximise the likelihood over the null hypothesis space

$$\Theta_0 = \{(\mu_1, \mu_2, \sigma^2) \in \mathbb{R}^2 \times \mathbb{R}_+ : \mu_1 \leq \mu_2\}.$$

If  $\bar{X} \leq \bar{Y}$ , then (clearly)  $(\hat{\mu}_{0,1}, \hat{\mu}_{0,2}, \hat{\sigma}_0^2) = (\hat{\mu}_1, \hat{\mu}_2, \hat{\sigma}^2)$  and hence  $\lambda(x, y) = 1$  for  $\bar{x} < \bar{y}$ .

Now consider the other case, where  $\bar{x} > \bar{y}$ . The maximiser clearly does not lie in the interior of the space; in this case there are no solutions to the likelihood equations  $\nabla_\theta \log L(\theta) = 0$  in the space  $\Theta_0$ . Therefore the maximiser lies on the boundary.

Clearly, as  $\mu_1 \rightarrow -\infty$  or  $\mu_2 \rightarrow +\infty$ ,  $\log L(\mu_1, \mu_2, \sigma) \rightarrow -\infty$ , so the maximiser does not lie on the part of the boundary where parameter values are  $\pm\infty$ . Therefore, the maximiser lies on the boundary  $\mu_1 = \mu_2$ . Therefore, for  $\bar{x} > \bar{y}$ ,  $\hat{\mu}_{0,1} = \hat{\mu}_{0,2} = \hat{\mu}_0$  where  $(\hat{\mu}_0, \hat{\sigma}_0^2)$  are the values which maximise

$$\log L(\mu, \sigma) = -\frac{(n_1 + n_2)}{2} \log(2\pi) - \frac{(n_1 + n_2)}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \left( \sum_{j=1}^{n_1} (x_j - \mu)^2 + \sum_{j=1}^{n_2} (y_j - \mu)^2 \right).$$

From this,

$$\begin{aligned} \hat{\mu}_0 &= \frac{1}{n_1 + n_2} (\sum_{j=1}^{n_1} X_j + \sum_{j=1}^{n_2} Y_j) \\ \hat{\sigma}_0^2 &= \frac{1}{n_1 + n_2} \left( \sum_{j=1}^{n_1} (X_j - \hat{\mu}_0)^2 + \sum_{j=1}^{n_2} (Y_j - \hat{\mu}_0)^2 \right) \end{aligned}$$

To compute the likelihood ratio:

$$\begin{aligned} L(\hat{\mu}_1, \hat{\mu}_2, \hat{\sigma}^2) &= \frac{1}{(2\pi)^{(n_1+n_2)/2} \hat{\sigma}^{n_1+n_2}} \exp \left\{ -\frac{1}{2\hat{\sigma}^2} \left( \sum_{j=1}^{n_1} (x_j - \hat{\mu}_1)^2 + \sum_{j=1}^{n_2} (y_j - \hat{\mu}_2)^2 \right) \right\} \\ &= \frac{1}{(2\pi)^{(n_1+n_2)/2} \hat{\sigma}^{n_1+n_2}} \exp \left\{ -\frac{(n_1 + n_2)}{2} \right\} \end{aligned}$$

The last simplification comes from the formula for  $\hat{\sigma}^2$ . Similarly, for the case  $\bar{x} > \bar{y}$ ,

$$\begin{aligned} L(\hat{\mu}_{0,1}, \hat{\mu}_{0,2}, \hat{\sigma}_0^2) &= \frac{1}{(2\pi)^{(n_1+n_2)/2} \hat{\sigma}_0^{n_1+n_2}} \exp \left\{ -\frac{1}{2\hat{\sigma}_0^2} \left( \sum_{j=1}^{n_1} (x_j - \hat{\mu}_0)^2 + \sum_{j=1}^{n_2} (y_j - \hat{\mu}_0)^2 \right) \right\} \\ &= \frac{1}{(2\pi)^{(n_1+n_2)/2} \hat{\sigma}_0^{n_1+n_2}} \exp \left\{ -\frac{n_1 + n_2}{2} \right\} \end{aligned}$$

using  $\hat{\mu}_{01} = \hat{\mu}_{02} = \hat{\mu}_0$ .

The LRT is therefore:

$$\lambda(x, y) = \begin{cases} 1 & \bar{x} \leq \bar{y} \\ \left(\frac{\hat{\sigma}}{\bar{\sigma}}\right)^{n_1+n_2} & \bar{x} > \bar{y} \end{cases}$$

Test: reject  $H_0$  for  $\lambda(x, y) < c$  where  $c < 1$ , (so a necessary condition for rejection is:  $\bar{x} > \bar{y}$ ).  
To get it into the format required in the question, use:

$$\begin{aligned}
(n_1 + n_2)\hat{\sigma}_0^2 &= \sum_{j=1}^{n_1} (X_j - \hat{\mu}_0)^2 + \sum_{j=1}^{n_2} (Y_j - \hat{\mu}_0)^2 \\
&= \sum_{j=1}^{n_1} (X_j - \bar{X})^2 + n_1(\bar{X} - \hat{\mu}_0)^2 + \sum_{j=1}^{n_2} (Y_j - \hat{\mu}_0)^2 + n_2(\bar{Y} - \hat{\mu}_0)^2 \\
&= (n_1 + n_2)\hat{\sigma}^2 + \frac{n_1 n_2}{n_1 + n_2}(\bar{X} - \bar{Y})^2
\end{aligned}$$

so that

$$\hat{\sigma}_0^2 = \hat{\sigma}^2 + \frac{n_1 n_2}{(n_1 + n_2)^2}(\bar{X} - \bar{Y})^2.$$

Therefore:

$$\lambda(x, y) < c \Leftrightarrow \frac{\hat{\sigma}_0^2}{\hat{\sigma}^2} > \frac{1}{c^{2/(n_1+n_2)}} \Leftrightarrow \left(1 + \frac{n_1 n_2}{(n_1 + n_2)^2} \frac{(\bar{X} - \bar{Y})^2}{\hat{\sigma}^2}\right) > \frac{1}{c^{2/(n_1+n_2)}}$$

Since  $\hat{\sigma}^2 = \frac{n_1 + n_2 - 2}{n_1 + n_2} S^2$  also need  $\bar{X} - \bar{Y} > 0$  to reject  $H_0$ , this gives a test of reject  $H_0$  if and only if

$$\frac{\bar{X} - \bar{Y}}{S} > k$$

for a suitable value of  $k$ , which depends on the significance level  $\alpha$ . Since

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1+n_2-2}$$

it follows that  $\mathbb{P}_{\mu_1, \mu_2} \left( \frac{\bar{X} - \bar{Y}}{S} > k \right)$  is increasing as  $\mu_1 - \mu_2$  increases and the result follows.

(c) The test is: Reject  $H_0$  for  $\frac{(\bar{X} - \bar{Y})}{S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} > t_{n_1+n_2-2; \alpha}$ , where  $t_{n_1+n_2; \alpha}$  is the value such that  $\mathbb{P}(T > t_{n_1+n_2-2; \alpha}) = \alpha$ .

Let  $\theta = \mu_2 - \mu_1$ , then  $\bar{X} - \bar{Y} \sim N \left( \theta, \sigma^2 \left( \frac{1}{n_1} + \frac{1}{n_2} \right) \right)$  and hence

$$Z := \frac{(\bar{X} - \bar{Y}) - \theta}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0, 1).$$

The power of the test is

$$\begin{aligned}
\beta(\theta) &:= \mathbb{P} \left( \frac{(\bar{X} - \bar{Y})}{S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} > t_{n_1+n_2-2; \alpha} \middle| \mu_2 - \mu_1 = \theta \right) \\
&= \mathbb{P} \left( \frac{(\bar{X} - \bar{Y}) - \theta}{S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} > t_{n_1+n_2-2; \alpha} - \frac{\theta}{S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \middle| \mu_2 - \mu_1 = \theta \right)
\end{aligned}$$

For large  $n_1, n_2$ ,  $S \simeq \sigma$  (law of large numbers) and  $t_{n_1+n_2; \alpha} \simeq z_\alpha$  where  $\mathbb{P}(Z > z_\alpha) = \alpha$  for  $Z \sim N(0, 1)$ , so

$$\beta(\theta) \simeq \mathbb{P}(Z \geq z_\alpha - \frac{\theta}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}})$$

For the numbers given,  $\alpha = 0.01$  and

$$0.95 = \beta\left(\frac{\sigma}{2}\right) \simeq 1 - \Phi\left(z_{0.01} - \frac{\sqrt{n}}{4}\right)$$

Using  $z_{0.01} = 2.33$  and  $z_{0.05} = 1.64$ , we have:

$$-1.64 = 2.33 - \frac{\sqrt{n}}{4} \Rightarrow n = 253$$

2. Likelihood equations obtained by:  $\frac{\partial}{\partial \eta_i} \log L = 0$ ,  $i = 1, \dots, r$  and  $\frac{\partial}{\partial \sigma} \log L = 0$ . These give directly that the ML estimate has to satisfy:

$$\begin{cases} \hat{\eta}_i = U_i & i = 1, \dots, r \\ \frac{1}{\hat{\sigma}^2} \sum_{j=r+1}^n U_j^2 = n \end{cases}$$

For  $r = n$ ,  $\hat{\eta}_i = U_i$  so that the log likelihood evaluated at  $\hat{\eta}$  is:

$$\log L(\hat{\eta}, \sigma^2) = -\frac{n}{2} \log(2\pi\sigma^2)$$

which is maximised for  $\sigma = 0$ , which is not in the (open) parameter space  $(0, +\infty)$ , hence  $\hat{\sigma}_{ML}$  does not exist. Hence no solution for  $n = r$ .

For  $n \geq r + 1$ ,

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{j=r+1}^n U_j^2.$$

Let  $U = \begin{pmatrix} U^{(1)} \\ U^{(2)} \end{pmatrix}$  where  $U^{(1)} = (U_1, \dots, U_r)^t$  and  $U^{(2)} = (U_{r+1}, \dots, U_n)^t$ . Let  $A = \begin{pmatrix} A^{(1)} \\ A^{(2)} \end{pmatrix}$  where  $A^{(1)}$  is  $r \times n$  and  $A^{(2)}$  is  $n - r \times n$ . Note that  $\hat{\mu} = A^{(1)t} U^{(1)}$  so that  $Y - \hat{\mu} = A^{(2)t} U^{(2)}$ . It follows that

$$\sum_{j=r+1}^n U_j^2 = U^{(2)t} U^{(2)} = U^{(2)t} A^{(2)} A^{(2)t} U^{(2)} = |Y - \hat{\mu}|^2.$$

3. Unbiased follows directly from lectures:

$$\hat{\beta} = (X^t X)^{-1} X^t Y$$

so that

$$\mathbb{E}[\hat{\beta}] = (X^t X)^{-1} X^t \mathbb{E}[Y] = (X^t X)^{-1} X^t X \beta = \beta.$$

For the sample standard deviation, let  $H = X(X^t X)^{-1} X^t$  then  $H$  is idempotent, of rank  $r$  and hence  $H = PDP^t$  where  $P$  is orthonormal and  $D = \text{diag}(1, \dots, 1, 0, \dots, 0)$  where 1 appears with multiplicity  $r$ . Hence

$$Y - \hat{Y} = (I - H)Y = (I - H)X\beta + (I - H)\epsilon = (I - H)\epsilon.$$

Let  $\eta = P^t \epsilon$  then  $\eta \sim N(0, \sigma^2 I)$ . Also,

$$(Y - \hat{Y})^t (Y - \hat{Y}) = \eta^t (I - D) \eta = \sum_{r+1}^n \eta_j^2$$

so that

$$\frac{(n-r)S^2}{\sigma^2} = \sum_{r+1}^n \left( \frac{\eta_j}{\sigma} \right)^2 \sim \chi_{n-r}^2.$$

From this,  $\mathbb{E}[S^2] = \sigma^2$  so that the estimator is unbiased.

Now to show that the estimators are UMVU:

$$p(y_1, \dots, y_n) = \frac{1}{(2\pi)^{n/2} \sigma^n} \exp \left\{ -\frac{1}{2\sigma^2} (y - X\beta)^t (y - X\beta) \right\}$$

and the argument inside  $\exp\{-\frac{1}{2}(\cdot)\}$  is:

$$\frac{1}{\sigma^2} (y^t y - y^t X\beta - \beta^t X^t y + \beta^t X^t X\beta).$$

The sufficient statistic is therefore:

$$T(y) = (y^t y, \sum_{j=1}^n X_{ji} y_j : i = 1, \dots, r).$$

$\hat{\beta}_i = \sum_{jk} (X^t X)_{ij}^{-1} X_{kj} y_k$  is clearly a linear function of the sufficient statistics. For the standard deviation:

$$(Y - \hat{Y}^t)(Y - \hat{Y}) = Y^t Y - \hat{Y}^t \hat{Y}$$

This holds since

$$Y^t \hat{Y} = Y^t H Y = Y^t H^t H Y = \hat{Y}^t \hat{Y}$$

Now  $\hat{Y} = X(X^t X)^{-1} X^t Y$  which is a (linear) function of the sufficient statistics and hence

$$\mathbb{E}[S^2|T(Y)] = S^2.$$

The result follows by the Lehman-Scheffé theorem.

4. The purpose of this question is to see all the abstract results for  $Y = X\beta + \epsilon$  in the concrete setting of a single explanatory variable. Here the formulae are more transparent and we can see (for example) what happens when there is ill-conditioning in the  $X$  matrix.

(a) The matrix  $X$  is:

$$X = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}$$

and the parameter vector is:

$$\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}.$$

To get  $(X'X)^{-1}$  (so that - for example - we can compute the covariance of the parameter vector estimator):

$$(X^t X) = \begin{pmatrix} n & \sum_{j=1}^n x_j \\ \sum_{j=1}^n x_j & \sum_{j=1}^n x_j^2 \end{pmatrix} = n \begin{pmatrix} n & \bar{x} \\ \bar{x} & \bar{x}^2 \end{pmatrix}$$

Using the usual formula for inverting a  $2 \times 2$  matrix together with the obvious identity:

$$\det(X'X) = n(\bar{x}^2 - \bar{x}^2) = \sum_{j=1}^n (x_j - \bar{x})^2$$

gives:

$$(X^t X)^{-1} = \frac{1}{\sum_{j=1}^n (x_j - \bar{x})^2} \begin{pmatrix} \bar{x}^2 & -\bar{x} \\ -\bar{x} & 1 \end{pmatrix}$$

(b) The MLE is equal to the least squares estimator. From lectures,

$$\hat{\beta} = (X^t X)^{-1} X^t Y$$

Plugging in  $(X^t X)^{-1}$  which has been computed gives:

$$\begin{aligned} \begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{pmatrix} &= (X^t X)^{-1} \begin{pmatrix} n\bar{Y} \\ n\bar{x}\bar{Y} \end{pmatrix} \\ &= \frac{1}{\frac{1}{n} \sum_{j=1}^n (x_j - \bar{x})^2} \begin{pmatrix} \bar{x}^2 \bar{Y} - \bar{x} \bar{x} \bar{Y} \\ \bar{x} \bar{Y} - \bar{x} \bar{Y} \end{pmatrix} \\ &= \begin{pmatrix} \bar{Y} - \bar{x} \frac{\sum_{j=1}^n (x_j - \bar{x})(Y_j - \bar{y})}{\sum_{j=1}^n (x_j - \bar{x})^2} \\ \frac{\sum_{j=1}^n (x_j - \bar{x})(Y_j - \bar{y})}{\sum_{j=1}^n (x_j - \bar{x})^2} \end{pmatrix}. \end{aligned}$$

This gives the best fitting straight line in the least squares sense. Note that

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x}.$$

(c) For the standard deviation estimate,

$$\frac{(n-2)S^2}{\sigma^2} = \frac{|Y - \hat{Y}|^2}{\sigma^2} \sim \chi_{n-2}^2.$$

Note:  $n - 2$  degrees of freedom is obtained from the previous exercise.

We may also see it directly: the argument goes as follows:  $\hat{Y} = X(X^t X)^{-1} X^t Y$  so that the residuals are:

$$Y - \hat{Y} = (I - X(X^t X)^{-1} X^t)Y = (I - H)\epsilon$$

where  $H = X(X^t X)^{-1} X^t$  and  $\epsilon \sim N(0, \sigma^2 I)$ . This is because  $Y = X\beta + \epsilon$  and  $HX = X$ . Note that  $H^2 = H$  (straightforward computation). It therefore follows that all the eigenvalues are either 0 or 1. Therefore, since  $X$  is rank 2 it follows that  $H$  is of rank 2; 2 eigenvalues are 1, the remaining are 0 and it is straightforward that that  $I - H$  is rank  $n - 2$ ; the eigenvalues of matrix  $I - H$  are  $n - 2$  1's and 2 0's. Let  $D = \text{diag}(1, \dots, 1, 0, 0)$  and let  $I - H = PDP^t$  where  $P$  is orthonormal. Then

$$\sum (Y_i - \hat{\beta}_0 - x_i \hat{\beta}_1)^2 = (Y - \hat{Y})^t (Y - \hat{Y}) = \epsilon^t PDP^t \epsilon = \sum_{j=1}^{n-2} \eta_j^2$$

where  $\eta = P^t \epsilon$ . Since  $P$  is orthonormal, it follows that  $\eta \sim N(0, \sigma^2 I)$ .

Therefore, it follows that:

$$\frac{(n-2)S^2}{\sigma^2} \sim \chi_{n-2}^2.$$

$$\underline{\hat{\beta}} \sim N(\underline{\beta}, (X^t X)^{-1} \sigma^2)$$

(d) Let  $\underline{v} = (1, z)^t$  then

$$\begin{aligned} \mathbb{E}[Y(z)] &= \underline{v}^t \underline{\beta} \\ \frac{\underline{v}^t \hat{\underline{\beta}} - \underline{v}^t \underline{\beta}}{\sigma \sqrt{\underline{v}^t (X^t X)^{-1} \underline{v}}} &\sim N(0, 1) \\ \frac{\underline{v}^t \hat{\underline{\beta}} - \underline{v}^t \underline{\beta}}{S \sqrt{\underline{v}^t (X^t X)^{-1} \underline{v}}} &\sim t_{n-2} \end{aligned}$$

with  $1 - \alpha$  confidence,

$$\underline{v}^t \underline{\beta} \in \left( \underline{v}^t \hat{\underline{\beta}} \pm s \sqrt{\underline{v}^t (X^t X)^{-1} \underline{v}} t_{n-2; \alpha/2} \right)$$

and

$$\underline{v}^t (X^t X)^{-1} \underline{v} = \frac{\bar{x}^2 - 2z\bar{x} + z^2}{\sum_{j=1}^n (x_j - \bar{x})^2} = \frac{\frac{1}{n} \sum_{j=1}^n (x_j - \bar{x})^2 + (\bar{x} - z)^2}{\sum_{j=1}^n (x_j - \bar{x})^2}$$

and the result follows.

(e) From the previous part,

$$\mathbb{E}[(Y^* - \hat{Y}^*)^2] = \mathbf{V}(Y^* - \hat{Y}^*) = \mathbf{V}(Y^*) + \mathbf{V}(\hat{Y}^*) = \sigma^2 \left( 1 + \frac{1}{n} + \frac{(\bar{x} - z)^2}{\sum_{j=1}^n (x_j - \bar{x})^2} \right)$$

while, under the assumption  $\beta_1 = 0$ ,

$$\mathbb{E}[(Y^* - \bar{Y})^2] = \mathbf{V}(Y^*) + \mathbf{V}(\bar{Y}) = \sigma^2 \left( 1 + \frac{1}{n} \right)$$

and the result is clear.

5. (a)

$$\begin{aligned} \bar{Y}_{j\cdot} - \bar{Y}_{i\cdot} &\sim N(\beta_j - \beta_i, \sigma^2(\frac{1}{n_j} + \frac{1}{n_i})) \\ S^2 &= \frac{1}{n-p} \sum_{i=1}^p \sum_{j=1}^n (Y_{ij} - \bar{Y}_{i\cdot})^2 \quad n-p \quad d.f. \end{aligned}$$

is the unbiased estimator of  $\sigma^2$ . Then

$$\frac{(\bar{Y}_{j\cdot} - \bar{Y}_{i\cdot}) - (\beta_j - \beta_i)}{S \sqrt{\frac{n_i + n_j}{n_i n_j}}} \sim t_{n-p}$$

and the confidence interval follows. The confidence interval for  $\sigma$  follows from:

$$\frac{(n-p)S^2}{\sigma^2} \sim \chi_{n-p}^2$$

hence the  $1 - \alpha$  confidence bound is given by:

$$k_{n-p;1-(\alpha/2)} \leq \frac{(n-p)s^2}{\sigma^2} \leq k_{n-p;(\alpha/2)}$$

from which the result follows.

(b)

$$\hat{\psi} \sim N \left( \psi, \sigma^2 \left( \frac{1}{4n_2} + \frac{1}{4n_3} + \frac{1}{n_1} \right) \right)$$

the estimator of  $\sigma^2$  is  $S^2 = Q_{\text{res}} n - p$  given above with  $n - p$  degrees of freedom and hence

$$\frac{1}{2}(\beta_2 + \beta_3) - \beta_1 \in \left( \frac{1}{2} (\bar{Y}_{2\cdot} + \bar{Y}_{3\cdot}) - \bar{Y}_{1\cdot} \pm st_{n-p,\alpha/2} \sqrt{\frac{n_1 n_3 + n_1 n_2 - 4n_2 n_3}{4n_1 n_2 n_3}} \right)$$

Similarly,

$$\mathbf{V}(\hat{\psi}) = \frac{n_1 n_3 + n_1 n_2 + 4n_2 n_3}{4n_1 n_2 n_3} \sigma^2$$

hence the confidence interval is:

$$\frac{n_1 n_3 + n_1 n_2 + 4 n_2 n_3}{4 n_1 n_2 n_3} \frac{(n-p)s^2}{k_{n-p;(\alpha/2)}} \leq \mathbf{V}(\widehat{\psi}) \leq \frac{n_1 n_3 + n_1 n_2 + 4 n_2 n_3}{4 n_1 n_2 n_3} \frac{(n-p)s^2}{k_{n-p;1-(\alpha/2)}}$$

6.  $x^t C^t C x = 0$  implies that  $x^t C^t = 0$  which implies that  $x = 0$  so that if  $x \neq 0$  then  $x^t C^t C x \neq 0$  hence  $C^t C$  is (strictly) positive definite.

7. (a) Let  $n = n_1 + \dots + n_k$  denote the total number of experimental units. For  $H_0 : \mu_1 = \dots = \mu_k = \mu$ , we have the maximiser  $\tilde{\mu} = \frac{1}{n} \sum_{j=1}^k \sum_{i=1}^{n_j} Y_{ij}$  and

$$\tilde{\sigma}^2 = \frac{1}{n} \sum_{j=1}^k \sum_{i=1}^{n_j} (Y_{ij} - \tilde{\mu})^2$$

and the maximum likelihood under the constraint  $H_0$  is:  $\frac{1}{(2\pi)^{n/2} \tilde{\sigma}^n} e^{-n/2}$ .

For the unconstrained problem, the likelihood is maximised at  $\widehat{\mu}_j = \frac{1}{n_j} \sum_{i=1}^{n_j} Y_{ij}$  and

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{j=1}^k \sum_{i=1}^{n_j} (Y_{ij} - \widehat{\mu}_j)^2.$$

The maximum likelihood for the unconstrained problem is:  $\frac{1}{(2\pi)^{n/2} \widehat{\sigma}^n} e^{-n/2}$  and hence the likelihood ratio statistic is:

$$\lambda(y) = \left( \frac{\widehat{\sigma}}{\tilde{\sigma}} \right)^n.$$

(b) Pythagorean identity: note that  $\bar{Y}_{.j} = \widehat{\mu}_j$  and  $\bar{Y}_{..} = \tilde{\mu}$  from previous part.

$$\sum_{j=1}^k \sum_{i=1}^{n_j} (Y_{ij} - \tilde{\mu})^2 = \sum_{j=1}^k \sum_{i=1}^{n_j} (Y_{ij} - \bar{Y}_{.j} + \bar{Y}_{.j} - \bar{Y}_{..})^2 = \sum_{j=1}^k \sum_{i=1}^{n_j} (Y_{ij} - \bar{Y}_{.j})^2 + \sum_{j=1}^k n_j (\bar{Y}_{.j} - \bar{Y}_{..})^2$$

so:

$$n \tilde{\sigma}^2 = Q_{\text{res}} + Q_M \quad n \widehat{\sigma}^2 = Q_{\text{res}}.$$

Therefore, the likelihood ratio test is:

$$\lambda(y) < c \Leftrightarrow \frac{Q_{\text{res}}}{Q_M + Q_{\text{res}}} < c^{2/n} \Leftrightarrow \frac{Q_M/(k-1)}{Q_{\text{res}}/(n-k)} > \left( \frac{n-k}{k-1} \right) \left( \frac{1 - c^{2/n}}{c^{2/n}} \right) = k$$

establishing the result.

(c) It follows from the canonical representation (lectures) that  $Q_M \perp Q_{\text{res}}$ . Under  $H_0 : \mu_1 = \dots = \mu_k$ , it follows that  $\frac{Q_M}{\sigma^2} \sim \chi_{k-1}^2$  since the parameter space for  $\mu_1, \dots, \mu_k$  is  $k$ -dimensional and the parameter space for the mean under the null hypothesis is 1-dimensional, and  $\frac{Q_{\text{res}}}{\sigma^2} \sim \chi_{n-k}^2$ . The result follows from Proposition 11.4.