Tutorial 11

1. We have a single observation on a random variable X from a distribution with density

$$p(x;\theta) = \begin{cases} e^{-(x-\theta)} & x \ge \theta \\ 0 & x < \theta \end{cases}$$

where $\theta > 0$ is unknown. We test $H_0: \theta = 0$ against the alternative $H_1: \theta > 0$ and we reject the null hypothesis if the observed value $x \in [c, +\infty) = \mathcal{R}_{\text{crit}}$ for an appropriate c > 0.

- (a) Compute c if the test has significance level $\alpha = 0.05$.
- (b) Determine whether or not this test is uniformly most powerful.
- 2. Let X_1, \ldots, X_n be i.i.d. with distribution F(x) where

$$F(x) = \begin{cases} 1 - e^{-x^{\theta}} & x \ge 0\\ 0 & x < 0 \end{cases} \quad \theta > 0.$$

Find the most powerful test for $H_0: \theta = 1$ versus $H_1: \theta = \theta_1$ for a particular $\theta_1 > 1$. For $\alpha = 0.05$, show that this does not give a UMP test for $H_0: \theta = 1$ versus $H_1: \theta > 1$.

3. Let

$$X_i = \begin{pmatrix} X_{i1} \\ X_{i2} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix} \end{pmatrix}$$
 $i = 1, \dots, n.$

and suppose that X_1, \ldots, X_n are independent. Consider the hypothesis test: $H_0: \mu_1 = \mu_2$ and $\sigma_1 = \sigma_2$ versus the alternative $H_1: \mu_1 \neq \mu_2$ or $\sigma_1 \neq \sigma_2$. Compute the likelihood ratio test statistic.

- 4. The $F_{n,m}$ distribution is defined as follows: if $V \sim \chi_m^2$, $W \sim \chi_n^2$ and $V \perp W$, then $F := \frac{W/n}{V/m}$ has $F_{n,m}$ distribution. Let X_1, \ldots, X_{n_1} and Y_1, \ldots, Y_{n_2} be independent exponential $\text{Exp}(\theta)$ and $\text{Exp}(\lambda)$ samples respectively and let $\Delta = \frac{\theta}{\lambda}$.
 - (a) Let $f(\alpha)$ denote the value such that $\mathbb{P}(F > f(\alpha)) = \alpha$ where $F \sim F_{2n_1,2n_2}$. Show that $\left[\frac{\overline{Y}}{\overline{X}}f\left(1-\frac{\alpha}{2}\right), \frac{\overline{Y}}{\overline{X}}f\left(\frac{\alpha}{2}\right)\right]$ is a confidence interval for Δ with confidence coefficient $1-\alpha$.
 - (b) Show that the test with acceptance region (the region where H_0 is not rejected) given by $[f(1-\alpha/2), f(\alpha/2)]$ for the test $H_0: \Delta = 1$ versus $H_1: \Delta \neq 1$ using test statistic $\widehat{\Delta} = \frac{\overline{X}}{\overline{Y}}$ has size α .
- 5. Let X_1, \ldots, X_n denote the times (in days) to failure of n similar pieces of equipment which is considered to be an $\text{Exp}(\lambda)$ random sample. Consider the hypothesis $H_0: \frac{1}{\lambda} = \mu \leq \mu_0$ (the average lifetime is no greater than μ_0).
 - (a) Show that the test with critical region $\overline{X} \in \left[\mu_0 \frac{k_{2n,\alpha}}{2n}, +\infty\right)$ where $k_{m,\alpha}$ is the value such that $\mathbb{P}(W > k_{m,\alpha}) = \alpha$ for $W \sim \chi_m^2$, is a size α test.

- (b) Give an expression for the power function in terms of the χ^2_{2n} distribution.
- (c) Use the central limit theorem to show that $\Phi\left(-\frac{\mu_0 z_{\alpha}}{\mu} + \frac{\sqrt{n}(\mu \mu_0)}{\mu}\right)$ is an approximation to the power function of the test in part (a). Here z_{α} is the value such that $\mathbb{P}(Z > z_{\alpha}) = \alpha$ for $Z \sim N(0,1)$ and $\Phi(z) = \mathbb{P}(Z \leq x)$.
- 6. Let X_1, \ldots, X_n be a random sample from $Poiss(\theta)$, where θ is unknown.
 - (a) Construct a UMP level α test for $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$.
 - (b) Show that the power function of the test is increasing in θ .
 - (c) What distribution tables would you need to calculate the power function of the UMP test?
 - (d) Give an approximate expression, derived using the central limit theorem, for the critical value (above which you reject H_0) if n is large and θ not too close to 0 or $+\infty$.
- 7. (a) Given a random sample X_1, \ldots, X_n from a distribution with c.d.f. F, let

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{j=1}^n \mathbf{1}_{(-\infty,x]}(X_j)$$

denote the empirical distribution. Consider the test of $H_0: F = F_0$ versus the alternative $H_1: F \neq F_0$ for a given F_0 . Let $D_n = \sup_{x \in \mathbb{R}} |\widehat{F}_n(x) - F_0(x)|$ and consider the test: reject H_0 if and only if $D_n \geq k_\alpha$ for k_α such that $\mathbb{P}_{F_0}(D_n \geq k_\alpha) = \alpha$ under H_0 . (Recall that asymptotically D_n has the Kolmogorov distribution).

Show that the *power* of this test (for a true distribution F), $\beta(F)$, is bounded below by

$$\beta(F) \ge \sup_{x} \mathbb{P}_F\left(|\widehat{F}_n(x) - F_0(x)| \ge k_{\alpha}\right).$$

(b) For n = 80, obtain an approximation $\widetilde{k}_{0.1}$ for $k_{0.1}$ and see how well it approximates the true value:

$$k_{0.1} \simeq \frac{1.2}{\sqrt{n}} \simeq 0.134$$

(c) Again, take $\alpha = 0.10$ and n = 80. Let F_0 be the N(0,1) c.d.f. and

$$F(x) = \frac{1}{1 + \exp\left\{-\frac{x}{\tau}\right\}} \qquad -\infty < x < +\infty \qquad \tau = \frac{\sqrt{3}}{\pi}.$$

With this choice of τ , this is the *logistic* distribution with mean zero and variance 1. Evaluate the lower bound $\mathbb{P}_F(|\widehat{F}_n(x) - F_0(x)| \ge k_\alpha)$ for $\alpha = 0.10$, n = 80 and x = 1.5 using the normal approximation to the binomial distribution of $n\widehat{F}(x)$ and the approximate critical value of the previous part. (the value of 1.2 may be obtained from tables of the Kolmogorov Smirnov distribution). If F_0 is the c.d.f. for N(0,1) then $F_0(1.5) \simeq 0.93$.

(d) Show that if $F \neq F_0$ and F and F_0 are continuous, then the power of this test tends to 1 as $n \to +\infty$. You may use the fact that $\sqrt{n}D_n$ under the null hypothesis converges to the Kolmogorov Smirnov distribution. In particular, $\sqrt{n}k_{0.1} \stackrel{n \to +\infty}{\longrightarrow} c_{0.1} = 1.2$.

8. Again, let X_1, \ldots, X_n be a random sample from a distribution with continuous c.d.f. F and let \widehat{F}_n denote the empirical distribution. Let $\psi:(0,1)\to(0,+\infty)$ and $\alpha>0$. Define the statistics:

$$S_{\psi,\alpha} = \sup_{x} \psi(F_0(x)) |\widehat{F}(x) - F_0(x)|^{\alpha}$$

$$T_{\psi,\alpha} = \sup_{x} \psi(\widehat{F}_n(x)) |\widehat{F}(x) - F_0(x)|^{\alpha}$$

$$U_{\psi,\alpha} = \int \psi(F_0(x)) |\widehat{F}_n(x) - F_0(x)|^{\alpha} F_0(dx)$$

$$V_{\psi,\alpha} = \int \psi(\widehat{F}_n(x)) |\widehat{F}_n(x) - F_0(x)|^{\alpha} \widehat{F}_n(dx)$$

For each of these statistics show that the distribution under $H_0: F = F_0$, does not depend on F_0 (continuous).