Tutorial 8

1. Let X be a single observation from a distribution with density

$$
p_{X}(x)=\theta x^{\theta-1} \quad 0 \leq x \leq 1
$$

(a) Let $Y=-\frac{1}{\log X}$. Evaluate the confidence level of the interval estimator $\left[\frac{Y}{2}, Y\right]$.
(b) Find a pivotal quantity and use it to set up an interval estimator.
2. Let X_{1}, \ldots, X_{n} be a sample from a $N\left(\mu, \sigma^{2}\right)$ population, both μ and σ^{2} unknown.
(a) Let Z_{1}, \ldots, Z_{n} be i.i.d. $N(0,1)$ variables. The distribution of $W=Z_{1}^{2}+\ldots+Z_{n}^{2}$ is χ_{n}^{2}. Let $\underline{Z}=\left(Z_{1}, \ldots, Z_{n}\right)^{t}$ where t denotes transpose. Let $Y_{j}=Z_{j}-\bar{Z}$ and let $\underline{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{t}$. Let $\underline{Y}=M_{n} \underline{Z}$ for a symmetric matrix M_{n}. What is M_{n} ? Prove that $M_{n}^{2}=M_{n}$. From this, what do you conclude about the eigenvalues of M_{n} ? Use the fact that the sum of the eigenvalues is equal to the sum of the trace for symmetric matrices.

Now consider the expression $M_{n}=P D P^{t}$ where D is diagonal and P is orthonormal. What is the distribution of $P^{t} \underline{Z}$? Hence what is the distribution of $\underline{Z}^{t} M_{n}^{t} M_{n} \underline{Z}$?
Hence conclude that

$$
\frac{\sum_{j=1}\left(X_{j}-\bar{X}\right)^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

(b) Show that

$$
\bar{X} \perp X_{1}-\bar{X}, \ldots, X_{n}-\bar{X}
$$

3. Let $Z \sim N(0,1)$ and let $V \sim \chi_{m}^{2}$. Let $Z \perp V$. Let $T=\frac{Z}{\sqrt{V / m}}$. Compute the density function for T.
4. Let X_{1}, \ldots, X_{n} be a random sample from a $N\left(1, \sigma^{2}\right)$ population ($\mu=1$ is known). Construct a symmetric $1-\alpha$ interval estimator for σ, with as many degrees of freedom as possible.
5. Let X_{1}, \ldots, X_{n} be independent $N\left(\mu, \sigma^{2}\right)$ random variables. Using a pivot based on $\sum_{j=1}^{n}\left(X_{j}-\right.$ $\bar{X})^{2}$, construct a symmetric confidence interval with confidence level $1-\alpha$ for $\log \sigma^{2}$.
6. Suppose that Y_{1}, \ldots, Y_{n} are independent and that

$$
Y_{i} \sim N\left(x_{i} \beta, \sigma^{2}\right)
$$

where x_{1}, \ldots, x_{n} are given, σ is known and β is an unknown parameter.
(a) Compute the least squares estimator $\widehat{\beta}_{L S}$ of β.
(b) Compute a confidence interval for β of the form $\left[\widehat{\beta}_{L S}-c, \widehat{\beta}_{L S}+c\right]$ with confidence level $1-\alpha=0.95$.
7. Let

$$
X_{i}=\frac{\theta}{2} t_{i}^{2}+\epsilon_{i} \quad i=1, \ldots, n
$$

where ϵ_{i} are i.i.d. $N\left(0, \sigma^{2}\right)$ variables, where σ is known.
(a) Compute the MLE of θ.
(b) Using a pivot based on the MLE of θ, find a symmetric confidence interval for θ with confidence level $1-\alpha$.
(c) Suppose the values for t_{i} may be chosen freely subject to the constraint that $0 \leq t_{i} \leq 1$ for each $i=1, \ldots, n$. What values of t_{i} should be chosen to make the symmetric confidence interval as short as possible?
8. Let X_{1}, \ldots, X_{n} be i.i.d. $N\left(\mu, \sigma_{1}^{2}\right)$. Suppose a lower confidence bound $\bar{X}-c$, intended to be of confidence level $1-\alpha$ is computed under the assumption that $X_{j} \sim N\left(\mu, \sigma_{0}^{2}\right)$. What is the actual confidence level?
9. (a) Let X_{1}, \ldots, X_{n} be a $N\left(\mu, \sigma^{2}\right)$ sample, where μ and σ^{2} are both unknown. Show that the symmetric $1-\alpha$ confidence interval is given by

$$
\left[\bar{X} \pm \frac{S}{\sqrt{n}} t_{n-1 ; \alpha / 2}\right]
$$

where $S^{2}=\frac{1}{n-1} \sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}$ and $t_{n, \alpha}$ denotes the number such that $\mathbb{P}\left(T>t_{n, \alpha}\right)=\alpha$ where $T \sim t_{n}$.
(b) Suppose we want to select a sample size N such that the interval in part (a) has length at most $l=2 d$ for some preassigned length. Stein's two stage procedure (1945) is the following: Begin by taking a fixed number $n_{0} \geq 2$ of observations, calculate $\bar{X}_{0}=\frac{1}{n_{0}} \sum_{j=1}^{n_{0}} X_{j}$ and $S_{0}^{2}=\frac{1}{n_{0}-1} \sum_{j=1}^{n_{0}}\left(X_{j}-\bar{X}_{0}\right)^{2}$. Then take $N-n_{0}$ further observations where N is the smallest integer greater than or equal to n_{0} and greater than or equal to $\left(S_{0} t_{n_{0}-1 ;(\alpha / 2)} / d\right)^{2}$.
Show that

$$
\frac{\sqrt{N}(\bar{X}-\mu)}{S_{0}} \sim t_{n_{0}-1}
$$

where $S_{0}^{2}=\frac{1}{n_{0}-1} \sum_{j=1}^{n_{0}}\left(X_{j}-\bar{X}_{0}\right)^{2}$ and $\bar{X}=\frac{1}{N} \sum_{j=1}^{N} X_{j}$. It follows that $\left[\bar{X} \pm \frac{S_{0}}{\sqrt{N}} t_{n_{0}-1 ; \alpha / 2}\right]$ is a confidence interval with confidence level $1-\alpha$ for μ of length at most $2 d$.

Hint recall that $\bar{X} \perp S^{2}$ where \bar{X} is the estimator of μ and S^{2} is the estimator of σ^{2} based on a sample size n from a $N\left(\mu, \sigma^{2}\right)$ distribution. Consider the definition of a t distribution.
10. Let X_{1}, \ldots, X_{n} be a random sample from a Rayleigh distribution

$$
p(x, \sigma)= \begin{cases}\frac{x}{\sigma^{2}} \exp \left\{-\frac{x^{2}}{2 \sigma^{2}}\right\} & x \geq 0 \\ 0 & x<0\end{cases}
$$

where $\sigma>0$ is an unknown parameter.
(a) Compute the maximum likelihood estimator of σ^{2}.
(b) Compute a symmetric confidence interval, confidence level $1-\alpha$ of the form

$$
\left[c_{n} \widehat{\sigma^{2}} M L, d_{n} \widehat{\sigma^{2}} M L\right]
$$

for σ^{2}. Express your answer in terms of quantiles of an appropriate χ^{2} distribution.
11. Let X_{1}, \ldots, X_{n} be a $N\left(\mu, \sigma^{2}\right)$ random sample where σ is known. Show that the interval of shortest length of confidence $1-\alpha$ of the form

$$
\left[\bar{X}-\frac{\sigma}{\sqrt{n}} z_{\alpha_{1}}, \bar{X}+\frac{\sigma}{\sqrt{n}} z_{\alpha_{2}}\right] \quad \alpha_{1}+\alpha_{2}=\alpha
$$

is obtained by taking $\alpha_{1}=\alpha_{2}=\frac{\alpha}{2}$.

