Tutorial 7

1. Let X_{1}, \ldots, X_{n} be a random sample from distribution $p_{\theta}(0)=1-\theta, p_{\theta}(1)=\theta$, where the parameter $\theta \in(0,1)$. Show that \bar{X} is a UMVU (uniformly minimum variance unbiased) estimator of θ.
2. Let $X \sim \operatorname{Binomial}(n, \theta)$. In other words

$$
\mathbb{P}(X=x)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x} \quad x=0,1, \ldots, n
$$

Consider the estimators $\widehat{\theta}=\frac{X}{n}$ and $\widetilde{\theta}=\frac{X+1}{n+2}$. Compute the bias of these estimators, their variance and their mean squared errors. Are they consistent?
3. Let $\left(X_{1}, \ldots, X_{n}\right)$ be a sample from a Poisson distribution with unknown parameter λ. To estimate λ, we estimate $g(\lambda):=\mathbb{P}\left(X_{1}=0\right)=e^{-\lambda}$ and we consider two estimators $\widehat{g}_{1}, \widehat{g}_{2}$ of g, where

$$
\widehat{g}_{1}=e^{-\bar{X}}, \quad \widehat{g}_{2}=\left(1-\frac{1}{n}\right)^{n \bar{X}}
$$

where \bar{X} is the sample average. Compute the bias of the estimators \widehat{g}_{1} and \widehat{g}_{2}.
4. Let $\left(X_{1}, \ldots, X_{n}\right)$ be a random sample from a $\operatorname{Bernoulli}(p)$ distribution (that is, $\mathbb{P}\left(X_{j}=1\right)=p$, $\left.\mathbb{P}\left(X_{j}=0\right)=1-p\right)$. Show that there do not exist unbiased estimators of the quantities

$$
g_{1}(p)=\frac{p}{1-p}, \quad g_{2}(p)=\frac{1}{p}
$$

5. Let $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a random sample with unknown expected value μ and known variance σ^{2} 。
(a) Show that the statistic

$$
T\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{n} a_{i} X_{i} \quad \sum_{i=1}^{n} a_{i}=1
$$

is an unbiased estimator of μ.
(b) Compute the variance of T and show that, for unbiased estimators of this form, it is minimised for $a_{i}=\frac{1}{n}, i=1, \ldots, n$.
6. Let X_{1}, \ldots, X_{n} be i.i.d. $\operatorname{Bernoulli}(p)$ random variables. Find the Cramer-Rao lower bound for the variance of an unbiased estimator of $g(p)=p(1-p)$.
7. Let $\left(X_{1}, \ldots, X_{n}\right)$ be a random sample from an exponential distribution $\operatorname{Exp}(\lambda)$. That is, the density function is:

$$
f(x ; \lambda)=\lambda e^{-\lambda x} \mathbf{1}_{\{x \geq 0\}}
$$

Show that the statistic $T\left(X_{1}, \ldots, X_{n}\right)=n X_{1: n}$ is an unbiased estimator of $\frac{1}{\lambda}$, but that it is not consistent.
8. Suppose θ is an unknown parameter to be estimated, and let $f(X)$ be the estimator. Let $l(\theta, a)$ be a loss function, where the loss incurred when estimating θ by $f(X)$ is given by $l(\theta, f(X))$. The risk function is defined as:

$$
R(\theta, f)=\mathbb{E}_{\theta}[l(\theta, f(X))]
$$

Suppose that the loss function $l(\theta, a)$ is strictly convex in the variable a. Suppose $g(X)$ is an unbiased estimator of $q(\theta)$ and that $T(X)$ is a sufficient statistic. Let $g^{*}(X)=\mathbb{E}_{\theta}[g(X) \mid T(X)]$. Show that $R\left(\theta, g^{*}\right) \leq R(\theta, g)$.

Hint Jensen's inequality: if ϕ is a convex function and X a random variable then

$$
\mathbb{E}[\phi(X)] \geq \phi(\mathbb{E}[X])
$$

9. Let X have density or probability mass function $p(x, \theta)$, where $\theta \in \Theta \subset \mathbb{R}$. Suppose that the following assumptions hold:

- $\{x: p(x, \theta)>0\}$ is the same for all $\theta \in \Theta$ and
- For any statistic T satisfying $\mathbb{E}[|T(X)|]<+\infty$ for all $\theta \in \Theta$,

$$
\int T(x) \frac{\partial}{\partial \theta} p(x, \theta) d x=\frac{\partial}{\partial \theta} \int T(x) p(x, \theta) d x
$$

Suppose that h is monotone increasing and differentiable from Θ to $h(\Theta)$. Let $\eta=h(\theta)$ and $q(x, \eta)=p\left(x, h^{-1}(\eta)\right)$.
(a) Let $I_{p}(\theta)$ and $I_{q}(\eta)$ denote the Fisher information in the two parametrisations. Show that

$$
I_{q}(\eta)=\frac{1}{\left(h^{\prime}\left(h^{-1}(\eta)\right)\right)^{2}} I_{p}\left(h^{-1}(\eta)\right)
$$

(b) Let $B_{p}(\theta)$ and $B_{q}(\eta)$ denote the information inequality lower bound for the two parametrisations. That is,

$$
B_{p}(\theta)=\frac{\left(\psi_{1}^{\prime}(\theta)\right)^{2}}{I(\theta)}, \quad B_{q}(\eta)=\frac{\left(\psi_{2}^{\prime}(\eta)\right)^{2}}{I(\eta)}
$$

where $\psi_{1}(\theta)$ is the quantity to be estimated and $\psi_{2}(\eta)=\psi_{1}\left(h^{-1}(\eta)\right)$; i.e. the same quantity under the η-parametrisation.

Show that $B_{q}(\eta)=B_{p}\left(h^{-1}(\eta)\right)$. That is, the Fisher information lower bound is the same.
10. Let X_{1}, \ldots, X_{n} be i.i.d. $N\left(\mu, \sigma^{2}\right)$ where μ is known.
(a) Show that

$$
\widehat{\sigma}^{2}:=\frac{1}{n} \sum_{j=1}^{n}\left(X_{j}-\mu\right)^{2}
$$

is a UMVU estimator of σ^{2}.
(b) For parameter estimation, a decision rule d simply means assigning a decision $d(X)$ for the unknown parameter. A decision rule d is inadmissible if there is another decision rule d^{*} such that $R\left(\theta, d^{*}\right) \leq R(\theta, d)$ for all θ and $R\left(\theta, d^{*}\right)<R(\theta, d)$ for some θ. A decision rule is admissible if it is not inadmissible. Show that $\widehat{\sigma}^{2}$ is inadmissible under squared loss error $R(\theta, d)=\mathbb{E}_{\theta}\left[|\theta-d(X)|^{2}\right]$.
Hint Consider bias estimators of the form $a_{n} \widehat{\sigma}^{2}$ where $\widehat{\sigma}^{2}$ is defined above.
11. Let Y_{1}, \ldots, Y_{n} be independent Poisson random variables, where

$$
\mathbb{E}\left[Y_{j}\right]=\mu_{j}=\exp \left\{\alpha+\beta z_{j}\right\}
$$

(For example, z_{j} could be the level of a drug given to the j th patient with an infectious disease, and Y_{j} could denote the number of infectious microbes found in a unit of blood taken from patient $j 24$ hours after the drug was administered.
(a) Write the model for Y_{1}, \ldots, Y_{n} in two-parameter canonical exponential form and give the sufficient statistic.
(b) Let $\theta=(\alpha, \beta)$. Compute $I(\theta)$, the information matrix for the model and find the lower bound on the variances of unbiased estimators $\widehat{\alpha}$ and $\widehat{\beta}$ of α and β.
(c) Let $z_{i}=\log \left(\frac{i}{n+1}\right), i=1, \ldots, n$. Compute $\lim _{n \rightarrow+\infty} \frac{1}{n} I(\theta)$ and give the limit of n times the lower bound on the variances of $\widehat{\alpha}$ and $\widehat{\beta}$.
Hint Use integral approximations for the sums.

Short Answers

1. Firstly,

$$
\mathbb{E}_{\theta}[\bar{X}]=\mathbb{E}_{\theta}\left[X_{1}\right]=0 \times(1-\theta)+1 \times \theta=\theta
$$

so the estimator is unbiased.
Secondly: there are several ways to show it is UMVU.

$$
p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n} ; \theta\right)=\theta^{\sum_{j} x_{j}}(1-\theta)^{n-\sum_{j} x_{j}}=\exp \left\{n \bar{x} \log \left(\frac{\theta}{1-\theta}\right)+n \log (1-\theta)\right\}
$$

This is an exponential family; take \bar{X} as the sufficient statistic and $\eta:=n \log \left(\frac{\theta}{1-\theta}\right)$ as the canonical parameter. Hence, by the result in lectures, \bar{X} is the UMVU estimator of its expected value, which is $\mathbb{E}_{\theta}[\bar{X}]=\theta$.

Alternatively, we can compute the Cramér-Rao lower bound directly. The estimator has variance

$$
\mathbf{V}_{\theta}(\bar{X})=\frac{1}{n} \mathbf{V}_{\theta}\left(X_{1}\right)=\frac{\theta(1-\theta)}{n}
$$

Now to show that this achieves the C-R lower bound, compute $I(\theta)=n I_{1}(\theta)$, the information in the sample.

$$
\begin{gathered}
\frac{d}{d \theta} \log p_{\theta}(0)=-\frac{1}{1-\theta} \quad \frac{d}{d \theta} \log p_{\theta}(1)=\frac{1}{\theta} \\
I_{1}(\theta)=\mathbb{E}_{\theta}\left[\left(\frac{d}{d \theta} \log p_{\theta}(X)\right)^{2}\right]=(1-\theta) \frac{1}{(1-\theta)^{2}}+\theta \frac{1}{\theta^{2}}=\frac{1}{\theta(1-\theta)}
\end{gathered}
$$

hence the information from a sample size n is:

$$
I(\theta)=\frac{n}{\theta(1-\theta)}
$$

and the C-R lower bound is

$$
\frac{1}{I(\theta)}=\frac{\theta(1-\theta)}{n}
$$

hence estimator is UMVU.
2.

$$
\mathbb{E}[\widehat{\theta}]=\frac{1}{n} \mathbb{E}[X]=\frac{1}{n} n \theta=\theta
$$

so this estimator is unbiased.

$$
\mathbf{V}(\widehat{\theta})=\frac{1}{n^{2}} \mathbf{V}(X)=\frac{1}{n^{2}} n \theta(1-\theta)=\frac{\theta(1-\theta)}{n}<\frac{1}{4 n}
$$

So

$$
\mathbb{P}(|\widehat{\theta}-\theta|>\epsilon) \leq \frac{\theta(1-\theta)}{\epsilon^{2} n} \leq \frac{1}{4 \epsilon^{2} n} \xrightarrow{n \rightarrow+\infty} 0
$$

hence uniformly consistent.
For $\tilde{\theta}$

$$
\mathbb{E}[\widetilde{\theta}]=\frac{n \theta+1}{n+2}=\frac{n}{n+2} \theta+\frac{1}{n+2}
$$

so

$$
\begin{aligned}
\operatorname{Bias}(\widetilde{\theta})= & \frac{n}{n+2} \theta+\frac{1}{n+2}-\theta=\frac{1-2 \theta}{n+2} \\
& \mathbf{V}(\widetilde{\theta})=\frac{n \theta(1-\theta)}{(n+2)^{2}}
\end{aligned}
$$

so that the mean squared error is:

$$
\mathbb{E}\left[|\tilde{\theta}-\theta|^{2}\right]=\frac{(1-2 \theta)^{2}}{(n+2)^{2}}+\frac{n \theta(1-\theta)}{(n+2)^{2}}=\frac{1+(n-4) \theta+3 \theta^{2}}{(n+2)^{2}}
$$

Yes - the estimator is uniformly consistent; for $n \geq 4$,

$$
\mathbb{P}\left(|\tilde{\theta}-\theta|^{2}>\epsilon\right) \leq \frac{1+(n-4) \theta(1-\theta)}{\epsilon^{2}(n+2)^{2}} \leq \frac{1+(n-4) / 4}{\epsilon^{2}(n+2)^{2}} \xrightarrow{n \rightarrow+\infty} 0
$$

3. $Y:=n \bar{X}=\sum_{j=1}^{n} X_{j} \sim \operatorname{Poiss}(n \lambda)$ so that

$$
\mathbb{E}\left[\widehat{g}_{1}\right]=\mathbb{E}\left[e^{-Y / n}\right]=\sum_{x=0}^{\infty} \frac{(\lambda n)^{x}}{x!} e^{-n \lambda-(x / n)}=\sum_{x=0}^{\infty} \frac{\left(\lambda n e^{-1 / n}\right)^{x}}{x!} e^{-n \lambda}=e^{-n \lambda\left(1-e^{-1 / n}\right)}
$$

so

$$
\begin{gathered}
\operatorname{Bias}\left(\widehat{g}_{1}\right)=e^{-\lambda}\left(e^{-\lambda\left(n\left(1-e^{-1 / n}\right)-1\right)}-1\right) \\
\mathbb{E}\left[\widehat{g}_{2}\right]=\sum_{x=0}^{\infty} \frac{\left((n \lambda)\left(1-\frac{1}{n}\right)\right)^{x}}{x!} e^{-\lambda n}=e^{n \lambda-\lambda-n \lambda}=e^{-\lambda}
\end{gathered}
$$

so that \widehat{g}_{2} is unbiased.
4. An unbiased estimator of $g_{1}(p)$ is a function of the n binary variables $T\left(X_{1}, \ldots, X_{n}\right)$ satisfying

$$
\mathbb{E}\left[T\left(X_{1}, \ldots, X_{n}\right)\right]=\sum_{\{0,1\}^{n}} T\left(x_{1}, \ldots, x_{n}\right) p^{k}(1-p)^{n-k}=\frac{p}{1-p}
$$

where k denotes the number of 1 s in the sequence $\left(x_{1}, \ldots, x_{n}\right)$.
so that

$$
0=\sum_{\{0,1\}^{n}} T\left(x_{1}, \ldots, x_{n}\right) p^{k-1}(1-p)^{n-k+1}-1
$$

This holds for all p, which is a contradiction, since the equation is a polynomial of degree $n+1$ and hence has at most $n+1$ distinct roots. Similarly for g_{2}.
5. (a)

$$
\mathbb{E}[T]=\mu \sum_{i=1}^{n} a_{i}=\mu .
$$

(b)

$$
\mathbf{V}(T)=\sigma^{2} \sum_{i=1}^{n} a_{i}^{2}
$$

$n-1$ free variables; $a_{n}=1-\sum_{j=1}^{n-1} a_{j}$ so that

$$
\frac{\partial}{\partial a_{i}} \mathbf{V}(T)=2 \sigma^{2}\left(a_{i}-a_{n}\right)=0
$$

so that $a_{1}=\ldots=a_{n}$. With constraint that $\sum_{j=1}^{n} a_{j}=1$, it follows that $a_{j}=\frac{1}{n}$ for each $j=1, \ldots, n$.
6.

$$
\begin{gathered}
\mathbb{P}(x)=p^{x}(1-p)^{1-x} \Rightarrow \log \mathbb{P}(x)=x \log p+(1-x) \log (1-p) \quad x \in\{0,1\} \\
\frac{d}{d p} \log \mathbb{P}(x)=\frac{d}{d p} \log \mathbb{P}(x)=\left(\frac{x}{p}-\frac{(1-x)}{1-p}\right)=\left(\frac{x}{p(1-p)}-\frac{1}{1-p}\right) \\
I(p)=\mathbf{V}_{p}\left(\frac{d}{d p} \log \mathbb{P}_{p}(X)\right)=\frac{1}{p^{2}(1-p)^{2}} \mathbf{V}_{p}(X)=\frac{1}{p(1-p)} .
\end{gathered}
$$

For n observations, $I_{n}(g)=\frac{n}{p(1-p)}$. The Cramér lower bound is therefore:

$$
\mathbf{V}(\widehat{g}) \geq \frac{\left(g^{\prime}(p)\right)^{2}}{I_{n}(g)}=\frac{(1-2 p)^{2} p(1-p)}{n}
$$

7. $\min _{j} X_{j} \sim \operatorname{Exp}(n \lambda)$ hence

$$
\begin{gathered}
\mathbb{E}\left[n \min _{j} X_{j}\right]=n \frac{1}{n \lambda}=\frac{1}{\lambda} \\
\mathbf{V}\left(n \min _{j} X_{j}\right)=n^{2} \frac{1}{n^{2} \lambda^{2}}=\frac{1}{\lambda^{2}},
\end{gathered}
$$

Also, $n \min _{j} X_{j} \sim \operatorname{Exp}(\lambda)$, hence $\mathbb{P}\left(\left|n \min _{j} X_{j}-\lambda\right|>\epsilon\right) \nrightarrow 0$ as $n \rightarrow+\infty$.
8. This follows immediately from the definition and Jensen:

$$
\begin{aligned}
R\left(\theta, g^{*}\right) & =\mathbb{E}_{\theta}\left[l\left(\theta, g^{*}(X)\right)\right]=\mathbb{E}_{\theta}\left[l\left(\theta, \mathbb{E}_{\theta}[g(X) \mid T(X)]\right)\right] \\
& \leq \mathbb{E}_{\theta}\left[\mathbb{E}_{\theta}[l(\theta, g(X)) \mid T(X)]\right]=\mathbb{E}_{\theta}[l(\theta, g(X))]=R(\theta, g) .
\end{aligned}
$$

Note that we do not need T to be a sufficient statistic.
9. (a) This follows simply from the definition: let $\eta=h(\theta)$, then

$$
\begin{gathered}
\frac{d}{d \eta} \log q(x, \eta)=\frac{1}{d h(\theta) / d \theta} \frac{d}{d \theta} \log p(x, \theta) \\
I_{q}(\eta)=\mathbb{E}_{\eta}\left[\left(\frac{d}{d \eta} \log q(x, \eta)\right)^{2}\right]=\frac{1}{\left(h^{\prime}(\theta)\right)^{2}} \mathbb{E}_{\theta}\left[\left(\frac{d}{d \theta} \log p(x, \theta)\right)^{2}\right]=\frac{1}{h^{\prime}\left(h^{-1}(\eta)\right)} I_{p}\left(h^{-1}(\eta)\right) .
\end{gathered}
$$

(b) Consider a quantity $\psi(\theta)=\mathbb{E}_{\theta}[T(X)]$, so that $T(X)$ is an unbiased estimator of $\psi(\theta)$. The lower bound using parameter θ is:

$$
\frac{\left(\psi^{\prime}(\theta)\right)^{2}}{I_{p}(\theta)}
$$

while with parameter η :

$$
\frac{d}{d \eta} \psi\left(h^{-1}(\eta)\right)=\psi^{\prime}\left(h^{-1}(\eta)\right) \frac{d h^{-1}(\eta)}{d \eta}
$$

so that the lower bound is:

$$
\frac{\left(\frac{d}{d \eta} \psi\left(h^{-1}(\eta)\right)\right)^{2}}{I_{q}(\eta)}=\frac{\left(\psi^{\prime}\left(h^{-1}(\eta)\right)^{2}\right.}{I_{p}\left(h^{-1}(\eta)\right)} .
$$

10. (a) Unbiased is clear:

$$
\mathbb{E}_{\sigma^{2}}\left[\widehat{\sigma}^{2}\right]=\frac{1}{n} \sum_{j=1}^{n} \mathbf{V}_{\sigma^{2}}\left(X_{j}\right)=\sigma^{2}
$$

The variance is:

$$
\mathbf{V}_{\sigma^{2}}\left(\hat{\sigma}^{2}\right)=\frac{1}{n^{2}} \sum_{j=1}^{n} \mathbf{V}\left(\left(X_{j}-\mu\right)^{2}\right)=\frac{\sigma^{4}}{n} \mathbf{V}\left(\left(\frac{X_{1}-\mu}{\sigma}\right)^{2}\right)=\frac{2 \sigma^{4}}{n}
$$

while the Fisher information is $I\left(\sigma^{2}\right)=n I_{1}\left(\sigma^{2}\right)$;

$$
\frac{d}{d\left(\sigma^{2}\right)} \log p\left(x, \sigma^{2}\right)=-\frac{1}{2 \sigma^{2}}+\frac{(x-\mu)^{2}}{2 \sigma^{4}}
$$

Let $I_{n}\left(\sigma^{2}\right)$ denote the information in a sample of size n, then $I_{n}\left(\sigma^{2}\right)=n I_{1}\left(\sigma^{2}\right)$ and:

$$
I_{1}\left(\sigma^{2}\right)=\mathbf{V}_{\sigma^{2}}\left(\left(\frac{d}{d\left(\sigma^{2}\right)} \log p\left(x, \sigma^{2}\right)\right)^{2}\right)=\frac{1}{4 \sigma^{4}} \mathbf{V}_{\sigma^{2}}\left(\left(\frac{X-\mu}{\sigma}\right)^{2}\right)
$$

and now use $V=\left(\frac{x-\mu}{\sigma}\right)^{2} \sim \chi_{1}^{2}$ so that $\mathbf{V}(V)=2$. Then

$$
I_{1}\left(\sigma^{2}\right)=\frac{1}{2 \sigma^{4}} \Rightarrow I_{n}\left(\sigma^{2}\right)=\frac{n}{2 \sigma^{4}} .
$$

Hence the Cramér-Rao lower bound is $\frac{2 \sigma^{4}}{n}$, which is $\mathbf{V}_{\sigma}^{2}\left(\widehat{\sigma}^{2}\right)$.
so that $I\left(\sigma^{2}\right)=\frac{n}{2 \sigma^{4}}$ giving a lower bound of $\frac{2 \sigma^{4}}{n}$, hence $\widehat{\sigma}^{2}$ is an UMVU estimator.
(b) For an unbiased estimator, this risk function is simply the variance since $\widehat{\sigma}^{2}$ is UMVU, it follows that any estimator with smaller risk must be biased. Try estimators of the form $a_{n} \widehat{\sigma}^{2}$. Then

$$
\begin{aligned}
\mathbb{E}_{\sigma^{2}}\left[\left|a_{n} \widehat{\sigma}^{2}-\sigma^{2}\right|^{2}\right] & =\mathbb{E}_{\sigma^{2}}\left[\left|a_{n}\left(\widehat{\sigma}^{2}-\sigma^{2}\right)+\left(a_{n}-1\right) \sigma^{2}\right|^{2}\right] \\
& =a_{n}^{2} \mathbf{V}_{\sigma^{2}}\left(\widehat{\sigma}^{2}\right)+\left(\left(a_{n}-1\right) \sigma^{2}\right)^{2} \\
& =a_{n}^{2} \frac{2 \sigma^{4}}{n}+\left(a_{n}-1\right)^{2} \sigma^{4}
\end{aligned}
$$

Minimising gives: $a_{n}=\frac{n}{n+2}$. This gives estimator $\widetilde{\sigma}^{2}=\frac{1}{n+2} \sum_{j=1}^{n}\left(X_{j}-\mu\right)^{2}$ and $R\left(\sigma^{2}, \tilde{\sigma}^{2}\right)=$ $\frac{2}{n+2} \sigma^{4}$ which is smaller than the UMVU estimator.
11. (a)

$$
p\left(y_{1}, \ldots, y_{n} ; \alpha, \beta\right)=\frac{1}{\prod_{j=1}^{n} y_{j}!} \exp \left\{\alpha \sum_{j=1}^{n} y_{j}+\beta \sum_{j=1}^{n} y_{j} z_{j}-\sum_{j=1}^{n} \exp \left\{\alpha+\beta z_{j}\right\}\right\}
$$

Sufficient statistic: $T(Y)=\left(T_{1}(Y), T_{2}(Y)\right)$ where

$$
T_{1}(Y)=\sum_{j=1}^{n} Y_{j} \quad \text { and } \quad T_{2}(Y)=\sum_{j=1}^{n} z_{j} Y_{j}
$$

(b)

$$
\begin{gathered}
\frac{\partial}{\partial \alpha} \log p=\sum_{j=1}^{n} y_{j}-\sum_{j=1}^{n} e^{\alpha+\beta z_{j}} \Rightarrow-\frac{\partial^{2}}{\partial \alpha^{2}} \log p=\sum_{j=1}^{n} e^{\alpha+\beta z_{j}} \\
\frac{\partial}{\partial \beta} \log p=\sum_{j=1}^{n} y_{j} z_{j}-\sum_{j=1}^{n} z_{j} e^{\alpha+\beta z_{j}} \Rightarrow-\frac{\partial^{2}}{\partial \beta^{2}} \log p=e^{\alpha} \sum_{j=1}^{n} z_{j}^{2} e^{\beta z_{j}} \\
-\frac{\partial^{2}}{\partial \alpha \partial \beta} \log p=e^{\alpha} \sum_{j=1}^{n} z_{j} e^{\beta z_{j}}
\end{gathered}
$$

SO

$$
\begin{gathered}
I_{\alpha, \alpha}(\theta)=-\mathbb{E}_{\theta}\left[\frac{\partial^{2}}{\partial \alpha^{2}} \log p(X, \alpha, \beta)\right]=\sum_{j=1}^{n} \mu_{j}=e^{\alpha} \sum_{j=1}^{n} e^{\beta z_{j}} \\
I_{\beta, \beta}(\theta)=-\mathbb{E}_{\theta}\left[\frac{\partial^{2}}{\partial \beta^{2}} \log p(X ; \alpha, \beta)\right]=e^{\alpha} \sum_{j=1}^{n} z_{j}^{2} e^{\beta z_{j}} \\
I_{\alpha, \beta}(\theta)=-\mathbb{E}_{\theta}\left[\frac{\partial^{2}}{\partial \alpha \partial \beta} \log p(X ; \alpha, \beta)\right]=e^{\alpha} \sum_{j=1}^{n} z_{j} e^{\beta z_{j}}
\end{gathered}
$$

We have to invert the information matrix:

$$
I^{-1}(\theta)=\frac{e^{-\alpha}}{\left(\sum e^{\beta z_{j}}\right)\left(\sum z_{j}^{2} e^{\beta z_{j}}\right)-\left(\sum z_{j} e^{\beta z_{j}}\right)^{2}}\left(\begin{array}{cc}
\sum z_{j}^{2} e^{\beta z_{j}} & -\sum z_{j} e^{\beta z_{j}} \\
-\sum z_{j} e^{\beta z_{j}} & \sum e^{\beta z_{j}}
\end{array}\right)
$$

$$
\begin{gathered}
\mathbf{V}(\widehat{\alpha}) \geq e^{\alpha}\left\{\left(\sum e^{\beta z_{j}}\right)-\frac{\left(\sum z_{j} e^{\beta z_{j}}\right)^{2}}{\left(\sum z_{j}^{2} e^{\beta z_{j}}\right)}\right\} \\
\mathbf{V}(\widehat{\beta}) \geq e^{\alpha}\left\{\left(\sum z_{j}^{2} e^{\beta z_{j}}\right)-\frac{\left(\sum z_{j} e^{\beta z_{j}}\right)^{2}}{\left(\sum e^{\beta z_{j}}\right)}\right\}
\end{gathered}
$$

Note If the information matrix is singular, then the results are correct but useless; they give variances greater than or equal to 0 .
(c) Integrals are straightforward :

$$
\begin{gathered}
\int_{0}^{1} x^{\beta} d x=\frac{1}{1+\beta} \\
\int_{0}^{1} x^{\beta} \log x d x=\int_{0}^{1} e^{\beta \log x} \log x d x=\frac{d}{d \beta} \int_{0}^{1} x^{\beta} d x=-\frac{1}{(1+\beta)^{2}} \\
\int_{0}^{1} x^{\beta}(\log x)^{2} d x=\frac{d^{2}}{d \beta^{2}} \int_{0}^{1} x^{\beta}(\log x)^{2} d x=\frac{2}{(1+\beta)^{3}}
\end{gathered}
$$

In the limit,

$$
\begin{aligned}
\frac{1}{n} I(\theta) \rightarrow e^{\alpha}\left(\begin{array}{cc}
\frac{1}{1+\beta} & -\frac{1}{(1+\beta)^{2}} \\
-\frac{1}{(1+\beta)^{2}} & \frac{2}{(1+\beta)^{3}}
\end{array}\right) \\
n I^{-1}(\theta) \rightarrow e^{-\alpha}\left(\begin{array}{cc}
2(1+\beta) & (1+\beta)^{2} \\
(1+\beta)^{2} & (1+\beta)^{3}
\end{array}\right)
\end{aligned}
$$

Lower bounds: $2(1+\beta) e^{-\alpha}$ and $(1+\beta)^{3} e^{-\alpha}$ respectively for α and β.

