
Tutorial 7

1. Let X1, . . . , Xn be a random sample from distribution pθ(0) = 1 − θ, pθ(1) = θ, where the

parameter θ ∈ (0, 1). Show that X is a UMVU (uniformly minimum variance unbiased) estimator

of θ.

2. Let X ∼ Binomial(n, θ). In other words

P(X = x) =

(
n

x

)
θx(1− θ)n−x x = 0, 1, . . . , n

Consider the estimators θ̂ = X
n and θ̃ = X+1

n+2 . Compute the bias of these estimators, their

variance and their mean squared errors. Are they consistent?

3. Let (X1, . . . , Xn) be a sample from a Poisson distribution with unknown parameter λ. To estimate

λ, we estimate g(λ) := P(X1 = 0) = e−λ and we consider two estimators ĝ1, ĝ2 of g, where

ĝ1 = e−X , ĝ2 =

(
1−

1

n

)nX

,

where X is the sample average. Compute the bias of the estimators ĝ1 and ĝ2.

4. Let (X1, . . . , Xn) be a random sample from a Bernoulli(p) distribution (that is, P(Xj = 1) = p,

P(Xj = 0) = 1− p). Show that there do not exist unbiased estimators of the quantities

g1(p) =
p

1− p
, g2(p) =

1

p
.

5. Let (X1, X2, . . . , Xn) be a random sample with unknown expected value µ and known variance

σ2.

(a) Show that the statistic

T (X1, . . . , Xn) =

n∑

i=1

aiXi

n∑

i=1

ai = 1

is an unbiased estimator of µ.

(b) Compute the variance of T and show that, for unbiased estimators of this form, it is min-

imised for ai =
1
n , i = 1, . . . , n.

6. Let X1, . . . , Xn be i.i.d. Bernoulli(p) random variables. Find the Cramer-Rao lower bound for

the variance of an unbiased estimator of g(p) = p(1− p).

7. Let (X1, . . . , Xn) be a random sample from an exponential distribution Exp(λ). That is, the

density function is:

f(x;λ) = λe−λx
1{x≥0}.

Show that the statistic T (X1, . . . , Xn) = nX1:n is an unbiased estimator of 1
λ , but that it is not

consistent.
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8. Suppose θ is an unknown parameter to be estimated, and let f(X) be the estimator. Let l(θ, a)

be a loss function, where the loss incurred when estimating θ by f(X) is given by l(θ, f(X)).

The risk function is defined as:

R(θ, f) = Eθ [l(θ, f(X))] .

Suppose that the loss function l(θ, a) is strictly convex in the variable a. Suppose g(X) is an

unbiased estimator of q(θ) and that T (X) is a sufficient statistic. Let g∗(X) = Eθ [g(X)|T (X)].

Show that R(θ, g∗) ≤ R(θ, g).

Hint Jensen’s inequality: if φ is a convex function and X a random variable then

E[φ(X)] ≥ φ(E[X]).

9. Let X have density or probability mass function p(x, θ), where θ ∈ Θ ⊂ R. Suppose that the

following assumptions hold:

• {x : p(x, θ) > 0} is the same for all θ ∈ Θ and

• For any statistic T satisfying E[|T (X)|] < +∞ for all θ ∈ Θ,

∫
T (x)

∂

∂θ
p(x, θ)dx =

∂

∂θ

∫
T (x)p(x, θ)dx.

Suppose that h is monotone increasing and differentiable from Θ to h(Θ). Let η = h(θ) and

q(x, η) = p(x, h−1(η)).

(a) Let Ip(θ) and Iq(η) denote the Fisher information in the two parametrisations. Show that

Iq(η) =
1

(h′(h−1(η)))2
Ip(h

−1(η)).

(b) Let Bp(θ) and Bq(η) denote the information inequality lower bound for the two parametri-

sations. That is,

Bp(θ) =
(ψ′

1(θ))
2

I(θ)
, Bq(η) =

(ψ′
2(η))

2

I(η)

where ψ1(θ) is the quantity to be estimated and ψ2(η) = ψ1(h
−1(η)); i.e. the same quantity

under the η-parametrisation.

Show that Bq(η) = Bp(h
−1(η)). That is, the Fisher information lower bound is the same.

10. Let X1, . . . , Xn be i.i.d. N(µ, σ2) where µ is known.

(a) Show that

σ̂2 :=
1

n

n∑

j=1

(Xj − µ)2

is a UMVU estimator of σ2.
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(b) For parameter estimation, a decision rule d simply means assigning a decision d(X) for the

unknown parameter. A decision rule d is inadmissible if there is another decision rule d∗

such that R(θ, d∗) ≤ R(θ, d) for all θ and R(θ, d∗) < R(θ, d) for some θ. A decision rule is

admissible if it is not inadmissible. Show that σ̂2 is inadmissible under squared loss error

R(θ, d) = Eθ

[
|θ − d(X)|2

]
.

Hint Consider bias estimators of the form anσ̂
2 where σ̂2 is defined above.

11. Let Y1, . . . , Yn be independent Poisson random variables, where

E[Yj ] = µj = exp {α+ βzj} .

(For example, zj could be the level of a drug given to the jth patient with an infectious disease,

and Yj could denote the number of infectious microbes found in a unit of blood taken from

patient j 24 hours after the drug was administered.

(a) Write the model for Y1, . . . , Yn in two-parameter canonical exponential form and give the

sufficient statistic.

(b) Let θ = (α, β). Compute I(θ), the information matrix for the model and find the lower

bound on the variances of unbiased estimators α̂ and β̂ of α and β.

(c) Let zi = log
(

i
n+1

)
, i = 1, . . . , n. Compute limn→+∞

1
nI(θ) and give the limit of n times

the lower bound on the variances of α̂ and β̂.

Hint Use integral approximations for the sums.
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Short Answers

1. Firstly,

Eθ

[
X
]
= Eθ [X1] = 0× (1− θ) + 1× θ = θ

so the estimator is unbiased.

Secondly: there are several ways to show it is UMVU.

pX1,...,Xn(x1, . . . , xn; θ) = θ
∑

j xj (1− θ)n−
∑

j xj = exp

{
nx log

(
θ

1− θ

)
+ n log(1− θ)

}

This is an exponential family; take X as the sufficient statistic and η := n log
(

θ
1−θ

)
as the

canonical parameter. Hence, by the result in lectures, X is the UMVU estimator of its expected

value, which is Eθ[X] = θ.

Alternatively, we can compute the Cramér-Rao lower bound directly. The estimator has variance

Vθ

(
X
)
=

1

n
Vθ (X1) =

θ(1− θ)

n
.

Now to show that this achieves the C-R lower bound, compute I(θ) = nI1(θ), the information in

the sample.
d

dθ
log pθ(0) = −

1

1− θ

d

dθ
log pθ(1) =

1

θ

I1(θ) = Eθ

[(
d

dθ
log pθ(X)

)2
]
= (1− θ)

1

(1− θ)2
+ θ

1

θ2
=

1

θ(1− θ)

hence the information from a sample size n is:

I(θ) =
n

θ(1− θ)

and the C-R lower bound is
1

I(θ)
=
θ(1− θ)

n
.

hence estimator is UMVU.

2.

E[θ̂] =
1

n
E[X] =

1

n
nθ = θ

so this estimator is unbiased.

V(θ̂) =
1

n2
V(X) =

1

n2
nθ(1− θ) =

θ(1− θ)

n
<

1

4n

so

P(|θ̂ − θ| > ǫ) ≤
θ(1− θ)

ǫ2n
≤

1

4ǫ2n

n→+∞
−→ 0
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hence uniformly consistent.

For θ̃

E[θ̃] =
nθ + 1

n+ 2
=

n

n+ 2
θ +

1

n+ 2

so

Bias(θ̃) =
n

n+ 2
θ +

1

n+ 2
− θ =

1− 2θ

n+ 2

V(θ̃) =
nθ(1− θ)

(n+ 2)2

so that the mean squared error is:

E

[
|θ̃ − θ|2

]
=

(1− 2θ)2

(n+ 2)2
+
nθ(1− θ)

(n+ 2)2
=

1 + (n− 4)θ + 3θ2

(n+ 2)2

Yes - the estimator is uniformly consistent; for n ≥ 4,

P(|θ̃ − θ|2 > ǫ) ≤
1 + (n− 4)θ(1− θ)

ǫ2(n+ 2)2
≤

1 + (n− 4)/4

ǫ2(n+ 2)2
n→+∞
−→ 0.

3. Y := nX =
∑n

j=1Xj ∼ Poiss(nλ) so that

E[ĝ1] = E

[
e−Y/n

]
=

∞∑

x=0

(λn)x

x!
e−nλ−(x/n) =

∞∑

x=0

(λne−1/n)x

x!
e−nλ = e−nλ(1−e−1/n)

so

Bias(ĝ1) = e−λ
(
e−λ(n(1−e−1/n)−1) − 1

)
.

E[ĝ2] =
∞∑

x=0

(
(nλ)(1− 1

n)
)x

x!
e−λn = enλ−λ−nλ = e−λ

so that ĝ2 is unbiased.

4. An unbiased estimator of g1(p) is a function of the n binary variables T (X1, . . . , Xn) satisfying

E[T (X1, . . . , Xn)] =
∑

{0,1}n

T (x1, . . . , xn)p
k(1− p)n−k =

p

1− p

where k denotes the number of 1s in the sequence (x1, . . . , xn).

so that

0 =
∑

{0,1}n

T (x1, . . . , xn)p
k−1(1− p)n−k+1 − 1.

This holds for all p, which is a contradiction, since the equation is a polynomial of degree n+ 1

and hence has at most n+ 1 distinct roots. Similarly for g2.
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5. (a)

E[T ] = µ
n∑

i=1

ai = µ.

(b)

V(T ) = σ2
n∑

i=1

a2i

n− 1 free variables; an = 1−
∑n−1

j=1 aj so that

∂

∂ai
V(T ) = 2σ2 (ai − an) = 0

so that a1 = . . . = an. With constraint that
∑n

j=1 aj = 1, it follows that aj = 1
n for each

j = 1, . . . , n.

6.

P(x) = px(1− p)1−x ⇒ logP(x) = x log p+ (1− x) log(1− p) x ∈ {0, 1}

d

dp
logP(x) =

d

dp
logP(x) =

(
x

p
−

(1− x)

1− p

)
=

(
x

p(1− p)
−

1

1− p

)

I(p) = Vp

(
d

dp
logPp(X)

)
=

1

p2(1− p)2
Vp(X) =

1

p(1− p)
.

For n observations, In(g) =
n

p(1−p) . The Cramér lower bound is therefore:

V(ĝ) ≥
(g′(p))2

In(g)
=

(1− 2p)2p(1− p)

n
.

7. minj Xj ∼ Exp(nλ) hence

E

[
nmin

j
Xj

]
= n

1

nλ
=

1

λ
.

V

(
nmin

j
Xj

)
= n2

1

n2λ2
=

1

λ2
,

Also, nminj Xj ∼ Exp(λ), hence P (|nminj Xj − λ| > ǫ) 6→ 0 as n→ +∞.

8. This follows immediately from the definition and Jensen:

R(θ, g∗) = Eθ [l(θ, g
∗(X))] = Eθ [l(θ,Eθ[g(X)|T (X)])]

≤ Eθ [Eθ [l(θ, g(X))|T (X)]] = Eθ [l(θ, g(X))] = R(θ, g).

Note that we do not need T to be a sufficient statistic.
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9. (a) This follows simply from the definition: let η = h(θ), then

d

dη
log q(x, η) =

1

dh(θ)/dθ

d

dθ
log p(x, θ)

Iq(η) = Eη

[(
d

dη
log q(x, η)

)2
]
=

1

(h′(θ))2
Eθ

[(
d

dθ
log p(x, θ)

)2
]
=

1

h′(h−1(η))
Ip(h

−1(η)).

(b) Consider a quantity ψ(θ) = Eθ[T (X)], so that T (X) is an unbiased estimator of ψ(θ). The

lower bound using parameter θ is:
(ψ′(θ))2

Ip(θ)
,

while with parameter η:

d

dη
ψ(h−1(η)) = ψ′(h−1(η))

dh−1(η)

dη
,

so that the lower bound is:

(
d
dηψ(h

−1(η))
)2

Iq(η)
=

(
ψ′(h−1(η)

)2

Ip(h−1(η))
.

10. (a) Unbiased is clear:

Eσ2

[
σ̂2
]
=

1

n

n∑

j=1

Vσ2(Xj) = σ2

The variance is:

Vσ2(σ̂2) =
1

n2

n∑

j=1

V((Xj − µ)2) =
σ4

n
V

((
X1 − µ

σ

)2
)

=
2σ4

n

while the Fisher information is I(σ2) = nI1(σ
2);

d

d(σ2)
log p(x, σ2) = −

1

2σ2
+

(x− µ)2

2σ4

Let In(σ
2) denote the information in a sample of size n, then In(σ

2) = nI1(σ
2) and:

I1(σ
2) = Vσ2

((
d

d(σ2)
log p(x, σ2)

)2
)

=
1

4σ4
Vσ2

((
X − µ

σ

)2
)

and now use V =
(
X−µ
σ

)2
∼ χ2

1 so that V(V ) = 2. Then

I1(σ
2) =

1

2σ4
⇒ In(σ

2) =
n

2σ4
.

Hence the Cramér-Rao lower bound is 2σ4

n , which is V
2
σ(σ̂

2).

so that I(σ2) = n
2σ4 giving a lower bound of 2σ4

n , hence σ̂2 is an UMVU estimator.
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(b) For an unbiased estimator, this risk function is simply the variance since σ̂2 is UMVU, it

follows that any estimator with smaller risk must be biased. Try estimators of the form

anσ̂
2. Then

Eσ2

[∣∣anσ̂2 − σ2
∣∣2
]

= Eσ2

[∣∣an(σ̂2 − σ2) + (an − 1)σ2
∣∣2
]

= a2nVσ2(σ̂2) +
(
(an − 1)σ2

)2

= a2n
2σ4

n
+ (an − 1)2σ4

Minimising gives: an = n
n+2 . This gives estimator σ̃2 = 1

n+2

∑n
j=1(Xj−µ)

2 and R(σ2, σ̃2) =
2

n+2σ
4 which is smaller than the UMVU estimator.

11. (a)

p(y1, . . . , yn;α, β) =
1∏n

j=1 yj !
exp



α

n∑

j=1

yj + β

n∑

j=1

yjzj −

n∑

j=1

exp {α+ βzj}





Sufficient statistic: T (Y ) = (T1(Y ), T2(Y )) where

T1(Y ) =
n∑

j=1

Yj and T2(Y ) =
n∑

j=1

zjYj .

(b)

∂

∂α
log p =

n∑

j=1

yj −
n∑

j=1

eα+βzj ⇒ −
∂2

∂α2
log p =

n∑

j=1

eα+βzj

∂

∂β
log p =

n∑

j=1

yjzj −

n∑

j=1

zje
α+βzj ⇒ −

∂2

∂β2
log p = eα

n∑

j=1

z2j e
βzj

−
∂2

∂α∂β
log p = eα

n∑

j=1

zje
βzj

so

Iα,α(θ) = −Eθ

[
∂2

∂α2
log p(X,α, β)

]
=

n∑

j=1

µj = eα
n∑

j=1

eβzj

Iβ,β(θ) = −Eθ

[
∂2

∂β2
log p(X;α, β)

]
= eα

n∑

j=1

z2j e
βzj

Iα,β(θ) = −Eθ

[
∂2

∂α∂β
log p(X;α, β)

]
= eα

n∑

j=1

zje
βzj .

We have to invert the information matrix:

I−1(θ) =
e−α

(∑
eβzj

) (∑
z2j e

βzj
)
−
(∑

zjeβzj
)2

( ∑
z2j e

βzj −
∑
zje

βzj

−
∑
zje

βzj
∑
eβzj

)
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V (α̂) ≥ eα

{
(
∑

eβzj )−
(
∑
zje

βzj )2

(
∑
z2j e

βzj )

}

V

(
β̂
)
≥ eα

{
(
∑

z2j e
βzj )−

(
∑
zje

βzj )2

(
∑
eβzj )

}

Note If the information matrix is singular, then the results are correct but useless; they

give variances greater than or equal to 0.

(c) Integrals are straightforward : ∫ 1

0
xβdx =

1

1 + β
∫ 1

0
xβ log xdx =

∫ 1

0
eβ log x log xdx =

d

dβ

∫ 1

0
xβdx = −

1

(1 + β)2

∫ 1

0
xβ(log x)2dx =

d2

dβ2

∫ 1

0
xβ(log x)2dx =

2

(1 + β)3

In the limit,

1

n
I(θ) → eα

(
1

1+β − 1
(1+β)2

− 1
(1+β)2

2
(1+β)3

)

nI−1(θ) → e−α

(
2(1 + β) (1 + β)2

(1 + β)2 (1 + β)3

)

Lower bounds: 2(1 + β)e−α and (1 + β)3e−α respectively for α and β.
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