
Tutorial 6

1. Maximum Likelihood: Hypergeometric Suppose X has probability function

P(X = k) =

(
M
k

)(
N−M
n−k

)
(
N
n

) k = 0, 1, . . . , n 0 ≤ n ≤ M ≤ N

where N,M,n are non negative integers. Show that the maximum likelihood estimate of M for

N and n fixed is given by

M̂(X) =

⌊
X

n
(N + 1)

⌋

if X
n (N + 1) is not an integer and

M̂(X) =
X

n
(N + 1) or

X

n
(N + 1)− 1

otherwise, where ⌊x⌋ denotes the integer part of x.

Hint: Consider the ratio L(M+1,x)
L(M,x) as a function of M .

2. Maximum Likelihood Suppose X1, . . . , Xn is a sample from a population with density

f(x;µ, σ2) =
9

10σ
φ

(
x− µ

σ

)
+

1

10
φ(x− µ)

where φ defined as φ = 1√
2π

exp{−x2/2} −∞ < x < +∞ is the standard normal density function

and the parameter space is (µ, σ) ∈ Θ = R × (0,+∞). Show that the maximum likelihood

estimator for the pair (µ, σ) does not return a good answer if σ > 0.

3. Let X1, . . . , Xn be i.i.d., with parent distribution U((θ − 1
2 , θ + 1

2)) where θ is an unknown

parameter. That is, the distribution with density

p(x; θ) = 1(θ− 1
2
,θ+ 1

2
)(x).

Find the maximum likelihood estimator of θ.

4. (a) Let Y be any random variable and let R(c) = E[|Y − c|] be the mean absolute prediction

error. Show that either R(c) ≡ +∞ or else R(c) is minimised by any number c0 such that

P(Y ≥ c0) ≥
1

2
and P(Y ≤ c0) ≥

1

2
.

A number c satisfying this property is known as the median.

Hint: First show that if c < c0 then

E[|Y − c0|] = E[|Y − c|]− (c0 − c)(P(Y ≥ c0)− P(Y < c0))− 2E[(Y − c)1(c,c0)(Y )]

and consider the consequences if c0 is the median. Consider a symmetric argument for

c > c0.
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(b) Suppose that Y1, . . . , Yn are independent with Yi having the Laplace density

1

2σ
exp

{
−
|yi − µi|

σ

}
σ > 0,

where µi =
∑p

j=1 zijβj . The zij are fixed and known, the βj are unknown parameters.

i. Show that the MLE of (β1, . . . , βp, σ) is obtained by finding β̂1, . . . , β̂p that minimises

the least absolute deviation contrast function
∑n

j=1 |yj − µj | and then setting σ̂ =
1
n

∑n
i=1 |yi − µ̂i| where µ̂i =

∑p
j=1 zij β̂j .

ii. Suppose µi = µ for each i. Show that the sample median ŷ is the minimiser of
∑n

i=1 |yi−

µ|.

5. Let X ∼ Poiss(n(µ1 + µ2)), Y ∼ Poiss(mµ1) and Z ∼ Poiss(mµ2) be independent variables,

where n and m are fixed and known. Find the MLE of (µ1, µ2) based on (X,Y, Z).

6. Let X1, . . . , Xn be i.i.d. with density 1
σf0

(x−µ
σ

)
, σ > 0 and µ ∈ R. Let w = − log f0 and assume

that w′′ exists and satisfies w′′ > 0; w(±∞) = +∞.

(a) Show that if n ≥ 2, the likelihood equations are:





∑n
i=1w

′
(
Xi−µ

σ

)
= 0

∑n
i=1

{
(Xi−µ)

σ w′
(
Xi−µ

σ

)
− 1
}
= 0

and that they have a unique solution (µ̂, σ̂).

Hint Show that the function D(a, b) =
∑n

i=1w(aXi − b) − n log a is strictly convex in the

variables (a, b) and lim(a,b)→(a0,b0)D(a, b) = +∞ if either a0 = 0 or +∞, or b0 = ±∞. You

may use the following:

• If a strictly convex function has a minimum, then it is unique.

• For a function D of two variables, if ∂2D
∂a2

> 0, ∂2D
∂b2

> 0 and ∂2D
∂a2

∂2D
∂b2

>
(

∂2D
∂a∂b

)2
then D

is strictly convex.

(b) Suggest an algorithm, using Newton-Raphson techniques applied to the problem of locating

the minimum of D(a, b) such that, with initial conditions µ̂(0) = 0, σ̂(0) = 1, µ̂(i) → µ̂ and

σ̂(i) → σ̂.

(c) Show that for the logistic distribution (c.d.f. F0(x) = 1
1+e−x for −∞ < x < +∞), w is

strictly convex. Give the likelihood equations in this case for µ and σ.

7. Let X1, . . . , Xn be i.i.d. random p-vectors, with density

f(x; θ) = c(α) exp {−‖x− θ‖α} θ ∈ R
p α ≥ 1

where 1
c(α) =

∫
Rp exp {−‖x‖α} dx, ‖.‖ denotes the Euclidean norm.

(a) Show that if α > 1, then the MLE θ̂ exists and is unique.
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(b) Show that if α = 1 and p = 1, then the MLE θ̂ exists, but is not unique if n is even.

8. Let X1 ∼ N(θ1, 1) and X2 ∼ N(θ2, 1) be independent. Find the maximum likelihood estimates

of θ1 and θ2 when it is known that θ1 ≤ θ2.

9. Let X1, . . . , Xm and Y1, . . . , Yn be two independent samples from N(µ1, σ
2) and N(µ2, σ

2) pop-

ulations respectively. Show that the MLE of θ = (µ1, µ2, σ
2) is

θ̂ = (X,Y , σ̂2)

where

σ̂2 =
1

m+ n




m∑

i=1

(Xi −X)2 +
n∑

j=1

(Yj − Y )2




10. Suppose that T (X) is sufficient for θ and that θ̂(X) is a maximum likelihood estimator of θ. Show

that if θ̂ is unique, then it depends on X only through T (X). (Use the factorisation theorem)

11. (a) Let X ∼ Pθ, θ ∈ Θ and let θ̂ denote the MLE of θ. Suppose that h is a one-to-one function

from Θ onto h(Θ). Define η = h(θ) and let p(x, η) denote the density or probability mass

function in terms of η (i.e. reparametrise the model using η). Show that the MLE of η

is h(θ̂). In other words, the MLE is unaffected by reparametrisation; they are equivalent

under one-to-one transformations.

(b) Let P = {Pθ : θ ∈ Θ}, Θ ⊆ Rp, p ≥ 1 be a family of models for X, with state space X ⊂ Rd.

Let q be a map from Θ onto Ω, where Ω ⊂ Rk, 1 ≤ k ≤ p. Show that if θ̂ is a MLE of θ,

then q(θ̂) is a MLE of ω = q(θ).

Hint Let Θ(ω) = {θ ∈ Θ : q(θ) = ω}, then {Θ(ω) : ω ∈ Ω} is a partition of Θ and θ̂ belongs

to only one member of this partition, say Θ(ω̂). Because q is onto Ω, it follows that for each

ω ∈ Ω there is θ ∈ Ω such that ω = q(θ). Thus the MLE of ω is by definition

ω̂MLE = arg sup
ω∈Ω

sup {L(θ;X) : θ ∈ Θ(ω)}

where arg sup means the value of ω which maximises Now show that ω̂MLE = q(θ̂).

12. E-M Algorithm

(a) Suppose that we only observe S(X), where S is a function of X (the observation). Suppose

that X is discrete and let q(s, θ) denote the mass function for S when θ is the parameter.

Show that

q(s, θ)

q(s, θ0)
= Eθ0

[
p(X, θ)

p(X, θ0)

∣∣∣∣S(X) = s

]

(b) Establish part 2. of Theorem 5.6. Do this by showing that {(θm, θm+1)} has a subsequence

converging to {(θ∗, θ∗)} and that therefore θ∗ is a global minimiser.
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Short Answers

1.
L(M + 1, x)

L(M,x)
=

(M + 1)(N −M − n+ x)

(M + 1− x)(N −M)

L(M + 1, x)

L(M,x)
> 1 ⇔ M <

x(N + 1)

n
− 1

It follows that

L(M + 1, x) ≤ L(M,x) ⇔ M ≥
x(N + 1)

n
− 1

so that L(M,x) is the maximum value if and only if

M =





⌊
x(N+1)

n

⌋
x(N+1)

n 6∈ Z+

x(N+1)
n − 1 x(N+1)

n ∈ Z+
x(N+1)

n
x(N+1)

n ∈ Z+ and L(M+1,x)
L(M,x) = 1

2.

L(µ, σ;x1, . . . , xn) =
n∏

j=1

(
9

10σ
φ

(
xj − µ

σ

)
+

1

10
φ(xj − µ)

)

Clearly, taking µ = xj for any j ∈ {1, . . . , n}:

lim
σ→0

L(x1, . . . , xn;xj , σ) = +∞

Hence (µ̂, σ̂) = (xj , 0) for any j ∈ {1, . . . , n} returns a value of +∞ for the likelihood. For any

σ > 0 and any µ ∈ R, L(µ, σ) < +∞, hence σ̂ML = 0 irrespective of the true value of σ.

3.

L(θ;x1, . . . , xn) =
n∏

j=1

1(xj− 1
2
,xj+

1
2
)(θ) = 1(maxj xj− 1

2
,minj +

1
2
)(θ)

so θ̂ML is not unique; any value θ̂ML ∈ (maxj xj −
1
2 ,minj xj +

1
2) maximises the likelihood.

4. (a) For c < c0,

E[|Y − c0|] = E[(Y − c0)1{Y >c0}] + E[(c0 − Y )1{Y <c0}]

= E[(Y − c)1{Y >c}]− E[(Y − c)1{c<Y≤c0}]− (c0 − c)P(Y > c0)

+E[(c− Y )1{Y <c}] + E[(c− Y )1{c<Y <c0}] + (c0 − c)P(Y < c0)

= E[|Y − c|]− (c0 − c) (P(Y ≥ c0)− P(Y < c0))− 2E[(Y − c)1(c,c0)(Y )]

Now choose c0 such that P(Y ≥ c0) ≥ 1
2 , P(Y ≤ c0) = 1

2 , then R(c0) ≤ R(c). The

inequality is strict unless both P(Y = c0) = 0 and P(Y ∈ (c, c0)) = 0. It follows that

R(c0) < R(c) unless c also satisfies P(Y ≥ c) ≥ 1
2 and P(Y ≤ c) ≥ 1

2 . Similar arguments for

c > c0. It follows that a value c minimises if and only if it is a median.
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(b) i. Log likelihood

logL(β, σ; y1, . . . , yn) = −n log 2− n log σ −
1

σ

n∑

i=1

|yi − µi|

Let f denote the maximum of
∑n

i=1 |yi − µi|. Then, for β that gives f ,

∂

∂σ
logL = −

n

σ
+

1

σ2
f ⇒ σ̂ =

1

f

The result follows.

ii. Consider the empirical distribution defined by Y(1), . . . , Y(n) and apply the result of the

first part.

5.

P(X = x, Y = y, Z = z) =
(n(µ1 + µ2))

x(mµ1)
y(mµ2)

z

x!y!z!
e−(n(µ1+µ2))−mµ1−mµ2)

logL(µ1, µ2;x, y, z) =

(
x log

n

x!y!z!
+ x log(µ1 + µ2) + y logm+ z logm

)

+y logµ1 + z logµ2 − µ1(n+m)− µ2(n+m)

A critical point, if it is in (0,∞)× (0,∞) (the interior) satisfies

{
∂

∂µ1
logL(µ1, µ2) =

x
µ1+µ2

+ y
µ1

− (n+m) = 0
∂

∂µ2
logL(µ1, µ2) =

x
µ1+µ2

+ z
µ2

− (n+m) = 0

If x > 0, y > 0 and z > 0, there is exactly one solution to these equations. From the equations,
z
µ2

= y
µ1

so that

x

µ1 +
zµ1

y

+
y

µ1
= n+m ⇒

xy

(y + z)µ1
+

y

µ1
= n+m ⇒ µ1 =

y(x+ y + z)

(y + z)(n+m)

giving

µ2 =
z(x+ y + z)

(n+m)(y + z)
µ1 =

y(x+ y + z)

(n+m)(y + z)
.

It turns out that this (µ1, µ2) gives a global maximum in R+ × R+ in all cases. To see this, we

consider the boundaries of R+×R+ which are: µ1+µ2 → +∞, µ1 → 0 for µ2 < +∞ and µ2 → 0

for µ1 < +∞. The different cases are as follows:

1) If x > 0, y > 0, z > 0, then logL(µ1, µ2;x, y, z) is strictly concave in (µ1, µ2), bounded above,

and logL(µ1, µ2;x, y, z)
µ1+µ2→+∞

−→ −∞, logL(µ1, µ2) → −∞ if µ1 → 0 (µ2 fixed) or µ2 → 0 (µ1

fixed).
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Therefore, from strict concavity and differentiability, that the maximum is unique and is in the

interior of the domain and satisfies ∂ logL
∂µ1

= ∂ logL
∂µ2

= 0.

2) If x > 0, y > 0, z = 0, then logL(µ1, µ2) is strictly concave, but there is no solution to the

equations ∂
∂µ1

logL = ∂
∂µ2

logL = 0 in (0,+∞) × (0,+∞) and hence the maximum is on the

boundary. L(µ1, µ2)
µ1+µ2→+∞

−→ −∞, logL(µ1, µ2)
µ1→0
−→ −∞ for µ2 fixed.

Therefore, the part of the boundary where the maximum is achieved is µ2 = 0. The problem

now reduces to finding µ1 that maximises logL(µ1, 0;x, y, 0) which is µ1 =
x+y
n+m .

3) Similarly for x > 0, y = 0, z > 0.

4) x > 0, y = z = 0 - the only thing that can be estimated is µ1 + µ2, the estimate is

µ̂1 + µ2 =
x

m+ n

5) x = 0: This splits into two separate estimation problems, µ1 which maximises y logµ1−µ1(n+

m) and µ2 which maximises z logµ2 − µ2(n+m) which gives

µ1 =
y

n+m
µ2 =

z

n+m
.

6. (a) logL(µ, σ) = log
∏n

j=1

(
1
σf0

(
xj−µ
σ

))
= −n log σ −

∑n
j=1w

(
xj−µ
σ

)
. Likelihood equations

are ∇ logL(µ, σ) = 0 giving





∑n
j=1w

′
(
xj−µ
σ

)
= 0

∑n
i=1

{
(xi−µ)

σ w′
(
Xi−µ

σ

)
− 1
}
= 0

as required. For uniqueness, consider the function D(a, b). Then

∇D(a, b) = 0 ⇔

(
n∑

i=1

Xiw
′(aXi − b)−

n

a
,−

n∑

i=1

w′(aXi − b)

)
= 0

⇔

(
n∑

i=1

{
(Xi − µ)

σ
w′
(
Xi − µ

σ

)
− 1

}
,

n∑

i=1

w′
(
Xi − µ

σ

))
= 0

using a = 1
σ and b = µ

σ . Now,

∂2D

∂a2
=

n∑

i=1

X2
i w

′′(aXi− b)+
n

a2
,

∂2D

∂b2
=

n∑

i=1

w′′(aXi− b),
∂2D

∂a∂b
= −

n∑

j=1

Xjw
′′(aXj − b)
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(
∂2D

∂a∂b

)2

=




n∑

j=1

Xjw
′′(aXj − b)




2

≤

n∑

j=1

X2
jw

′′(aXj − b)
n∑

j=1

w′′(aXj − b) <

(
∂2D

∂a2

)(
∂2D

∂b2

)

using |
∑

cidi| ≤ (
∑

c2i )
1/2(

∑
d2i )

1/2; ci = Xi

√
w′′(aXi − b) and di =

√
w′′(aXi − b) from

which convexity follows. We’re using w′′ > 0.

Finally, we have to show that lim(a,b)→(a0,b0)D(a, b) = +∞ for (a0, b0) as described. The

only part which requires attention is: a0 = +∞. But w′′ > 0 implies that w′ is increasing.

Since w(±∞) = +∞, this implies that there exists an x0 such that w(x0) = minxw(x),

that limx→+∞(−w′(x)) = c1 > 0 and limx→+∞w′(x) = c2 > 0 where c1 and/or c2 may be

+∞. From this, it is clear that unless X1 = . . . = Xn = 0, lima→+∞D(a, b) = +∞, since
d
da log a = 1

a
a→+∞
−→ 0.

(b) Minimise D(a, b). The matrix of second derivatives is positive definite and well defined.

Call it M and let U = ∇D. Then

(
a(i+1)

b(i+1)

)
=

(
a(i)

b(i)

)
−M−1(a(i), b(i))U(a(i), b(i)).

(c) f0(x) = (1 + e−x)−2e−x so that

w(x) = − log f0(x) = 2 log(1 + e−x) + x, w′′(x) = (1 + e−x)−2e−2x + (1 + e−x)−1e−x

so it is strictly convex.

w′(x) = −
1

ex + 1

Likelihood equations are:





∑n
i=1

1
(e(xi−µ)/σ+1)

= 0
∑n

i=1

{
(xi−µ)/σ

(e(xi−µ)/σ+1)
− 1
}
= 0

7. (a) For α > 1, ‖y‖α is strictly convex in y. This can be seen as follows: for α > 1, the function

g : R → R+ defined by g(x) = |x|α is strictly convex. It follows that for t ∈ (0, 1), if

‖x‖ 6= ‖y‖, then

‖tx+ (1− t)y‖α =
(
t2‖x‖2 + 2t(1− t)〈x, y〉+ (1− t)2‖y‖2

)α/2

≤
(
t2‖x‖2 + 2t(1− t)‖x‖‖y‖+ (1− t)2‖y‖2)α/2

)

= (t‖x‖+ (1− t)‖y‖)α < t‖x‖α + (1− t)‖y‖α.
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and if ‖x‖ = ‖y‖ but x 6= y, then |〈x, y〉| < ‖x‖‖y‖ where the inequality is strict, so that

again

‖tx+ (1− t)y‖α < t‖x‖α + (1− t)‖y‖α.

logL(x1, . . . , xn; θ) = n log c(α)−
n∑

j=1

‖xj − θ‖α

and the sum of strictly convex functions is again strictly convex. It follows that the likelihood

function has a unique maximiser θ̂ML.

(b)

f(x; θ) = c exp{−|x− θ|}

logL(x1, . . . , xn; θ) = n log c−

n∑

j=1

|xj − θ|

Problem is therefore to find θ that minimises
∑n

j=1 |xj − θ|. It follows from earlier exercise

that θ̂ provides a minimiser where θ̂ is any sample median. If n is even and x(n/2) < x(n/2)+1

then the median is not unique.

8. Minimise

(θ1 − x1)
2 + (θ2 − x2)

2

subject to the constraint that θ1 ≤ θ2. If x1 ≤ x2, then (θ̂1, θ̂2) = (x1, x2). If x1 > x2, then

θ̂1 = θ̂2 (on the boundary) so that it is the minimiser of

2θ2 − 2(x1 + x2)θ + (x21 + x22)

which is: θ̂1 = θ̂2 =
x1+x2

2 .

9. Minimise:

1

2σ2




m∑

j=1

(xj − µ1)
2 +

n∑

j=1

(yj − µ2)
2


+

(m+ n)

2
log σ2

µ1 and µ2 are easy; µ̂1 = x and µ̂2 = y. For σ2, σ̂2 is the point which satisfies:

−
1

2(σ2)2




m∑

j=1

(xj − x)2 +
n∑

j=1

(yj − y)2


+

m+ n

2σ2

giving the MLE of

σ̂2 =
1

m+ n




m∑

j=1

(Xj −X)2 +

n∑

j=1

(Yj − Y )2




10. Factorisation theorem gives:

p(x, θ) = h(x)g(T (x), θ);

maximising in terms of θ is equivalent to maximising g(T (x), θ), hence the result follows.
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11. (a) η̂ML maximises p(x, η) = p(x, h(θ)). The value of θ which maximises this is θ̂ML, hence

if θ̂ML is a value of θ which maximises p(x, θ) then ηML = h(θ̂ML) is a value of η which

maximises p(x, η). Similarly, if θ does not maximise p(x, θ), then η = h(θ) does not maximise

the reparametrised family p(x, η).

(b) Using the hint, ω̂MLE maximises supθ∈Ω(ω) L(θ;X). ωML is therefore the value of ω that

satisfies θ̂ML ∈ Ω(ω̂ML) and is therefore (by definition) ω̂ML = q(θ̂ML).

12. (Omitted)
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