Tutorial 6

1. Maximum Likelihood: Hypergeometric Suppose X has probability function

$$
\mathbb{P}(X=k)=\frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}} \quad k=0,1, \ldots, n \quad 0 \leq n \leq M \leq N
$$

where N, M, n are non negative integers. Show that the maximum likelihood estimate of M for N and n fixed is given by

$$
\widehat{M}(X)=\left\lfloor\frac{X}{n}(N+1)\right\rfloor
$$

if $\frac{X}{n}(N+1)$ is not an integer and

$$
\widehat{M}(X)=\frac{X}{n}(N+1) \quad \text { or } \quad \frac{X}{n}(N+1)-1
$$

otherwise, where $\lfloor x\rfloor$ denotes the integer part of x.
Hint: Consider the ratio $\frac{L(M+1, x)}{L(M, x)}$ as a function of M.
2. Maximum Likelihood Suppose X_{1}, \ldots, X_{n} is a sample from a population with density

$$
f\left(x ; \mu, \sigma^{2}\right)=\frac{9}{10 \sigma} \phi\left(\frac{x-\mu}{\sigma}\right)+\frac{1}{10} \phi(x-\mu)
$$

where ϕ defined as $\phi=\frac{1}{\sqrt{2 \pi}} \exp \left\{-x^{2} / 2\right\}-\infty<x<+\infty$ is the standard normal density function and the parameter space is $(\mu, \sigma) \in \Theta=\mathbb{R} \times(0,+\infty)$. Show that the maximum likelihood estimator for the pair (μ, σ) does not return a good answer if $\sigma>0$.
3. Let X_{1}, \ldots, X_{n} be i.i.d., with parent distribution $U\left(\left(\theta-\frac{1}{2}, \theta+\frac{1}{2}\right)\right)$ where θ is an unknown parameter. That is, the distribution with density

$$
p(x ; \theta)=\mathbf{1}_{\left(\theta-\frac{1}{2}, \theta+\frac{1}{2}\right)}(x)
$$

Find the maximum likelihood estimator of θ.
4. (a) Let Y be any random variable and let $R(c)=\mathbb{E}[|Y-c|]$ be the mean absolute prediction error. Show that either $R(c) \equiv+\infty$ or else $R(c)$ is minimised by any number c_{0} such that

$$
\mathbb{P}\left(Y \geq c_{0}\right) \geq \frac{1}{2} \quad \text { and } \quad \mathbb{P}\left(Y \leq c_{0}\right) \geq \frac{1}{2}
$$

A number c satisfying this property is known as the median.
Hint: First show that if $c<c_{0}$ then

$$
\mathbb{E}\left[\left|Y-c_{0}\right|\right]=\mathbb{E}[|Y-c|]-\left(c_{0}-c\right)\left(\mathbb{P}\left(Y \geq c_{0}\right)-\mathbb{P}\left(Y<c_{0}\right)\right)-2 \mathbb{E}\left[(Y-c) \mathbf{1}_{\left(c, c_{0}\right)}(Y)\right]
$$

and consider the consequences if c_{0} is the median. Consider a symmetric argument for $c>c_{0}$.
(b) Suppose that Y_{1}, \ldots, Y_{n} are independent with Y_{i} having the Laplace density

$$
\frac{1}{2 \sigma} \exp \left\{-\frac{\left|y_{i}-\mu_{i}\right|}{\sigma}\right\} \quad \sigma>0
$$

where $\mu_{i}=\sum_{j=1}^{p} z_{i j} \beta_{j}$. The $z_{i j}$ are fixed and known, the β_{j} are unknown parameters.
i. Show that the MLE of $\left(\beta_{1}, \ldots, \beta_{p}, \sigma\right)$ is obtained by finding $\widehat{\beta}_{1}, \ldots, \widehat{\beta}_{p}$ that minimises the least absolute deviation contrast function $\sum_{j=1}^{n}\left|y_{j}-\mu_{j}\right|$ and then setting $\widehat{\sigma}=$ $\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-\widehat{\mu}_{i}\right|$ where $\widehat{\mu}_{i}=\sum_{j=1}^{p} z_{i j} \widehat{\beta}_{j}$.
ii. Suppose $\mu_{i}=\mu$ for each i. Show that the sample median \widehat{y} is the minimiser of $\sum_{i=1}^{n} \mid y_{i}-$ $\mu \mid$.
5. Let $X \sim \operatorname{Poiss}\left(n\left(\mu_{1}+\mu_{2}\right)\right)$, $Y \sim \operatorname{Poiss}\left(m \mu_{1}\right)$ and $Z \sim \operatorname{Poiss}\left(m \mu_{2}\right)$ be independent variables, where n and m are fixed and known. Find the MLE of $\left(\mu_{1}, \mu_{2}\right)$ based on (X, Y, Z).
6. Let X_{1}, \ldots, X_{n} be i.i.d. with density $\frac{1}{\sigma} f_{0}\left(\frac{x-\mu}{\sigma}\right), \sigma>0$ and $\mu \in \mathbb{R}$. Let $w=-\log f_{0}$ and assume that $w^{\prime \prime}$ exists and satisfies $w^{\prime \prime}>0 ; w(\pm \infty)=+\infty$.
(a) Show that if $n \geq 2$, the likelihood equations are:

$$
\left\{\begin{array}{l}
\sum_{i=1}^{n} w^{\prime}\left(\frac{X_{i}-\mu}{\sigma}\right)=0 \\
\sum_{i=1}^{n}\left\{\frac{\left(X_{i}-\mu\right)}{\sigma} w^{\prime}\left(\frac{X_{i}-\mu}{\sigma}\right)-1\right\}=0
\end{array}\right.
$$

and that they have a unique solution $(\widehat{\mu}, \widehat{\sigma})$.
Hint Show that the function $D(a, b)=\sum_{i=1}^{n} w\left(a X_{i}-b\right)-n \log a$ is strictly convex in the variables (a, b) and $\lim _{(a, b) \rightarrow\left(a_{0}, b_{0}\right)} D(a, b)=+\infty$ if either $a_{0}=0$ or $+\infty$, or $b_{0}= \pm \infty$. You may use the following:

- If a strictly convex function has a minimum, then it is unique.
- For a function D of two variables, if $\frac{\partial^{2} D}{\partial a^{2}}>0, \frac{\partial^{2} D}{\partial b^{2}}>0$ and $\frac{\partial^{2} D}{\partial a^{2}} \frac{\partial^{2} D}{\partial b^{2}}>\left(\frac{\partial^{2} D}{\partial a \partial b}\right)^{2}$ then D is strictly convex.
(b) Suggest an algorithm, using Newton-Raphson techniques applied to the problem of locating the minimum of $D(a, b)$ such that, with initial conditions $\widehat{\mu}^{(0)}=0, \widehat{\sigma}^{(0)}=1, \widehat{\mu}^{(i)} \rightarrow \widehat{\mu}$ and $\widehat{\sigma}^{(i)} \rightarrow \widehat{\sigma}$.
(c) Show that for the logistic distribution (c.d.f. $F_{0}(x)=\frac{1}{1+e^{-x}}$ for $-\infty<x<+\infty$), w is strictly convex. Give the likelihood equations in this case for μ and σ.

7. Let X_{1}, \ldots, X_{n} be i.i.d. random p-vectors, with density

$$
f(x ; \theta)=c(\alpha) \exp \left\{-\|x-\theta\|^{\alpha}\right\} \quad \theta \in \mathbb{R}^{p} \quad \alpha \geq 1
$$

where $\frac{1}{c(\alpha)}=\int_{\mathbb{R}^{p}} \exp \left\{-\|x\|^{\alpha}\right\} d x,\|\cdot\|$ denotes the Euclidean norm.
(a) Show that if $\alpha>1$, then the MLE $\widehat{\theta}$ exists and is unique.
(b) Show that if $\alpha=1$ and $p=1$, then the MLE $\hat{\theta}$ exists, but is not unique if n is even.
8. Let $X_{1} \sim N\left(\theta_{1}, 1\right)$ and $X_{2} \sim N\left(\theta_{2}, 1\right)$ be independent. Find the maximum likelihood estimates of θ_{1} and θ_{2} when it is known that $\theta_{1} \leq \theta_{2}$.
9. Let X_{1}, \ldots, X_{m} and Y_{1}, \ldots, Y_{n} be two independent samples from $N\left(\mu_{1}, \sigma^{2}\right)$ and $N\left(\mu_{2}, \sigma^{2}\right)$ populations respectively. Show that the MLE of $\theta=\left(\mu_{1}, \mu_{2}, \sigma^{2}\right)$ is

$$
\widehat{\theta}=\left(\bar{X}, \bar{Y}, \widehat{\sigma^{2}}\right)
$$

where

$$
\widehat{\sigma^{2}}=\frac{1}{m+n}\left(\sum_{i=1}^{m}\left(X_{i}-\bar{X}\right)^{2}+\sum_{j=1}^{n}\left(Y_{j}-\bar{Y}\right)^{2}\right)
$$

10. Suppose that $T(X)$ is sufficient for θ and that $\hat{\theta}(X)$ is a maximum likelihood estimator of θ. Show that if $\hat{\theta}$ is unique, then it depends on X only through $T(X)$. (Use the factorisation theorem)
11. (a) Let $X \sim \mathbb{P}_{\theta}, \theta \in \Theta$ and let $\widehat{\theta}$ denote the MLE of θ. Suppose that h is a one-to-one function from Θ onto $h(\Theta)$. Define $\eta=h(\theta)$ and let $p(x, \eta)$ denote the density or probability mass function in terms of η (i.e. reparametrise the model using η). Show that the MLE of η is $h(\widehat{\theta})$. In other words, the MLE is unaffected by reparametrisation; they are equivalent under one-to-one transformations.
(b) Let $\mathcal{P}=\left\{\mathbb{P}_{\theta}: \theta \in \Theta\right\}, \Theta \subseteq \mathbb{R}^{p}, p \geq 1$ be a family of models for X, with state space $\mathcal{X} \subset \mathbb{R}^{d}$. Let q be a map from Θ onto Ω, where $\Omega \subset \mathbb{R}^{k}, 1 \leq k \leq p$. Show that if $\widehat{\theta}$ is a MLE of θ, then $q(\widehat{\theta})$ is a MLE of $\omega=q(\theta)$.
Hint Let $\Theta(\omega)=\{\theta \in \Theta: q(\theta)=\omega\}$, then $\{\Theta(\omega): \omega \in \Omega\}$ is a partition of Θ and $\widehat{\theta}$ belongs to only one member of this partition, say $\Theta(\widehat{\omega})$. Because q is onto Ω, it follows that for each $\omega \in \Omega$ there is $\theta \in \Omega$ such that $\omega=q(\theta)$. Thus the MLE of ω is by definition

$$
\widehat{\omega}_{M L E}=\underset{\omega \in \Omega}{\arg \sup } \sup \{L(\theta ; X): \theta \in \Theta(\omega)\}
$$

where $\arg \sup$ means the value of ω which maximises Now show that $\widehat{\omega}_{M L E}=q(\widehat{\theta})$.

12. E-M Algorithm

(a) Suppose that we only observe $S(X)$, where S is a function of X (the observation). Suppose that X is discrete and let $q(s, \theta)$ denote the mass function for S when θ is the parameter. Show that

$$
\frac{q(s, \theta)}{q\left(s, \theta_{0}\right)}=\mathbb{E}_{\theta_{0}}\left[\left.\frac{p(X, \theta)}{p\left(X, \theta_{0}\right)} \right\rvert\, S(X)=s\right]
$$

(b) Establish part 2. of Theorem 5.6. Do this by showing that $\left\{\left(\theta_{m}, \theta_{m+1}\right)\right\}$ has a subsequence converging to $\left\{\left(\theta^{*}, \theta^{*}\right)\right\}$ and that therefore θ^{*} is a global minimiser.

Short Answers

1.

$$
\begin{gathered}
\frac{L(M+1, x)}{L(M, x)}=\frac{(M+1)(N-M-n+x)}{(M+1-x)(N-M)} \\
\frac{L(M+1, x)}{L(M, x)}>1 \Leftrightarrow M<\frac{x(N+1)}{n}-1
\end{gathered}
$$

It follows that

$$
L(M+1, x) \leq L(M, x) \Leftrightarrow M \geq \frac{x(N+1)}{n}-1
$$

so that $L(M, x)$ is the maximum value if and only if

$$
M=\left\{\begin{array}{ll}
\left\lfloor\frac{x(N+1)}{n}\right\rfloor & \frac{x(N+1)}{n} \notin \mathbb{Z}_{+} \\
\frac{x(N+1)}{n}-1 & \frac{x(N+1)}{n} \in \mathbb{Z}_{+} \\
\frac{x(N+1)}{n} & \frac{x(N+1)}{n} \in \mathbb{Z}_{+}
\end{array} \quad \text { and } \quad \frac{L(M+1, x)}{L(M, x)}=1\right.
$$

2.

$$
L\left(\mu, \sigma ; x_{1}, \ldots, x_{n}\right)=\prod_{j=1}^{n}\left(\frac{9}{10 \sigma} \phi\left(\frac{x_{j}-\mu}{\sigma}\right)+\frac{1}{10} \phi\left(x_{j}-\mu\right)\right)
$$

Clearly, taking $\mu=x_{j}$ for any $j \in\{1, \ldots, n\}$:

$$
\lim _{\sigma \rightarrow 0} L\left(x_{1}, \ldots, x_{n} ; x_{j}, \sigma\right)=+\infty
$$

Hence $(\widehat{\mu}, \widehat{\sigma})=\left(x_{j}, 0\right)$ for any $j \in\{1, \ldots, n\}$ returns a value of $+\infty$ for the likelihood. For any $\sigma>0$ and any $\mu \in \mathbb{R}, L(\mu, \sigma)<+\infty$, hence $\widehat{\sigma}_{M L}=0$ irrespective of the true value of σ.
3.

$$
L\left(\theta ; x_{1}, \ldots, x_{n}\right)=\prod_{j=1}^{n} \mathbf{1}_{\left(x_{j}-\frac{1}{2}, x_{j}+\frac{1}{2}\right)}(\theta)=\mathbf{1}_{\left(\max _{j} x_{j}-\frac{1}{2}, \min _{j}+\frac{1}{2}\right)}(\theta)
$$

so $\widehat{\theta}_{M L}$ is not unique; any value $\widehat{\theta}_{M L} \in\left(\max _{j} x_{j}-\frac{1}{2}, \min _{j} x_{j}+\frac{1}{2}\right)$ maximises the likelihood.
4. (a) For $c<c_{0}$,

$$
\begin{aligned}
\mathbb{E}\left[\left|Y-c_{0}\right|\right]= & \mathbb{E}\left[\left(Y-c_{0}\right) \mathbf{1}_{\left\{Y>c_{0}\right\}}\right]+\mathbb{E}\left[\left(c_{0}-Y\right) \mathbf{1}_{\left\{Y<c_{0}\right\}}\right] \\
= & \mathbb{E}\left[(Y-c) \mathbf{1}_{\{Y>c\}}\right]-\mathbb{E}\left[(Y-c) \mathbf{1}_{\left\{c<Y \leq c_{0}\right\}}\right]-\left(c_{0}-c\right) \mathbb{P}\left(Y>c_{0}\right) \\
& +\mathbb{E}\left[(c-Y) \mathbf{1}_{\{Y<c\}}\right]+\mathbb{E}\left[(c-Y) \mathbf{1}_{\left\{c<Y<c_{0}\right\}}\right]+\left(c_{0}-c\right) \mathbb{P}\left(Y<c_{0}\right) \\
= & \mathbb{E}[|Y-c|]-\left(c_{0}-c\right)\left(\mathbb{P}\left(Y \geq c_{0}\right)-\mathbb{P}\left(Y<c_{0}\right)\right)-2 \mathbb{E}\left[(Y-c) \mathbf{1}_{\left(c, c_{0}\right)}(Y)\right]
\end{aligned}
$$

Now choose c_{0} such that $\mathbb{P}\left(Y \geq c_{0}\right) \geq \frac{1}{2}, \quad \mathbb{P}\left(Y \leq c_{0}\right)=\frac{1}{2}$, then $R\left(c_{0}\right) \leq R(c)$. The inequality is strict unless both $\mathbb{P}\left(Y=c_{0}\right)=0$ and $\mathbb{P}\left(Y \in\left(c, c_{0}\right)\right)=0$. It follows that $R\left(c_{0}\right)<R(c)$ unless c also satisfies $\mathbb{P}(Y \geq c) \geq \frac{1}{2}$ and $\mathbb{P}(Y \leq c) \geq \frac{1}{2}$. Similar arguments for $c>c_{0}$. It follows that a value c minimises if and only if it is a median.
(b) i. Log likelihood

$$
\log L\left(\beta, \sigma ; y_{1}, \ldots, y_{n}\right)=-n \log 2-n \log \sigma-\frac{1}{\sigma} \sum_{i=1}^{n}\left|y_{i}-\mu_{i}\right|
$$

Let f denote the maximum of $\sum_{i=1}^{n}\left|y_{i}-\mu_{i}\right|$. Then, for β that gives f,

$$
\frac{\partial}{\partial \sigma} \log L=-\frac{n}{\sigma}+\frac{1}{\sigma^{2}} f \Rightarrow \widehat{\sigma}=\frac{1}{f}
$$

The result follows.
ii. Consider the empirical distribution defined by $Y_{(1)}, \ldots, Y_{(n)}$ and apply the result of the first part.
5.

$$
\begin{aligned}
\mathbb{P}(X=x, Y=y, Z=z)= & \frac{\left(n\left(\mu_{1}+\mu_{2}\right)\right)^{x}\left(m \mu_{1}\right)^{y}\left(m \mu_{2}\right)^{z}}{x!y!z!} e^{\left.-\left(n\left(\mu_{1}+\mu_{2}\right)\right)-m \mu_{1}-m \mu_{2}\right)} \\
\log L\left(\mu_{1}, \mu_{2} ; x, y, z\right)= & \left(x \log \frac{n}{x!y!z!}+x \log \left(\mu_{1}+\mu_{2}\right)+y \log m+z \log m\right) \\
& +y \log \mu_{1}+z \log \mu_{2}-\mu_{1}(n+m)-\mu_{2}(n+m)
\end{aligned}
$$

A critical point, if it is in $(0, \infty) \times(0, \infty)$ (the interior) satisfies

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial \mu_{1}} \log L\left(\mu_{1}, \mu_{2}\right)=\frac{x}{\mu_{1}+\mu_{2}}+\frac{y}{\mu_{1}}-(n+m)=0 \\
\frac{\partial}{\partial \mu_{2}} \log L\left(\mu_{1}, \mu_{2}\right)=\frac{x}{\mu_{1}+\mu_{2}}+\frac{z}{\mu_{2}}-(n+m)=0
\end{array}\right.
$$

If $x>0, y>0$ and $z>0$, there is exactly one solution to these equations. From the equations, $\frac{z}{\mu_{2}}=\frac{y}{\mu_{1}}$ so that

$$
\frac{x}{\mu_{1}+\frac{z \mu_{1}}{y}}+\frac{y}{\mu_{1}}=n+m \Rightarrow \frac{x y}{(y+z) \mu_{1}}+\frac{y}{\mu_{1}}=n+m \Rightarrow \mu_{1}=\frac{y(x+y+z)}{(y+z)(n+m)}
$$

giving

$$
\mu_{2}=\frac{z(x+y+z)}{(n+m)(y+z)} \quad \mu_{1}=\frac{y(x+y+z)}{(n+m)(y+z)} .
$$

It turns out that this $\left(\mu_{1}, \mu_{2}\right)$ gives a global maximum in $\mathbb{R}_{+} \times \mathbb{R}_{+}$in all cases. To see this, we consider the boundaries of $\mathbb{R}_{+} \times \mathbb{R}_{+}$which are: $\mu_{1}+\mu_{2} \rightarrow+\infty, \mu_{1} \rightarrow 0$ for $\mu_{2}<+\infty$ and $\mu_{2} \rightarrow 0$ for $\mu_{1}<+\infty$. The different cases are as follows:

1) If $x>0, y>0, z>0$, then $\log L\left(\mu_{1}, \mu_{2} ; x, y, z\right)$ is strictly concave in $\left(\mu_{1}, \mu_{2}\right)$, bounded above, and $\log L\left(\mu_{1}, \mu_{2} ; x, y, z\right) \xrightarrow{\mu_{1}+\mu_{2} \rightarrow+\infty}-\infty, \log L\left(\mu_{1}, \mu_{2}\right) \rightarrow-\infty$ if $\mu_{1} \rightarrow 0$ (μ_{2} fixed) or $\mu_{2} \rightarrow 0\left(\mu_{1}\right.$ fixed).

Therefore, from strict concavity and differentiability, that the maximum is unique and is in the interior of the domain and satisfies $\frac{\partial \log L}{\partial \mu_{1}}=\frac{\partial \log L}{\partial \mu_{2}}=0$.
2) If $x>0, y>0, z=0$, then $\log L\left(\mu_{1}, \mu_{2}\right)$ is strictly concave, but there is no solution to the equations $\frac{\partial}{\partial \mu_{1}} \log L=\frac{\partial}{\partial \mu_{2}} \log L=0$ in $(0,+\infty) \times(0,+\infty)$ and hence the maximum is on the boundary. $\mathcal{L}\left(\mu_{1}, \mu_{2}\right) \xrightarrow{\mu_{1}+\mu_{2} \rightarrow+\infty}-\infty, \log L\left(\mu_{1}, \mu_{2}\right) \xrightarrow{\mu_{1} \rightarrow 0}-\infty$ for μ_{2} fixed.

Therefore, the part of the boundary where the maximum is achieved is $\mu_{2}=0$. The problem now reduces to finding μ_{1} that maximises $\log L\left(\mu_{1}, 0 ; x, y, 0\right)$ which is $\mu_{1}=\frac{x+y}{n+m}$.
3) Similarly for $x>0, y=0, z>0$.
4) $x>0, y=z=0$ - the only thing that can be estimated is $\mu_{1}+\mu_{2}$, the estimate is

$$
\widehat{\mu_{1}+\mu_{2}}=\frac{x}{m+n}
$$

5) $x=0$: This splits into two separate estimation problems, μ_{1} which maximises $y \log \mu_{1}-\mu_{1}(n+$ m) and μ_{2} which maximises $z \log \mu_{2}-\mu_{2}(n+m)$ which gives

$$
\mu_{1}=\frac{y}{n+m} \quad \mu_{2}=\frac{z}{n+m}
$$

6. (a) $\log L(\mu, \sigma)=\log \prod_{j=1}^{n}\left(\frac{1}{\sigma} f_{0}\left(\frac{x_{j}-\mu}{\sigma}\right)\right)=-n \log \sigma-\sum_{j=1}^{n} w\left(\frac{x_{j}-\mu}{\sigma}\right)$. Likelihood equations are $\nabla \log L(\mu, \sigma)=0$ giving

$$
\left\{\begin{array}{l}
\sum_{j=1}^{n} w^{\prime}\left(\frac{x_{j}-\mu}{\sigma}\right)=0 \\
\sum_{i=1}^{n}\left\{\frac{\left(x_{i}-\mu\right)}{\sigma} w^{\prime}\left(\frac{X_{i}-\mu}{\sigma}\right)-1\right\}=0
\end{array}\right.
$$

as required. For uniqueness, consider the function $D(a, b)$. Then

$$
\begin{aligned}
\nabla D(a, b)=0 & \Leftrightarrow\left(\sum_{i=1}^{n} X_{i} w^{\prime}\left(a X_{i}-b\right)-\frac{n}{a},-\sum_{i=1}^{n} w^{\prime}\left(a X_{i}-b\right)\right)=0 \\
& \Leftrightarrow\left(\sum_{i=1}^{n}\left\{\frac{\left(X_{i}-\mu\right)}{\sigma} w^{\prime}\left(\frac{X_{i}-\mu}{\sigma}\right)-1\right\}, \sum_{i=1}^{n} w^{\prime}\left(\frac{X_{i}-\mu}{\sigma}\right)\right)=0
\end{aligned}
$$

using $a=\frac{1}{\sigma}$ and $b=\frac{\mu}{\sigma}$. Now,

$$
\frac{\partial^{2} D}{\partial a^{2}}=\sum_{i=1}^{n} X_{i}^{2} w^{\prime \prime}\left(a X_{i}-b\right)+\frac{n}{a^{2}}, \quad \frac{\partial^{2} D}{\partial b^{2}}=\sum_{i=1}^{n} w^{\prime \prime}\left(a X_{i}-b\right), \quad \frac{\partial^{2} D}{\partial a \partial b}=-\sum_{j=1}^{n} X_{j} w^{\prime \prime}\left(a X_{j}-b\right)
$$

$$
\begin{aligned}
& \left(\frac{\partial^{2} D}{\partial a \partial b}\right)^{2}=\left(\sum_{j=1}^{n} X_{j} w^{\prime \prime}\left(a X_{j}-b\right)\right)^{2} \\
& \quad \leq \sum_{j=1}^{n} X_{j}^{2} w^{\prime \prime}\left(a X_{j}-b\right) \sum_{j=1}^{n} w^{\prime \prime}\left(a X_{j}-b\right)<\left(\frac{\partial^{2} D}{\partial a^{2}}\right)\left(\frac{\partial^{2} D}{\partial b^{2}}\right)
\end{aligned}
$$

using $\left|\sum c_{i} d_{i}\right| \leq\left(\sum c_{i}^{2}\right)^{1 / 2}\left(\sum d_{i}^{2}\right)^{1 / 2} ; c_{i}=X_{i} \sqrt{w^{\prime \prime}\left(a X_{i}-b\right)}$ and $d_{i}=\sqrt{w^{\prime \prime}\left(a X_{i}-b\right)}$ from which convexity follows. We're using $w^{\prime \prime}>0$.
Finally, we have to show that $\lim _{(a, b) \rightarrow\left(a_{0}, b_{0}\right)} D(a, b)=+\infty$ for $\left(a_{0}, b_{0}\right)$ as described. The only part which requires attention is: $a_{0}=+\infty$. But $w^{\prime \prime}>0$ implies that w^{\prime} is increasing. Since $w(\pm \infty)=+\infty$, this implies that there exists an x_{0} such that $w\left(x_{0}\right)=\min _{x} w(x)$, that $\lim _{x \rightarrow+\infty}\left(-w^{\prime}(x)\right)=c_{1}>0$ and $\lim _{x \rightarrow+\infty} w^{\prime}(x)=c_{2}>0$ where c_{1} and/or c_{2} may be $+\infty$. From this, it is clear that unless $X_{1}=\ldots=X_{n}=0, \lim _{a \rightarrow+\infty} D(a, b)=+\infty$, since $\frac{d}{d a} \log a=\frac{1}{a} \xrightarrow{a \rightarrow+\infty} 0$.
(b) Minimise $D(a, b)$. The matrix of second derivatives is positive definite and well defined. Call it M and let $U=\nabla D$. Then

$$
\binom{a^{(i+1)}}{b^{(i+1)}}=\binom{a^{(i)}}{b^{(i)}}-M^{-1}\left(a^{(i)}, b^{(i)}\right) U\left(a^{(i)}, b^{(i)}\right)
$$

(c) $f_{0}(x)=\left(1+e^{-x}\right)^{-2} e^{-x}$ so that

$$
w(x)=-\log f_{0}(x)=2 \log \left(1+e^{-x}\right)+x, \quad w^{\prime \prime}(x)=\left(1+e^{-x}\right)^{-2} e^{-2 x}+\left(1+e^{-x}\right)^{-1} e^{-x}
$$

so it is strictly convex.

$$
w^{\prime}(x)=-\frac{1}{e^{x}+1}
$$

Likelihood equations are:

$$
\left\{\begin{array}{l}
\sum_{i=1}^{n} \frac{1}{\left(e^{\left(x_{i}-\mu\right) / \sigma}+1\right)}=0 \\
\sum_{i=1}^{n}\left\{\frac{\left(x_{i}-\mu\right) / \sigma}{\left(e^{\left.x_{i}-\mu\right) / \sigma}+1\right)}-1\right\}=0
\end{array}\right.
$$

7. (a) For $\alpha>1,\|y\|^{\alpha}$ is strictly convex in y. This can be seen as follows: for $\alpha>1$, the function $g: \mathbb{R} \rightarrow \mathbb{R}_{+}$defined by $g(x)=|x|^{\alpha}$ is strictly convex. It follows that for $t \in(0,1)$, if $\|x\| \neq\|y\|$, then

$$
\begin{aligned}
\|t x+(1-t) y\|^{\alpha} & =\left(t^{2}\|x\|^{2}+2 t(1-t)\langle x, y\rangle+(1-t)^{2}\|y\|^{2}\right)^{\alpha / 2} \\
& \left.\leq\left(t^{2}\|x\|^{2}+2 t(1-t)\|x\|\|y\|+(1-t)^{2}\|y\|^{2}\right)^{\alpha / 2}\right) \\
& =(t\|x\|+(1-t)\|y\|)^{\alpha}<t\|x\|^{\alpha}+(1-t)\|y\|^{\alpha} .
\end{aligned}
$$

and if $\|x\|=\|y\|$ but $x \neq y$, then $|\langle x, y\rangle|<\|x\|\|y\|$ where the inequality is strict, so that again

$$
\begin{gathered}
\|t x+(1-t) y\|^{\alpha}<t\|x\|^{\alpha}+(1-t)\|y\|^{\alpha} . \\
\log L\left(x_{1}, \ldots, x_{n} ; \theta\right)=n \log c(\alpha)-\sum_{j=1}^{n}\left\|x_{j}-\theta\right\|^{\alpha}
\end{gathered}
$$

and the sum of strictly convex functions is again strictly convex. It follows that the likelihood function has a unique maximiser $\widehat{\theta}_{M L}$.
(b)

$$
\begin{gathered}
f(x ; \theta)=c \exp \{-|x-\theta|\} \\
\log L\left(x_{1}, \ldots, x_{n} ; \theta\right)=n \log c-\sum_{j=1}^{n}\left|x_{j}-\theta\right|
\end{gathered}
$$

Problem is therefore to find θ that minimises $\sum_{j=1}^{n}\left|x_{j}-\theta\right|$. It follows from earlier exercise that $\hat{\theta}$ provides a minimiser where $\hat{\theta}$ is any sample median. If n is even and $x_{(n / 2)}<x_{(n / 2)+1}$ then the median is not unique.
8. Minimise

$$
\left(\theta_{1}-x_{1}\right)^{2}+\left(\theta_{2}-x_{2}\right)^{2}
$$

subject to the constraint that $\theta_{1} \leq \theta_{2}$. If $x_{1} \leq x_{2}$, then $\left(\widehat{\theta}_{1}, \widehat{\theta}_{2}\right)=\left(x_{1}, x_{2}\right)$. If $x_{1}>x_{2}$, then $\widehat{\theta}_{1}=\widehat{\theta}_{2}$ (on the boundary) so that it is the minimiser of

$$
2 \theta^{2}-2\left(x_{1}+x_{2}\right) \theta+\left(x_{1}^{2}+x_{2}^{2}\right)
$$

which is: $\widehat{\theta}_{1}=\widehat{\theta}_{2}=\frac{x_{1}+x_{2}}{2}$.
9. Minimise:

$$
\frac{1}{2 \sigma^{2}}\left(\sum_{j=1}^{m}\left(x_{j}-\mu_{1}\right)^{2}+\sum_{j=1}^{n}\left(y_{j}-\mu_{2}\right)^{2}\right)+\frac{(m+n)}{2} \log \sigma^{2}
$$

μ_{1} and μ_{2} are easy; $\widehat{\mu}_{1}=\bar{x}$ and $\widehat{\mu}_{2}=\bar{y}$. For $\sigma^{2}, \widehat{\sigma^{2}}$ is the point which satisfies:

$$
-\frac{1}{2\left(\sigma^{2}\right)^{2}}\left(\sum_{j=1}^{m}\left(x_{j}-\bar{x}\right)^{2}+\sum_{j=1}^{n}\left(y_{j}-\bar{y}\right)^{2}\right)+\frac{m+n}{2 \sigma^{2}}
$$

giving the MLE of

$$
\widehat{\sigma^{2}}=\frac{1}{m+n}\left(\sum_{j=1}^{m}\left(X_{j}-\bar{X}\right)^{2}+\sum_{j=1}^{n}\left(Y_{j}-\bar{Y}\right)^{2}\right)
$$

10. Factorisation theorem gives:

$$
p(x, \theta)=h(x) g(T(x), \theta) ;
$$

maximising in terms of θ is equivalent to maximising $g(T(x), \theta)$, hence the result follows.
11. (a) $\widehat{\eta}_{M L}$ maximises $p(x, \eta)=p(x, h(\theta))$. The value of θ which maximises this is $\widehat{\theta}_{M L}$, hence if $\widehat{\theta}_{M L}$ is a value of θ which maximises $p(x, \theta)$ then $\eta_{M L}=h\left(\widehat{\theta}_{M L}\right)$ is a value of η which maximises $p(x, \eta)$. Similarly, if θ does not maximise $p(x, \theta)$, then $\eta=h(\theta)$ does not maximise the reparametrised family $p(x, \eta)$.
(b) Using the hint, $\widehat{\omega}_{M L E}$ maximises $\sup _{\theta \in \Omega(\omega)} L(\theta ; X) . \omega_{M L}$ is therefore the value of ω that satisfies $\widehat{\theta}_{M L} \in \Omega\left(\widehat{\omega}_{M L}\right)$ and is therefore (by definition) $\widehat{\omega}_{M L}=q\left(\widehat{\theta}_{M L}\right)$.
12. (Omitted)

