
Tutorial 5

1. Let X1, . . . , Xn be i.i.d. U(0, θ) random variables where θ is an unknown parameter.

(a) Let T1 =
n+1
n maxj Xj . Compute E[T1] and Var(T1).

(b) Let T2 =
2
n

∑n
j=1Xj . Compute E[T2] and Var(T2).

You should find that both T1 and T2 are unbiased estimators of θ (that is E[T1] = E[T2] = θ, but

that the variance of T1 is substantially lower.

(c) Show that maxj Xj is the maximum likelihood estimator of θ.

(d) Show that 2
n

∑n
j=1Xj is the Method of Moments estimator of θ (based on the first moment

- the expectation).

2. Let X be a random variable with state space X = {v1, . . . , vk}, where pj = P(X = vj).

Let (X1, . . . , Xn) be a random sample from X. The frequency plug-in principle is simply the

estimation procedure where (p1, . . . , pk) is estimated by (p̂1, . . . , p̂n) =
(
N1

n , . . . ,
Nk

n

)
, where

Nj =
∑n

i=1 1(Xi = vj). The extension principle simply extends this, to estimating a continuous

function q(p1, . . . , pk) by q(p̂1, . . . , p̂k), which is the frequency substitution estimate.

Consider a population made up of three different types of individuals occurring in the Hardy-

Weinberg proportions Pθ(X = v1) = θ2, Pθ(X = v2) = 2θ(1 − θ) and Pθ(X = v3) = (1 − θ)2

respectively.

(a) Show that T := N1

n + N2

2n is a frequency substitution estimate of θ.

(b) Using part (a), find a frequency substitution estimate of the odds ratio θ
1−θ .

(c) Suppose v1 = −1, v2 = 0 and v3 = 1. By considering the first moment of X, show that T

is a method of moment estimate of θ.

3. Let X1, . . . , Xn be i.i.d., with Beta(β1, β2) distribution. Find the method of moments estimate

of β = (β1, β2) based on the first two moments.

4. Let X1, . . . , Xn be i.i.d. Bernoulli trials, each with success probability θ. Let ψ : Rn× (0, 1) → R

be the function defined by:

ψ(X1, . . . , Xn, θ) =
1

θ

n∑

j=1

Xj −
1

1− θ


n−

n∑

j=1

Xj


 .

Compute

V (θ0, θ) = Eθ0 [ψ(X1, . . . , Xn, θ)]

and show that θ0 is the unique solution of V (θ0, θ) = 0. Compute the estimating equation

estimate of θ.
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5. General method of moment estimates SupposeX1, . . . , Xn are i.i.d., asX ∼ Pθ : θ ∈ Θ ⊂ R
d

and θ identifiable. Let g1, . . . , gd be linearly independent functions and set

µj(θ) := Eθ [gj(X)] µ̂j =
1

n

n∑

i=1

gj(Xi)

The moment method estimates are θ̂ such that µj(θ̂) = µj for each j = 1, . . . , d. Furthermore, for

the parameters of a canonical exponential family, the moment method estimator of the parameter

vector η is the moment method estimator based on the sufficient statistic T . Recall that for an

exponential family in its canonical coordinates

Ȧ(η) = Eη [T (X)]

where Ȧ denotes the vector of partial derivatives.

Suppose that {Pθ : θ ∈ Θ} is a k-parameter exponential family generated by (h, T ) where

T = (T1, . . . , Tk). Using gj = Tj in the above, find the method of moments estimates for the

parameters in:

(a) The Rayleigh distribution:

p(x, θ) =
( x
θ2

)
exp

{
−
x2

2θ2

}
x > 0, θ > 0,

(b) the Gamma distribution gamma(p, θ) where p is fixed.

6. When the data is not i.i.d., it may still be possible to express parameters as functions of moments

and then use estimates based on replacing population moments with ‘sample’ moments.

Let X1, . . . , Xn satisfy:

{
Xi = µ+ ei i = 1, . . . , n

ei = βei−1 + ǫi i = 1, . . . , n, e0 = 0.

where ǫ1, ǫ2, ǫ3, . . . are independent, identically distributed, E [ǫj ] = 0 and Var(ǫj) = σ2.

(a) Use E[Xi] to give a method of moments estimate of µ.

(b) Suppose µ = µ0 and β = b are fixed. Use E[U2
i ] where

Ui =
Xi − µ0(∑i−1
j=0 b

2j
)1/2

to give a method of moments estimate of σ2.

(c) If µ and σ2 are fixed, can you give a method of moments estimate of β?
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7. X1, . . . , Xn random sample from distribution with density

f(x) = θx−θ−1 x ≥ 1

θ > 0 unknown parameter

(a) Compute θ̂n = θ̂(X1, . . . , Xn), the method of moments estimator.

(b) Show that, for θ > 2, θ̂n →p θ.

8. Let θ = (θ1, θ2) be a bivariate parameter. Suppose that X has state space X , T1 : X → R and

T2 : X → R are functions such that T1(X) is sufficient for θ1 whenever θ2 is fixed and known,

whereas T2(X) is sufficient for θ2 whenever θ1 is fixed and known. Assume that S = {x|p(x, θ) >

0} does not depend on θ (p a density if X is a continuous variable, a probability function if it is

discrete).

(a) Show that if T1 and T2 do not depend on θ2 and θ1 respectively, then (T1(X), T2(X)) is

sufficient for θ.

(b) Give an example where (T1(X), T2(X)) is sufficient for θ, where T1(X) is sufficient for θ1

whenever θ2 is fixed and known, T2(X) is not sufficient for θ2 whenever θ1 is fixed and

known.

9. Censored geometric waiting times Let

Pθ(X = k) = θk−1(1− θ) k = 1, 2, . . .

where 0 < θ < 1, where X is the time to failure. Suppose that we only record a time to failure

if it occurs on or before time r, and record that it survives for longer than time r otherwise.

Suppose we observe n individuals, m of which survive longer than time r and the failure times of

the others are Y1, . . . , Yn−m, where 1 ≤ Yj ≤ r for j = 1, . . . , n−m. Let S =
∑n−m

j=1 Yj . Compute

the maximum likelihood estimator of θ based on all the information.

10. Maximum Likelihood (Normal) Let X1, . . . , Xn be a random sample from a N(µ, σ2) distri-

bution, where both µ and σ are unknown. Compute the maximum likelihood estimators for the

pair (µ, σ2). Are the estimators of µ and σ2 unbiased?
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Short Answers

1. (a)

P(max
j
Xj ≤ x) = P(X1 ≤ x)n =





0 x < 0
xn

θn 0 ≤ x ≤ θ

1 x > θ

so, setting Y = maxj Xj , the density is

pY (x; θ) =
nxn−1

θn
1[0,θ](x)

so that

E[Y ] =
n

θn

∫ θ

0
xndx =

n

n+ 1
θ.

Since T1 =
n+1
n Y , therefore Eθ[T1] = θ.

Eθ[Y
2] =

n

θn

∫ θ

0
xn+1dx =

n

n+ 2
θ2

Hence

Varθ(Y ) =
n

n+ 2
θ2 −

n2

(n+ 1)2
θ2 =

n

(n+ 2)(n+ 1)2
θ2

so that

Varθ(T1) =

(
n+ 1

n

)2

Var(Y ) =
1

n(n+ 2)
θ2.

(b)

Eθ[T2] =
2

n

n∑

j=1

Eθ[Xj ] =
2

n

θ

2
= θ.

If X ∼ U(0, θ) then Varθ(X) = θ2

12 so that

Varθ(T2) =
4

n2
× n×

θ2

12
=
θ2

3n
.

(c) That maxj Xj is the maximum likelihood estimator of θ is seen as follows:

L(θ;x1, . . . , xn) =
1

θn
1[maxj xj ,+∞)(θ)

which (as a function of θ) is maximised by θ̂ML = maxj xj .

(d) That T2 is the method of moments estimator of θ is seen as follows: Eθ[X1] =
θ
2 so that

θ = 2Eθ[X1] and hence θ̂MM = 2X = 2
n

∑n
j=1Xj .
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2. (a) p1 = θ2, p2 = 2θ(1− θ) = 2θ − 2θ2 = 2θ − 2p1 so that

θ = p1 +
p2
2

hence a frequency substitution estimate is:

θ̂ =
N1

n
+
N2

2n
.

(b) There are several answers. One answer: from before, estimate is:

θ̂

1− θ̂
=

2N1 +N2

2n− 2N1 −N2
.

Another answer:
θ

1− θ
=

θ2

θ(1− θ)
=

p1
p2/2

θ̂

1− θ
=

2N1

N2
.

(c) Eθ[X] = −θ2 + (1− θ)2 = 1− 2θ

µ̂ = −
N1

n
+
N3

n
= 1−

N2

n
−

2N1

n
.

Hence moment method estimate (based on first moment) is:

1− 2θ̂ = 1−
N2

n
−

2N1

n
⇒ θ̂ =

N1

n
+
N2

2n

as required.

3.

f(x) =
Γ(β1 + β2)

Γ(β1)Γ(β2)
xβ1(1− x)β2 x ∈ (0, 1)

E[X] =
Γ(β1 + β2)

Γ(β1)Γ(β2)

Γ(β1 + 1)Γ(β2)

Γ(β1 + β2 + 1)
=

β1
β1 + β2

E[X2] =
Γ(β1 + β2)

Γ(β1)Γ(β2)

∫ 1

0
xβ1+1(1− x)β2−1dx =

Γ(β1 + β2)

Γ(β1)Γ(β2)

Γ(β1 + 2)Γ(β2)

Γ(β1 + β2 + 2)

E[X2] =
(β1 + 1)β1

(β1 + β2 + 1)(β1 + β2)

Let m1 = E[X] and m2 = E[X2]. Then from the first equation

β2 = β1

(
1

m1
− 1

)

and from the second equation

m2 =
β1 + 1

β1 + β2 + 1
m1 ⇒ m2 =

m2
1(β1 + 1)

β1 +m1
⇒ β1 =

m1(1−m2)

m2 −m2
1

, β2 =
(1−m1)(1−m2)

m2 −m2
1

β̂1 =
x(1− x2)

x2 − x2
β̂2 =

(1− x)(1− x2)

x2 − x2
.
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4.

Eθ0 [ψ(X1, . . . , Xn, θ)] = n

(
θ0
θ

−
1− θ0
1− θ

)
= n

θ0 − θ

θ(1− θ)

which is 0 if and only if θ = θ0 as required.

Estimating equation estimate satisfies

ψ(X1, . . . , Xn, θ̂) = 0 =
1

θ̂

n∑

j=1

Xj −
1

1− θ̂


n−

n∑

j=1

Xj


⇒ θ̂ =

1

n

n∑

j=1

Xj .

5. (a) Set η = 1
2θ2

then

p(x, θ) = x exp
{
η(−x2)− (− log (2η))

}

T (x) = −x2

A(η) = − log (2η) ⇒
d

dη
A(η) = −

1

η
= −2θ2 = −Eθ

[
X2
]

so

θ̂ =


 1

2n

n∑

j=1

X2
j




1/2

(b)

p(x, θ) =
θp

Γ(p)
xp−1e−θx x > 0

set η = θ then

p(x, η) =
xp−1

Γ(p)
eη(−x)−(−p log(η))

T (x) = x A(η) = −p log(η)

d

dη
A(η) = −

p

η

so that

Eθ[T (X)] = −Eθ[X] = −
p

θ

so

θ̂ =
p

X

6. (a) µ = E [Xi] so µ̂ = X.

(b) Here Xi = ei and

Var(ei) = b2Var(ei−1) + σ2 ⇒ Var(ei) = σ2

(
j−1∑

i=0

b2i

)

It follows that E
[
U2
i

]
= σ2 for each i = 1, . . . , n, hence

σ̂2 :=
1

n

n∑

j=1

U2
j

is a method of moments estimator of σ2.
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(c) For i = 1, 2, . . . , n (using X0 = µ and E[Xi] = µ),

(Xi − µ) = β(Xi−1 − µ) + ǫi

so that

Cov(Xi, Xi−1) = βVar(Xi−1)

hence
n−1∑

i=1

Cov(Xi+1, Xi) = β
n−1∑

i=1

Var(Xi)

This leads to

β̂ =
1
n

∑n
i=1(Xi − µ)(Xi+1 − µ)
1
n

∑n−1
i=1 (Xi − µ)2

This method of moments estimator is consistent provided |β| < 1, so that

Var(Xi) →
σ2

1− β2
Cov(Xi, Xi+1) → β

σ2

1− β2
.

7. (a)

E[X] = θ

∫
∞

1
x.x−θ−1dx = θ

[
x1−θ

1− θ

]∞

1

=
θ

θ − 1

θ̂n

θ̂n − 1
= X

θ̂n =
X

X − 1
.

(b) To prove convergence,

P

(∣∣∣∣
X

X − 1
− θ

∣∣∣∣ > ǫ

)
≤ P

(∣∣∣∣X −
θ

θ − 1

∣∣∣∣ >
ǫ

(θ − 1 + ǫ)(θ − 1)

)

≤

(
(θ − 1 + ǫ)(θ − 1)

ǫ

)2

Var(X)

=

(
(θ − 1 + ǫ)(θ − 1)

ǫ

)2 1

n
Var(X1)

n→+∞

−→ 0

provided Var(X1) < +∞, which requires θ > 2. Techniques using the characteristic function

enable this to be extended to θ > 1; convergence can be proved using a characteristic

function technique if E[|X1|] < +∞.

8. (a) T (X) sufficient if and only if there are functions g and h such that

p(x, θ) = g(T (x), θ)h(x).
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The conditions give functions g1, g2, h1 and h2 such that

p(x, θ) = g1(T1(x), θ1)h1(x, θ2) = g2(T2(x), θ2)h2(x, θ1).

It follows that
g1(T1(x), θ1)

h2(x, θ1)
=
g2(T2(x), θ2)

h1(x, θ2)
= f(x)

and hence that

p(x, θ) = g1(T1(x), θ1)g2(T2(x), θ2)f(x)

and hence (T1(X), T2(X)) is sufficient for (θ1, θ2).

(b) Sample (X1, . . . , Xn) from N(µ, σ2), statistics T1(X) =
∑n

j=1Xj and T2(X) =
∑n

j=1X
2
j .

Here T1(X) is sufficient for µ whether or not σ2 is known. The statistic
∑n

j=1X
2
j is not

sufficient for σ2;
∑n

j=1Xj is also needed whether or not µ is known. This is seen from the

factorisation: the formula is

p(x, σ2) = exp



−

1

2σ2

n∑

j=1

x2j +
µ

σ2

n∑

j=1

xj −
nµ2

σ2
−
n

2
log(2πσ2)





and, even if µ is fixed, both
∑n

j=1 x
2
j and

∑n
j=1 xj give information about σ2.

9. Firstly, we compute the probability that failure occurs after time r. It is:

Pθ(X ≥ r + 1) = (1− θ)
∞∑

k=r+1

θk−1 = (1− θ)θr
∞∑

k=0

θk = θr

Now suppose the events Y1 ∈ A1, . . . , Yn ∈ An are observed. The likelihood is:

L(θ;Y1 ∈ A1, . . . , Yn ∈ An) =

n∏

j=1

L(θ;Yj ∈ Aj)

since these events are independent. If Aj = {r + 1, r + 2, . . .} we have L(θ, Yj ∈ Aj) = θr. If

Aj = {yj}, we have L(θ;Yj ∈ Aj) = θyj−1(1− θ) and multiplying these together gives:

L(θ) = θS−(n−m)(1− θ)n−mθrm.

To get the maximum, it is probably easier to use logarithms:

logL(θ) = (S − n+ (r + 1)m) log θ + (n−m) log(1− θ)

Taking derivative to get critical points:

d

dθ
logL(θ) =

S − n+ (r + 1)m

θ
−
n−m

1− θ
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θ̂ =
S + (r + 1)m− n

S + rm

Maximum - clear -

d2

dθ2
= −

S − n+ (r + 1)m

θ2
−

n−m

(1− θ)2
< 0

hence strictly concave, logL(θ) > +∞ and bounded above for 0 < θ < 1 and logL(0) =

logL(1) = −∞ so exists a maximum, which is unique and given at point where d
dθ logL = 0.

10. Let v = σ2

logL(µ, v) = −
n

log
(2π)−

n

2
log v −

1

2v

n∑

j=1

(xj − µ)2

so the likelihood equations are:

{
− n

2v + 1
2v2
∑n

j=1(xj − µ)2 = 0∑n
j=1(xj − µ) = 0

It follows that µ̂ = 1
n

∑n
j=1Xj = X. For the other equation,

v =
1

n

n∑

j=1

(xj − µ)2

so that σ̂2 = 1
n

∑n
j=1(Xj −X)2. This is an exponential family and conditions that MLE exists

and is the unique solution of the likelihood equations are clearly satisfied. From earlier:

E [µ̂] = µ, E
(
σ̂2
)
=
n− 1

n
σ2

so the variance estimator is biased.
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