Tutorial 4

1. Express the following families as exponential families, identifying the terms in the expression:
(a) The beta family:

$$
p\left(x ; \beta_{1}, \beta_{2}\right)=\frac{\Gamma\left(\beta_{1}+\beta_{2}\right)}{\Gamma\left(\beta_{1}\right) \Gamma\left(\beta_{2}\right)} x^{\beta_{1}-1}(1-x)^{\beta_{2}-1} \quad 0 \leq x \leq 1 \quad \beta_{1}>0, \quad \beta_{2}>0
$$

(b) The gamma family:

$$
p(x ; \alpha, \lambda)=\frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha-1} e^{-\lambda x} \quad x \geq 0, \quad \lambda>0, \alpha>0
$$

2. Which of the following are exponential families? Prove or disprove.
(a) The $U(0, \theta)$ family for $\theta>0$. That is, $X \sim U(0, \theta)$ if it has density

$$
p(x ; \theta)= \begin{cases}\frac{1}{\theta} & 0 \leq x \leq \theta \\ 0 & \text { other }\end{cases}
$$

(b) The family of densities:

$$
p(x ; \theta)=\mathbf{1}_{[0, \theta]}(x) \exp \{-2 \log \theta+\log (2 x)\}
$$

where $\theta>0$.
(c) The family of discrete probability mass functions

$$
p(x ; \theta)=\frac{1}{9} \quad x \in\{0.1+\theta, 0.2+\theta, \ldots, 0.9+\theta\} \quad \theta \in \mathbb{R}
$$

(d) The $N\left(\theta, \theta^{2}\right)$ family, $\theta>0$
(e)

$$
p(x ; \theta)=\frac{2(x+\theta)}{1+2 \theta} \quad 0<x<1, \quad \theta>0
$$

(f) $p(x, \theta)$ is the conditional probability mass function for a $\operatorname{binomial}(n, \theta)$ variable, conditioned on $X>0$. (recall binomial has probability mass function $\left.\binom{n}{k} \theta^{k}(1-\theta)^{n-k}\right)$.
3. The inverse Gaussian density $\operatorname{IG}(\mu, \lambda)$, is:

$$
f(x ; \mu, \lambda)=\left(\frac{\lambda}{2 \pi}\right)^{1 / 2} \frac{1}{x^{3 / 2}} \exp \left\{-\frac{\lambda(x-\mu)^{2}}{2 \mu^{2} x}\right\} \mathbf{1}_{\{x>0\}} \quad \mu>0, \lambda>0
$$

(a) Show that this is an exponential family generated by $T(X)=-\frac{1}{2}\left(X, \frac{1}{X}\right)$ and $h(x)=$ $\frac{1}{(2 \pi)^{1 / 2} x^{3 / 2}}$.
(b) Show that the canonical parameters $\left(\eta_{1}, \eta_{2}\right)$ are

$$
\eta_{1}=\frac{\lambda}{\mu^{2}}, \quad \eta_{2}=\lambda
$$

and that the log partition function is:

$$
A\left(\eta_{1}, \eta_{2}\right)=-\left(\frac{1}{2} \log \left(\eta_{2}\right)+\sqrt{\eta_{1} \eta_{2}}\right), \quad \mathcal{E}=\mathbb{R}_{+}^{2}
$$

(c) Find the moment generating function of T and show that

$$
\mathbb{E}[X]=\mu, \quad \operatorname{Var}(X)=\frac{\mu^{3}}{\lambda}, \quad \mathbb{E}\left[\frac{1}{X}\right]=\frac{1}{\mu}+\frac{1}{\lambda}, \quad \operatorname{Var}\left(\frac{1}{X}\right)=\frac{1}{\lambda \mu}+\frac{2}{\lambda^{2}} .
$$

4. Let $\mathcal{P}=\left\{\mathbb{P}_{\theta}: \theta \in \Theta\right\}$ be a canonical exponential family generated by (T, h) and $\mathcal{E}^{0} \neq \phi$. Show that T is minimal sufficient.
5. Let $p(x, \eta)$ be a one parameter canonical exponential family generated by $T(x)=x$ and $h(x)$: $x \in \mathcal{X} \subset \mathbb{R}$. Let $\psi(x)$ be a non-constant, non-decreasing function. Show that $\mathbb{E}_{\eta}[\psi(X)]$ is strictly increasing in η.

Hint: Let Cov denote covariance. Show that

$$
\operatorname{Cov}(X, Y)=\frac{1}{2} \mathbb{E}\left[\left(X-X^{\prime}\right)\left(Y-Y^{\prime}\right)\right]
$$

where (X, Y) and $\left(X^{\prime}, Y^{\prime}\right)$ are independent, identically distributed. Compute $\frac{\partial}{\partial \eta} \mathbb{E}_{\eta}[\psi(X)]$ in terms of $\operatorname{Cov}_{\eta}(\psi(X), X)$.
6. Logistic Regression In the following, Y_{1}, \ldots, Y_{n} are the outcomes of random experiments $i=1, \ldots, n$. For experiment i, you fix the values of covariates $z_{i 1}, \ldots, z_{i d}$. For example, suppose you are trying to find a cure for Coronavirus. For trial i, you choose the quantities of d different chemicals; these quantities are $z_{i 1}, \ldots, z_{i d}$. There are unknown parameters $\beta_{1}, \ldots, \beta_{d}$. You run experiment i on n_{i} individuals (who are independent of each other) and Y_{i} represents the number who are successfully cured and $n_{i}-Y_{i}$ the number for whom the treatement is not successful.

If the model is correct, then you would like estimates $\widehat{\beta}_{1}, \ldots, \widehat{\beta}_{p}$ of the unknown parameters and, from this, estimate the success rate of the treatment for a given covariate vector $\left(z_{1}, \ldots, z_{d}\right)$.
$\left(z_{1,}, Y_{1}\right), \ldots,\left(z_{n, .}, Y_{n}\right)$ are observed, where $z_{1,,}, \ldots, z_{n, \text {. }}$ are d-row vectors and Y_{1}, \ldots, Y_{n} are independent and $Y_{j} \sim \operatorname{Binomial}\left(n_{j}, \lambda_{j}\right)$. The success probability λ_{j} depends on the vector $z_{j, .}$. The function

$$
l(u)=\log \frac{u}{1-u}
$$

is called the logit function. In logistic regression, it is assumed that

$$
l\left(\lambda_{i}\right)=z_{i,}, \beta
$$

where $\beta=\left(\beta_{1}, \ldots, \beta_{d}\right)^{t}$ is the parameter vector.
Show that $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ is an exponential family of rank d if and only if $z_{., 1} \ldots, z_{., d}$ are linearly independent.

Note The family is of rank k if and only if

$$
\mathbb{P}\left(\sum_{j=1}^{k} c_{j} T_{j}(X)=c_{0}\right)<1
$$

for all $\left(c_{0}, c_{1}, \ldots, c_{k}\right) \not \equiv 0$.
7. Let $\left(X_{1}, X_{2}, \ldots X_{n}\right)$ be a stationary Markov chain with two states, 0 and 1. That is,

$$
\mathbb{P}\left(X_{i}=x_{i} \mid X_{1}=x_{1}, \ldots, X_{i-1}=x_{i-1}\right)=\mathbb{P}\left(X_{i}=x_{i} \mid X_{i-1}=x_{i-1}\right)=p_{x_{i-1}, x_{i}}
$$

where $\left(\begin{array}{ll}p_{00} & p_{01} \\ p_{10} & p_{11}\end{array}\right)$ is the matrix of transition probabilities. Suppose, furthermore, that

- $p_{00}=p_{11}=p$, so that $p_{10}=p_{01}=1-p$,
- $\mathbb{P}\left(X_{1}=0\right)=\mathbb{P}\left(X_{1}=1\right)=\frac{1}{2}$.
(a) Show that if $0<p<1$ is unknown, this is a full-rank one-parameter exponential family with $T=N_{00}+N_{11}$, where $N_{i j}$ denotes the number of transitions from i to j. For example, the sequence 01011 has $N_{01}=2, N_{11}=1, N_{00}=0$ and $N_{10}=1$.
(b) Show that $\mathbb{E}[T]=(n-1) p$.

8. Let $X=(Z, Y)$ where $Y=Z+\theta W, \theta>0, Z$ and W are independent $N(0,1)$ variables. Let X_{1}, \ldots, X_{n} be i.i.d. as X. Write the density of X_{1}, \ldots, X_{n} as a canonical exponential family and identify T, h, η, A and \mathcal{E}. Find the expected value and variance of the sufficient statistic.
9. The entropy $h(p)$ of a random variable X with density p is defined by:

$$
h(p)=\mathbb{E}[-\log p(X)]=-\int_{S} p(x) \log p(x) d x
$$

where $S=\{x: p(x)>0\}$.
(a) Show that the canonical k parameter exponential family density

$$
p(x, \eta)=\exp \left\{\sum_{j=1}^{k} \eta_{j} r_{j}(x)-A(\eta)\right\} \quad x \in S
$$

maximises $h(p)$ subject to the constraints

$$
p(x) \geq 0, \quad \int_{S} p(x) d x=1, \quad \int_{S} p(x) r_{j}(x) d x=\alpha_{j}, \quad 1 \leq j \leq k
$$

for given $\alpha_{1}, \ldots, \alpha_{k}$ for which a solution exists, where $\eta_{1}, \ldots, \eta_{k}$ are chosen so that p satisfies the constraints.
Hint This is very easy using Lagrange multipliers; maximise the integrand
(b) Find the maximum entropy densities when $r_{j}(x)=x^{j}$ in the following cases:
i. $S=(0,+\infty), \quad \alpha_{1}>0$
ii. $S=\mathbb{R}, k=2, \alpha_{1} \in \mathbb{R}, \quad \alpha_{2} \in \mathbb{R}_{+}$
iii. $S=\mathbb{R}, k=3, \alpha_{1} \in \mathbb{R}, \alpha_{2}>0, \alpha_{3} \in \mathbb{R}$.
10. Suppose that $p(x, \theta)$ is a positive density on the real line, which is continuous in x for each θ and such that if X_{1}, X_{2} is a sample of size 2 from $p(., \theta)$ then $X_{1}+X_{2}$ is sufficient for θ. Show that $p(., \theta)$ corresponds to a one-parameter exponential family of distributions with $T(x)=x$.

Answers

1. (a)

$$
\begin{gathered}
p\left(x ; \beta_{1}, \beta_{2}\right)=\exp \left\{\left(\beta_{1}-1\right) \log x+\left(\beta_{2}-1\right) \log (1-x)-\log \frac{\Gamma\left(\beta_{1}\right) \Gamma\left(\beta_{2}\right)}{\Gamma\left(\beta_{1}+\beta_{2}\right)}\right\} \\
h(x)=1, \quad T_{1}(x)=\log x, \quad \eta_{1}(\beta)=\beta_{1}-1, \quad T_{2}(x)=\log (1-x), \quad \eta_{2}(\beta)=\beta_{2}-1 \\
B\left(\beta_{1}, \beta_{2}\right)=\log \frac{\Gamma\left(\beta_{1}\right) \Gamma\left(\beta_{2}\right)}{\Gamma\left(\beta_{1}+\beta_{2}\right)}
\end{gathered}
$$

(b)

$$
\begin{gathered}
p(x ; \alpha, \lambda)=\exp \{(\alpha-1) \log (x)-\lambda x-(\log \Gamma(\alpha)-\alpha \log (\lambda)\} \\
h(x) \equiv 1, \quad T_{1}(x)=\log (x), \quad \eta_{1}(\theta)=(\alpha-1), \quad T_{2}(x)=x, \quad \eta_{2}(\theta)=-\lambda \\
B(\theta)=\log \Gamma(\alpha)-\alpha \log (\lambda)
\end{gathered}
$$

2. (a) no: $p(x ; \theta)=\theta^{-1} \mathbf{1}_{[0, \theta]}(x)$. For an exponential family:

$$
p(x ; \theta)=h(x) \exp \{\eta(\theta) T(x)-B(\theta)\}
$$

so that

$$
h(x)=\exp \{-\eta(\theta) T(x)+B(\theta)-\log \theta\} \mathbf{1}_{[0, \theta]}(x)
$$

so that $h(x)=0$ for all $x>\theta$. Since h does not depend on $\theta, x \in[0,1]$ and $\Theta=(0,+\infty)$, hence $h(x)=0$ for all $x>\theta$ for all $\theta>0$, hence $h(x)=0$ for all $x>0$, so that $p(x ; \theta) \equiv 0$, which is a contradiction.
(b) no: same as for (a): assume it is exponential family then:

$$
h(x) e^{(T(x), \eta(\theta))-B(\theta)}=\mathbf{1}_{[0, \theta]}(x) \exp \{-2 \log \theta+\log (2 x)\}
$$

so that

$$
h(x)=\mathbf{1}_{[0, \theta]}(x) \exp \{B(\theta)-2 \log \theta+\log (2 x)-(T(x), \eta(\theta))\}
$$

Here $\Theta=(0,+\infty)$ and $h(x)=0$ for all $x>\theta$. This holds for all $\theta>0$ hence $h(x) \equiv 0$ so that $p(x ; \theta) \equiv 0$ which is a contradiction.
(c) no;

$$
p(x ; \theta)=\frac{1}{9} \sum_{j=1}^{9} \mathbf{1}_{0.1 j}(x-\theta)=p(x-\theta ; 0)
$$

so that

$$
h(x) \exp \{\eta(\theta) T(x)-B(\theta)\}=h(x-\theta) \exp \{\eta(0) T(x-\theta)-B(0)\}
$$

If we take $\theta=0$, we see that $h(x)$ has support (i.e. is non-zero for) $x \in\{0.1,0.2, \ldots, 0.9\}$. That is, $h(x)=0$ for any x which does not belong to this set of values. Now, let us consider arbitrary θ, we see that $h(x)$ has support $\{0.1+\theta, \ldots, 0.9+\theta\} ; h(x)=0$ for any x which does not belong to this set of values. Since $\Theta=\mathbb{R}$, therefore so that $h \equiv 0$, which gives a contradiction.
(d)

$$
p(x ; \theta)=\exp \left\{-\frac{x^{2}}{2 \theta^{2}}+\frac{x}{\theta}-\frac{1}{2}-\frac{1}{2} \log (2 \pi)-\log \theta\right\}
$$

This does (technically) satisfy the definition of an exponential family, so the answer is YES. Note, however, that Θ is one-dimensional, yet we need a two-dimensional sufficient statistic $\left(T_{1}(x), T_{2}(x)\right)=\left(-x^{2}, x\right)$ and a two functions $\eta_{1}(\theta)=\frac{1}{2 \theta^{2}}$ and $\eta_{2}(\theta)=\theta$. This is known as a curved exponential family.
(e)

$$
p(x ; \theta)=2 \exp \{\log (x+\theta)-\log (1+2 \theta)\} \mathbf{1}_{[0,1]}(x)
$$

no; the canonical parameter is infinite dimensional.

$$
p(x ; \theta)=2 x \exp \left\{\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \frac{\theta^{n}}{x^{n}}-\log (1+2 \theta)\right\} \mathbf{1}_{[0,1]}(x)
$$

giving a sufficient statistic of $T(x)=\left(\frac{-1^{n-1}}{x^{n}}\right)_{n \geq 1}$ and a canonical parameter vector of $\eta=\left(\theta^{n}\right)_{n \geq 1}$. For an exponential family, these have to be finite dimensional.
(f)

$$
\begin{gathered}
\mathbb{P}_{\theta}(X>0)=1-(1-\theta)^{n} \\
p(x, \theta)=\frac{1}{1-(1-\theta)^{n}}\binom{n}{x} \theta^{x}(1-\theta)^{n-x}=\binom{n}{x} \exp \left\{x \log \frac{\theta}{1-\theta}+n \log (1-\theta)-\log \left(1-(1-\theta)^{n}\right)\right\}
\end{gathered}
$$

yes
3. (a) Comes from expanding

$$
-\frac{\lambda(x-\mu)^{2}}{2 \mu^{2} x}=-\frac{\lambda x}{2 \mu^{2}}+\frac{\lambda}{\mu}-\frac{\lambda}{2 x}
$$

which gives sufficient statistic $-\frac{1}{2}\left(x, \frac{1}{x}\right)$ and canonical coordinates $\left(\eta_{1}, \eta_{2}\right)=\left(\frac{\lambda}{\mu^{2}}, \lambda\right)$. The $h(x)=\frac{1}{(2 \pi)^{1 / 2} x^{3 / 2}}$ comes directly from the first part of the expression for the density and the \log partition function is:

$$
B(\mu, \lambda)=-\frac{\lambda}{\mu}-\frac{1}{2} \log \lambda
$$

(b) For $T(x)=-\frac{1}{2}\left(x, \frac{1}{x}\right)$, the above expansion also gives $\eta_{1}=\frac{\lambda}{\mu^{2}}, \eta_{2}=\lambda$ and

$$
A\left(\eta_{1}, \eta_{2}\right)=-\frac{\lambda}{\mu}-\frac{1}{2} \log \lambda=-\sqrt{\eta_{1} \eta_{2}}-\frac{1}{2} \log \eta_{2}
$$

(c) Using $M_{T}(s)=\exp \{A(\eta+s)-A(\eta)\}$ we have:

$$
M_{T ; \eta}\left(s_{1}, s_{2}\right)=\left(\frac{\eta_{2}}{\eta_{2}+s}\right)^{1 / 2} \exp \left\{\sqrt{\eta_{1} \eta_{2}}-\sqrt{\left(\eta_{1}+s_{1}\right)\left(\eta_{2}+s_{2}\right)}\right\}
$$

To compute expectations and variances, use $\dot{A}(\eta)=\mathbb{E}_{\eta}[T]$ and $\ddot{A}(\eta)=\Sigma_{T}$.

$$
\begin{gathered}
\dot{A}\left(\eta_{1}, \eta_{2}\right)=-\binom{\frac{1}{2} \frac{\eta_{2}^{1 / 2}}{\eta_{1}^{1 / 2}}}{\frac{1}{2} \frac{\eta_{1}^{1 / 2}}{\eta_{2}^{1 / 2}}+\frac{1}{2 \eta_{2}}}=-\frac{1}{2}\binom{\mathbb{E}[X]}{\mathbb{E}\left[\frac{1}{X}\right]} \\
\mathbb{E}[X]=\mu, \quad \mathbb{E}\left[\frac{1}{X}\right]=\frac{1}{\mu}+\frac{1}{\lambda} \\
\ddot{A}\left(\eta_{1}, \eta_{2}\right)=\frac{1}{4}\left(\begin{array}{cc}
\eta_{1}^{-3 / 2} \eta_{2}^{1 / 2} & -\eta_{1}^{-1 / 2} \eta_{2}^{-1 / 2} \\
-\eta_{1}^{-1 / 2} \eta_{2}^{-1 / 2} & \eta_{1}^{1 / 2} \eta_{2}^{-3 / 2}+\frac{2}{\eta_{2}}
\end{array}\right) \\
\operatorname{Var}(X)=\frac{\mu^{3}}{4 \lambda} \quad \operatorname{Var}\left(\frac{1}{X}\right)=\frac{1}{\mu \lambda}+\frac{2}{\lambda^{2}}
\end{gathered}
$$

4.

$$
\begin{gathered}
p(x, \theta)=h(x) \exp \left\{\sum_{j=1}^{k} T_{j}(x) \theta_{j}-A(\theta)\right\} \\
\log L(\theta, x)-\log L(\theta, y)=(\log h(x)-\log h(y))+\sum_{j=1}^{k}\left(T_{j}(x)-T_{j}(y)\right) \theta_{j}
\end{gathered}
$$

clearly does not depend on θ if and only if $T(x)=T(y)$.
5. For a one-parameter exponential family,

$$
p(x ; \eta)=h(x) \exp \{\eta T(x)-A(\eta)\}
$$

so that

$$
\begin{aligned}
\frac{\partial}{\partial \eta} \mathbb{E}_{\eta}[\psi(X)] & =\frac{\partial}{\partial \eta} \int h(x) e^{\eta T(x)-A(\eta)} \psi(x) d x=\int h(x)\left(\frac{d}{d \eta} e^{\eta T(x)-A(\eta)}\right) \psi(x) d x \\
& =\int h(x) e^{\eta T(x)-A(\eta)}(T(x)-\dot{A}(\eta)) \psi(x) d x \\
& =\int p(x ; \eta) T(x) \psi(x) d x-\dot{A}(\eta) \int p(x ; \eta) \psi(x) d x
\end{aligned}
$$

and therefore, using $\dot{A}(\eta)=\mathbb{E}_{\eta}[T(X)]$:

$$
\frac{\partial}{\partial \eta} \mathbb{E}_{\eta}[\psi(X)]=\mathbb{E}_{\eta}[X \psi(X)]-\mathbb{E}_{\eta}[\psi(X)] \mathbb{E}_{\eta}[X]=\operatorname{Cov}(X, \psi(X))
$$

Under the conditions placed on $\psi,(x-y)(\psi(x)-\psi(y))$ is non negative and positive with positive probability. The result follows.
6. Using the notations of the question, and setting $z_{j}=\left(z_{j 1}, \ldots, z_{j d}\right)^{t}$,

$$
p\left(y_{1}, \ldots, y_{n}, \underline{\beta}\right)=\left(\prod_{j=1}^{n}\binom{n_{j}}{y_{j}}\right) \exp \left\{\sum_{i=1}^{d} \beta_{i}\left(\sum_{j=1}^{n} y_{j} z_{j i}\right)-\sum_{j=1}^{n} n_{j} \log \left(1-\lambda_{j}\right)\right\}
$$

The family is of rank k if and only if

$$
\mathbb{P}\left(\sum_{j=1}^{k} c_{j} T_{j}(X)=c_{0}\right)<1
$$

for all $\left(c_{0}, c_{1}, \ldots, c_{k}\right)$. Here

$$
\mathbb{P}\left(\sum_{i=1}^{d} c_{i} T_{i}(Y)=c_{0}\right)=\mathbb{P}\left(\sum_{j=1}^{n}\left(\sum_{i=1}^{d} c_{i} z_{j i}\right) Y_{j}=c_{0}\right)
$$

If the (column) vectors $z_{.1}, \ldots, z_{. d}$ are not linearly independent, then (by definition) c_{1}, \ldots, c_{d} may be found so that $\sum_{i=1}^{d} c_{i} z_{,, i}=0$.
If they are linearly independent, then clearly the family is of rank d.
7. (a)

$$
\mathbb{P}\left(\left(X_{1}, \ldots, X_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)\right)=\frac{1}{2} p_{00}^{n_{00}} p_{01}^{n_{01}} p_{10}^{n_{10}} p_{11}^{n_{11}}
$$

where $n_{00}+n_{01}+n_{10}+n_{11}=n-1$, the total number of transitions. It follows that

$$
\begin{aligned}
\mathbb{P}\left(\left(X_{1}, \ldots, X_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)\right) & =\frac{1}{2} \exp \left\{\left(n_{00}+n_{11}\right) \log p+\left(n_{01}+n_{10}\right) \log (1-p)\right\} \\
& =\frac{1}{2} \exp \left\{\left(n_{00}+n_{11}\right) \log \left(\frac{p}{1-p}\right)+(n-1) \log (1-p)\right\}
\end{aligned}
$$

The result now follows from the formula for an exponential family; $h(x)=\frac{1}{2}, T(x)=$ $n_{00}+n_{11}, \eta(p)=\log \left(\frac{p}{1-p}\right), B(p)=-(n-1) \log (1-p)$.
(b) Let $Y_{i}=1$ if transition i is either $0 \mapsto 0$ or $1 \mapsto 1$ and let $Y_{i}=0$ otherwise. Then

$$
T=Y_{1}+\ldots Y_{n-1}
$$

Since $\mathbb{E}\left[Y_{j}\right]=p$, the result follows.
8. $X=\binom{Z}{Y} \sim N\left(\binom{0}{0},\left(\begin{array}{cc}1 & 1 \\ 1 & 1+\theta^{2}\end{array}\right)\right)$. Covariance matrix is $\Sigma=\left(\begin{array}{cc}1 & 1 \\ 1 & 1+\theta^{2}\end{array}\right)$ so $|\Sigma|=\theta^{2}$ and $\Sigma^{-1}=\frac{1}{\theta^{2}}\left(\begin{array}{cc}1+\theta^{2} & -1 \\ -1 & 1\end{array}\right)$. It follows that

$$
f_{(Z, Y)}(z, y)=\frac{1}{2 \pi|\theta|} \exp \left\{-\frac{1}{2 \theta^{2}}\left(z^{2}+\left(1+\theta^{2}\right) y^{2}-2 z y\right)\right\}
$$

giving:

$$
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{(2 \pi)^{n}|\theta|^{n}} \exp \left\{-\frac{1}{2 \theta^{2}} \sum_{j=1}^{n}\left(z_{j}-y_{j}\right)^{2}-\frac{1}{2} \sum_{j=1}^{n} y_{j}^{2}\right\}
$$

so that

$$
\begin{gathered}
T\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n}\left(z_{j}-y_{j}\right)^{2}, \quad h\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{(2 \pi)^{n}} e^{-\sum_{j=1}^{n} y_{j}^{2}}, \quad \eta=-\frac{1}{2 \theta^{2}} \\
A(\eta)=-\frac{n}{2} \log \frac{1}{\theta^{2}}=-\frac{n}{2} \log (-2 \eta), \quad \mathcal{E}=(0,+\infty)
\end{gathered}
$$

Hence

$$
\begin{gathered}
\mathbb{E}_{\eta}[T]=\frac{d A}{d \eta}=-\frac{n}{2 \eta}=n \theta^{2} \\
\operatorname{Var}_{\eta}(T)=\frac{d^{2} A}{d \eta^{2}}=\frac{n}{2 \eta^{2}}=2 n \theta^{4}
\end{gathered}
$$

9. (a) Lagrange method of multipliers: if we maximise the integrand pointwise, then this maximises the integral. Maximise

$$
-p(x) \log p(x)-\lambda_{0} p(x)-\sum_{j=1}^{k} p(x) r_{j}(x) \lambda_{j}
$$

then choose $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{k}$ to satisfy constraints. Taking derivative w.r.t. $p(x)$, maximum satisfies:

$$
-\log p(x)-1-\lambda_{0}-\sum_{j=1}^{k} r_{j}(x) \lambda_{j}=0
$$

so that p is of the form:

$$
p(x)=\exp \left\{-\left(1+\lambda_{0}\right)-\sum_{j=1}^{k} \lambda_{j} r_{j}(x)\right\}
$$

Choose $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{k}$ so that the constraints are satisfied. For an exponential family, this is clearly the case if $\lambda_{j}=-\eta_{j}$ for $j=1, \ldots, k$ and $A(\eta)=1+\lambda_{0}$.
(b) i. $p(x)=\frac{1}{\alpha_{1}} \exp \left\{-x / \alpha_{1}\right\} \quad x \in(0,+\infty)$
ii.

$$
p(x)=\exp \left\{\eta_{1} x+\eta_{2} x^{2}-A(\eta)\right\}
$$

No solution for $\alpha_{2}<\alpha_{1}^{2}$; this would require random variables which satisfy: $\mathbb{E}\left[X^{2}\right]<$ $\mathbb{E}[X]^{2}$. It follows that α_{2} satisfies $\alpha_{2}>\alpha_{1}^{2}$. Set $\sigma^{2}=\alpha_{2}-\alpha_{1}^{2}$, then

$$
p(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{\left(x-\alpha_{1}\right)^{2}}{2 \sigma^{2}}\right\} \quad-\infty<x<+\infty
$$

iii.

$$
p(x)=\exp \left\{\eta_{1} x+\eta_{2} x^{2}+\eta_{3} x^{3}-A(\eta)\right\} \quad-\infty<x<+\infty
$$

Clearly it doesn't exist!
10. It follows from the factorisation theorem that

$$
p\left(x_{1}, \theta\right) p\left(x_{2}, \theta\right)=h\left(x_{1}, x_{2}\right) g\left(x_{1}+x_{2}, \theta\right) .
$$

Fix a point θ_{0} and let $r(x, \theta)=\log p(x, \theta)-\log p\left(x, \theta_{0}\right)$. Let $q(z, \theta)=\log g(z, \theta)-\log g\left(z, \theta_{0}\right)$. Then

$$
r\left(x_{1}, \theta\right)+r\left(x_{2}, \theta\right)=q\left(x_{1}+x_{2}, \theta\right)
$$

so that $r(., \theta)$ and $q(., \theta)$ are linear in x;

$$
r(x, \theta)=a(\theta)+b(\theta) x .
$$

It follows that

$$
p(x, \theta)=p\left(x, \theta_{0}\right) \exp \{a(\theta)+b(\theta) x\}
$$

Let $h(x)=p\left(x, \theta_{0}\right)$, then this density is an exponential family with $T(x)=x$.

Establishing linearity in x The density is continuous and positive, hence so are r and q. Since $q\left(x_{1}+x_{2}\right)=r\left(x_{1}\right)+r\left(x_{2}\right)$, it follows that $q(x)=r(x)+r(0)$ so that $q(0)=2 r(0)$ and $q\left(x_{1}+x_{2}\right)=q\left(x_{1}\right)+q\left(x_{2}\right)-q(0)$. Now set $f(x)=q(x)-q(0)$ so that

$$
f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right) .
$$

It follows that for any x_{1}, \ldots, x_{n},

$$
f\left(x_{1}+\ldots+x_{n}\right)=f\left(x_{1}\right)+\ldots+f\left(x_{n}\right) .
$$

In particular,

$$
f(1)=n f\left(\frac{1}{n}\right) \Rightarrow f\left(\frac{1}{n}\right)=\frac{1}{n} f(1)
$$

and

$$
f\left(\frac{k}{n}\right)=\frac{k}{n} f(1) .
$$

It follows that for x rational, $f(x)=x f(1)$ and hence, by continuity, it follows that $f(x)=x f(1)$ for all x. It follows that $q(x)=a+b x$ for constants a and b and hence that $r(x)=\frac{a}{2}+b x$.

