
Tutorial 3

1. Let X1, . . . , Xn be a random sample from a Poiss(θ) population where θ > 0.

(a) Show directly that
∑n

j=1Xj is sufficient for θ.

(b) Establish the same result using the Factorisation Theorem.

2. Suppose that X1, . . . , Xn is a random sample from a population with the following density:

p(x, θ) =

{

θaxa−1 exp {−θxa} x > 0, θ > 0, a > 0

0 otherwise

where a is fixed. This is known as the Weibull density. Find a real-valued sufficient statistic for

θ.

3. Let X be a random variable with state space X = {v1, . . . , vk} and probability distribution

Pθ(X = vi) = θi for i ∈ {1, . . . , k} (so that
∑k

i=1 θi = 1) and suppose that θi ∈ (0, 1) for each

i = 1, . . . , k. Let X1, . . . , Xn be a random sample from X. Let

Nj =
n
∑

i=1

1{vj}(Xi).

(the number of trials such that Xi = vj).

(a) What is the distribution of (N1, . . . , Nk)?

(b) Show that N = (N1, . . . , Nk) is sufficient for θ = (θ1, . . . , θk).

4. Let X1, . . . , Xn be a random sample from a population with density p(x, θ) where:

p(x, θ) =
1

σ
exp

{

−
(

x− µ

σ

)}

1[µ,+∞)(x).

Here θ = (µ, σ), Θ = (−∞,+∞)× (0,+∞).

(a) Show that min(X1, . . . , Xn) is sufficient for µ when σ is fixed.

Note: you cannot use the factorisation theorem for this part since the support of the density

depends on µ.

(b) Find a one-dimensional sufficient statistic for σ when µ is fixed.

(c) Find a two-dimensional sufficient statistic for θ = (µ, σ).

5. Let X1, . . . , Xn be a random sample from a distribution F . Treating F as a parameter, show

that the order statistic (X(1), . . . , X(n)) is sufficient for F .

6. Let X1, . . . , Xn be a random sample from f(t−θ), θ ∈ R. Show that the order statistic is minimal

sufficient for f when f is the Cauchy density

f(t) =
1

π(1 + t2)
t ∈ R.
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7. Let X1, . . . , Xm;Y1, . . . , Yn be independent and distributed according to N(µ, σ2) and N(η, τ2)

respectively. Find minimal sufficient statistics in the following three cases, where (µ, η, σ, τ) ∈
R× R× R+ × R+:

(a) µ, η, σ, τ arbitrary.

(b) σ = τ , µ, η, σ arbitrary.

(c) µ = η, µ, σ, τ arbitrary.

8. Let Y = (Y1, . . . , Yn)
t be a multivariate Gaussian random vector with distribution

Y ∼ N(Xβ, σ2I)

where X is an n×p design matrix (values are given) and β = (β1, . . . , βp)
t is a parameter vector.

Compute a p+ 1 dimensional sufficient statistic for (β, σ2).

9. Let Y1, . . . , Yn be independent Bernoulli trials, where

P(Yj = 1) =
1

1 + exp
{

−
∑p

k=1Xjkβk
} j = 1, . . . , n.

Compute a p dimensional sufficient statistic for β.
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Short Answers

1. (a) Let T =
∑n

j=1Xj . Note: T ∼ Poiss(nθ). For x1 + . . .+ xn = t

Pθ((X1, . . . , Xn) = (x1, . . . , xn)|T = t) =
Pθ((X1, . . . , Xn) = (x1, . . . , xn))

P(T = t)

=
θ
∑n

j=1
xj

∏n
j=1

1
xj !

e−nθ

θt 1t!e
−nθ

=
(
∑

j xj)!
∏n

j=1 xj !

which does not depend on θ.

(b)

Pθ((X1, . . . , Xn) = (x1, . . . , xn)) =
θ
∑n

j=1
xj

∏n
j=1 xj !

exp {−nθ}

This factorises as g(
∑n

j=1 xj , θ)h(x) where g(t, θ) = θte−nθ and h(x) = 1∏n
j=1

xj !
.

2.

f(x1, . . . , xn; θ) =







θnan
(

∏n
j=1 xj

)a−1
exp

{

−θ
∑n

j=1 x
a
j

}

x1 > 0, . . . , xn > 0

0 other

Set t(x1, . . . , xn) =
∑n

j=1 x
a
j then

f(x1, . . . , xn; θ) = g(t(x1, . . . , xn), θ)h(x1, . . . , xn)

where

g(t, θ) = θne−θt, h(x1, . . . , xn) = an1{x1>0,...,xn>0}





n
∏

j=1

xj





a−1

Hence t(X1, . . . , Xn) is sufficient for θ.

3. (a)

(N1, . . . , Nk) ∼ mult(n; θ1, . . . , θk).

(b)

Pθ ((X1, . . . , Xn) = (va1 , . . . , van)) = θn1

1 . . . θ
nk

k

where nj =
∑n

i=1 1(ai = j). This is in the required form from the factorisation theorem.

4. (a) The joint density is:

p(x1, . . . , xn, θ) =
1

σn
exp







−
n
∑

j=1

xj − µ

σ







1{minj xj≥µ}.

The factorisation theorem cannot be used, since the support of the density depends on µ.

We therefore show that the conditional density p(x1, . . . , xn|minj Xj = y) does not depend

on µ.
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Since X − µ ∼ Exp( 1σ ), therefore minj∈{1,...,n}Xj − µ ∼ Exp(nσ ) so that the density of

Y := minj Xj is:

pY (y) =
n

σ
exp

{

−n(y − µ)

σ

}

1{y≥µ}

and therefore

p(x1, . . . , xn|min
j

Xj = y) =
p(x1, . . . , xn)

pY (y)
=

1

nσn−1
exp







− 1

σ

n
∑

j=1

(xj −min
i

xi)







which does not depend on µ, hence miniXi is sufficient for µ when σ is fixed.

(b) From the factorisation theorem, it follows that
∑n

j=1Xj is sufficient for σ when µ is fixed.

(c) From the factorisation theorem, applied to the conditional density pσ(x1, . . . , xn|minj Xj =

y),
∑n

j=1Xj is sufficient for σ, conditioned on minj Xj = y for any y.

Hence p(x1, . . . , xn|
∑

j xj = z,minj = y) depends neither on µ nor on σ, hence from the

definition of sufficiency (minj Xj ,
∑

j Xj) is sufficient for θ = (µ, σ).

5. Once the order statistics x(1), . . . , x(n) are given, the problem is then the random assignment

(without replacement) of x1, . . . , xn to x(1), . . . , x(n). There are n! permutations, each with equal

probability. Suppose that there are m groups, group j contains nj so that n1 + . . . + nm = n,

and the order statistics are equal within each group. Then

P((X1, . . . , Xn) = (x1, . . . , xn)|x(1), . . . , x(n)) =
∏m

j=1 nj !

n!

which does not depend on F .

6. We use the Dynkin Lehman Scheffe lemma; a statistic T is minimal sufficient if L(θ;x)
L(θ;y) does not

depend on θ for T (x) = T (y) and does depend on θ for T (x) 6= T (y).

L(θ;x1, . . . , xn) =
1

πn

n
∏

j=1

1

(1 + (xj − θ)2)

L(θ;x)

L(θ; y)
=

n
∏

j=1

(1 + (yj − θ)2)

(1 + (xj − θ)2)

Firstly, L(x1, . . . , xn; θ) = L(x(1), . . . , x(n); θ) so that if y is a permutation of x, then L(θ;x)
L(θ;y) = 1.

To see that this is minimal, the function does not depend on θ only if the roots of the numerators

and denominators are the same (considering as functions of θ), These are: θ = yj ± i for j =

1, . . . , n (for the numerator) and θ = xj±i for j = 1, . . . , n for the denominator (where i =
√
−1).

These are the same if and only if (y(1), . . . , y(n)) = (x(1), . . . , x(n)).
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7. We use the Dynkin Lehman Scheffe lemma; a statistic T is minimal sufficient if L(θ;x)
L(θ;y) does not

depend on θ for T (x) = T (y) and does depend on θ for T (x) 6= T (y). This is equivalent to these

properties holding for the log likelihood; logL(θ;x)− logL(θ; y).

The log likelihood function is:

logL(µ, η;σ, τ ;x, y) = −(n+m)

2
log(2π)−m log σ − n log τ

− 1

2σ2





m
∑

j=1

x2j − µ

m
∑

j=1

xj +mµ2



− 1

2τ2





n
∑

j=1

y2j − η

n
∑

j=1

yj + nη2



 .

Write out

logL(θ;x1, y1)− logL(θ;x2, y2) = − 1

2σ2





m
∑

j=1

x21j −
m
∑

j=1

x22j



+
µ

2σ2





m
∑

j=1

x1j −
m
∑

j=1

x2j





− 1

2τ2





n
∑

j=1

y21j −
n
∑

j=1

y22j



+
η

2τ2





n
∑

j=1

y1j −
n
∑

j=1

y2j





and obtain:

(a)
∑m

j=1Xj ,
∑m

j=1X
2
j ,

∑n
j=1 Yj ,

∑n
j=1 Y

2
j .

(b)
∑m

j=1Xj ,
∑n

j=1 Yj ,
∑m

j=1X
2
j +

∑n
j=1 Y

2
j .

(c)
∑m

j=1Xj ,
∑n

j=1 Yj ,
∑n

j=1X
2
j ,

∑n
j=1 Y

2
j . (same as part (a)).

8. Density is:

f(y1, . . . , yn) =
1

(2π)n/2σn
exp

{

− 1

2σ2
(yty − 2ytXβ + βtXtXβ)

}

so, by the factorisation theorem, a p+ 1 dimensional sufficient statistic is ytX, yty.

9. For an outcome (Y1, . . . , Yn) = (y1, . . . , yn) where (y1, . . . , yn) is a vector of 0’s and 1’s, we have

PY1,...,Yn(y1, . . . , yn) =

∏n
j=1 exp{(1− yj)

∑p
k=1Xjkβk}

∏n
j=1(1 + exp

{

−
∑p

k=1Xjkβk
}

)

The sufficient statistic is therefore (
∑n

j=1 yjXjk : k = 1, . . . , p).
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