Tutorial 3

1. Let X_{1}, \ldots, X_{n} be a random sample from a $\operatorname{Poiss}(\theta)$ population where $\theta>0$.
(a) Show directly that $\sum_{j=1}^{n} X_{j}$ is sufficient for θ.
(b) Establish the same result using the Factorisation Theorem.
2. Suppose that X_{1}, \ldots, X_{n} is a random sample from a population with the following density:

$$
p(x, \theta)= \begin{cases}\theta a x^{a-1} \exp \left\{-\theta x^{a}\right\} & x>0, \quad \theta>0, \quad a>0 \\ 0 & \text { otherwise }\end{cases}
$$

where a is fixed. This is known as the Weibull density. Find a real-valued sufficient statistic for θ.
3. Let X be a random variable with state space $\mathcal{X}=\left\{v_{1}, \ldots, v_{k}\right\}$ and probability distribution $\mathbb{P}_{\theta}\left(X=v_{i}\right)=\theta_{i}$ for $i \in\{1, \ldots, k\}$ (so that $\sum_{i=1}^{k} \theta_{i}=1$) and suppose that $\theta_{i} \in(0,1)$ for each $i=1, \ldots, k$. Let X_{1}, \ldots, X_{n} be a random sample from X. Let

$$
N_{j}=\sum_{i=1}^{n} \mathbf{1}_{\left\{v_{j}\right\}}\left(X_{i}\right)
$$

(the number of trials such that $X_{i}=v_{j}$).
(a) What is the distribution of $\left(N_{1}, \ldots, N_{k}\right)$?
(b) Show that $N=\left(N_{1}, \ldots, N_{k}\right)$ is sufficient for $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right)$.
4. Let X_{1}, \ldots, X_{n} be a random sample from a population with density $p(x, \theta)$ where:

$$
p(x, \theta)=\frac{1}{\sigma} \exp \left\{-\left(\frac{x-\mu}{\sigma}\right)\right\} \mathbf{1}_{[\mu,+\infty)}(x)
$$

Here $\theta=(\mu, \sigma), \Theta=(-\infty,+\infty) \times(0,+\infty)$.
(a) Show that $\min \left(X_{1}, \ldots, X_{n}\right)$ is sufficient for μ when σ is fixed.

Note: you cannot use the factorisation theorem for this part since the support of the density depends on μ.
(b) Find a one-dimensional sufficient statistic for σ when μ is fixed.
(c) Find a two-dimensional sufficient statistic for $\theta=(\mu, \sigma)$.
5. Let X_{1}, \ldots, X_{n} be a random sample from a distribution F. Treating F as a parameter, show that the order statistic $\left(X_{(1)}, \ldots, X_{(n)}\right)$ is sufficient for F.
6. Let X_{1}, \ldots, X_{n} be a random sample from $f(t-\theta), \theta \in \mathbb{R}$. Show that the order statistic is minimal sufficient for f when f is the Cauchy density

$$
f(t)=\frac{1}{\pi\left(1+t^{2}\right)} \quad t \in \mathbb{R}
$$

7. Let $X_{1}, \ldots, X_{m} ; Y_{1}, \ldots, Y_{n}$ be independent and distributed according to $N\left(\mu, \sigma^{2}\right)$ and $N\left(\eta, \tau^{2}\right)$ respectively. Find minimal sufficient statistics in the following three cases, where $(\mu, \eta, \sigma, \tau) \in$ $\mathbb{R} \times \mathbb{R} \times \mathbb{R}_{+} \times \mathbb{R}_{+}:$
(a) μ, η, σ, τ arbitrary.
(b) $\sigma=\tau, \mu, \eta, \sigma$ arbitrary.
(c) $\mu=\eta, \mu, \sigma, \tau$ arbitrary.
8. Let $Y=\left(Y_{1}, \ldots, Y_{n}\right)^{t}$ be a multivariate Gaussian random vector with distribution

$$
Y \sim N\left(X \beta, \sigma^{2} I\right)
$$

where X is an $n \times p$ design matrix (values are given) and $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)^{t}$ is a parameter vector. Compute a $p+1$ dimensional sufficient statistic for $\left(\beta, \sigma^{2}\right)$.
9. Let Y_{1}, \ldots, Y_{n} be independent Bernoulli trials, where

$$
\mathbb{P}\left(Y_{j}=1\right)=\frac{1}{1+\exp \left\{-\sum_{k=1}^{p} X_{j k} \beta_{k}\right\}} \quad j=1, \ldots, n
$$

Compute a p dimensional sufficient statistic for β.

Short Answers

1. (a) Let $T=\sum_{j=1}^{n} X_{j}$. Note: $T \sim \operatorname{Poiss}(n \theta)$. For $x_{1}+\ldots+x_{n}=t$

$$
\begin{aligned}
\mathbb{P}_{\theta}\left(\left(X_{1}, \ldots, X_{n}\right)=\left(x_{1}, \ldots, x_{n}\right) \mid T=t\right) & =\frac{\mathbb{P}_{\theta}\left(\left(X_{1}, \ldots, X_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)\right)}{\mathbb{P}(T=t)} \\
& =\frac{\theta^{\sum_{j=1}^{n} x_{j}} \prod_{j=1}^{n} \frac{1}{x_{j}!} e^{-n \theta}}{\theta^{t} \frac{1}{t!} e^{-n \theta}}=\frac{\left(\sum_{j} x_{j}\right)!}{\prod_{j=1}^{n} x_{j}!}
\end{aligned}
$$

which does not depend on θ.
(b)

$$
\mathbb{P}_{\theta}\left(\left(X_{1}, \ldots, X_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)\right)=\frac{\theta^{\sum_{j=1}^{n} x_{j}}}{\prod_{j=1}^{n} x_{j}!} \exp \{-n \theta\}
$$

This factorises as $g\left(\sum_{j=1}^{n} x_{j}, \theta\right) h(\underline{x})$ where $g(t, \theta)=\theta^{t} e^{-n \theta}$ and $h(\underline{x})=\frac{1}{\prod_{j=1}^{n} x_{j}!}$.
2.

$$
f\left(x_{1}, \ldots, x_{n} ; \theta\right)= \begin{cases}\theta^{n} a^{n}\left(\prod_{j=1}^{n} x_{j}\right)^{a-1} \exp \left\{-\theta \sum_{j=1}^{n} x_{j}^{a}\right\} & x_{1}>0, \ldots, x_{n}>0 \\ 0 & \text { other }\end{cases}
$$

Set $t\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n} x_{j}^{a}$ then

$$
f\left(x_{1}, \ldots, x_{n} ; \theta\right)=g\left(t\left(x_{1}, \ldots, x_{n}\right), \theta\right) h\left(x_{1}, \ldots, x_{n}\right)
$$

where

$$
g(t, \theta)=\theta^{n} e^{-\theta t}, \quad h\left(x_{1}, \ldots, x_{n}\right)=a^{n} \mathbf{1}_{\left\{x_{1}>0, \ldots, x_{n}>0\right\}}\left(\prod_{j=1}^{n} x_{j}\right)^{a-1}
$$

Hence $t\left(X_{1}, \ldots, X_{n}\right)$ is sufficient for θ.
3. (a)

$$
\left(N_{1}, \ldots, N_{k}\right) \sim \operatorname{mult}\left(n ; \theta_{1}, \ldots, \theta_{k}\right)
$$

(b)

$$
\mathbb{P}_{\theta}\left(\left(X_{1}, \ldots, X_{n}\right)=\left(v_{a_{1}}, \ldots, v_{a_{n}}\right)\right)=\theta_{1}^{n_{1}} \ldots \theta_{k}^{n_{k}}
$$

where $n_{j}=\sum_{i=1}^{n} \mathbf{1}\left(a_{i}=j\right)$. This is in the required form from the factorisation theorem.
4. (a) The joint density is:

$$
p\left(x_{1}, \ldots, x_{n}, \theta\right)=\frac{1}{\sigma^{n}} \exp \left\{-\sum_{j=1}^{n} \frac{x_{j}-\mu}{\sigma}\right\} \mathbf{1}_{\left\{\min _{j} x_{j} \geq \mu\right\}}
$$

The factorisation theorem cannot be used, since the support of the density depends on μ. We therefore show that the conditional density $p\left(x_{1}, \ldots, x_{n} \mid \min _{j} X_{j}=y\right)$ does not depend on μ.

Since $X-\mu \sim \operatorname{Exp}\left(\frac{1}{\sigma}\right)$, therefore $\min _{j \in\{1, \ldots, n\}} X_{j}-\mu \sim \operatorname{Exp}\left(\frac{n}{\sigma}\right)$ so that the density of $Y:=\min _{j} X_{j}$ is:

$$
p_{Y}(y)=\frac{n}{\sigma} \exp \left\{-\frac{n(y-\mu)}{\sigma}\right\} \mathbf{1}_{\{y \geq \mu\}}
$$

and therefore

$$
p\left(x_{1}, \ldots, x_{n} \mid \min _{j} X_{j}=y\right)=\frac{p\left(x_{1}, \ldots, x_{n}\right)}{p_{Y}(y)}=\frac{1}{n \sigma^{n-1}} \exp \left\{-\frac{1}{\sigma} \sum_{j=1}^{n}\left(x_{j}-\min _{i} x_{i}\right)\right\}
$$

which does not depend on μ, hence $\min _{i} X_{i}$ is sufficient for μ when σ is fixed.
(b) From the factorisation theorem, it follows that $\sum_{j=1}^{n} X_{j}$ is sufficient for σ when μ is fixed.
(c) From the factorisation theorem, applied to the conditional density $p_{\sigma}\left(x_{1}, \ldots, x_{n} \mid \min _{j} X_{j}=\right.$ $y), \sum_{j=1}^{n} X_{j}$ is sufficient for σ, conditioned on $\min _{j} X_{j}=y$ for any y.

Hence $p\left(x_{1}, \ldots, x_{n} \mid \sum_{j} x_{j}=z, \min _{j}=y\right)$ depends neither on μ nor on σ, hence from the definition of sufficiency $\left(\min _{j} X_{j}, \sum_{j} X_{j}\right)$ is sufficient for $\theta=(\mu, \sigma)$.
5. Once the order statistics $x_{(1)}, \ldots, x_{(n)}$ are given, the problem is then the random assignment (without replacement) of x_{1}, \ldots, x_{n} to $x_{(1)}, \ldots, x_{(n)}$. There are $n!$ permutations, each with equal probability. Suppose that there are m groups, group j contains n_{j} so that $n_{1}+\ldots+n_{m}=n$, and the order statistics are equal within each group. Then

$$
\mathbb{P}\left(\left(X_{1}, \ldots, X_{n}\right)=\left(x_{1}, \ldots, x_{n}\right) \mid x_{(1)}, \ldots, x_{(n)}\right)=\frac{\prod_{j=1}^{m} n_{j}!}{n!}
$$

which does not depend on F.
6. We use the Dynkin Lehman Scheffe lemma; a statistic T is minimal sufficient if $\frac{L(\theta ; x)}{L(\theta ; y)}$ does not depend on θ for $T(x)=T(y)$ and does depend on θ for $T(x) \neq T(y)$.

$$
\begin{gathered}
L\left(\theta ; x_{1}, \ldots, x_{n}\right)=\frac{1}{\pi^{n}} \prod_{j=1}^{n} \frac{1}{\left(1+\left(x_{j}-\theta\right)^{2}\right)} \\
\frac{L(\theta ; \underline{x})}{L(\theta ; \underline{y})}=\prod_{j=1}^{n} \frac{\left(1+\left(y_{j}-\theta\right)^{2}\right)}{\left(1+\left(x_{j}-\theta\right)^{2}\right)}
\end{gathered}
$$

Firstly, $L\left(x_{1}, \ldots, x_{n} ; \theta\right)=L\left(x_{(1)}, \ldots, x_{(n)} ; \theta\right)$ so that if \underline{y} is a permutation of \underline{x}, then $\frac{L(\theta ; \underline{x})}{L(\theta ; \underline{y})}=1$. To see that this is minimal, the function does not depend on θ only if the roots of the numerators and denominators are the same (considering as functions of θ), These are: $\theta=y_{j} \pm i$ for $j=$ $1, \ldots, n$ (for the numerator) and $\theta=x_{j} \pm i$ for $j=1, \ldots, n$ for the denominator (where $i=\sqrt{-1}$). These are the same if and only if $\left(y_{(1)}, \ldots, y_{(n)}\right)=\left(x_{(1)}, \ldots, x_{(n)}\right)$.
7. We use the Dynkin Lehman Scheffe lemma; a statistic T is minimal sufficient if $\frac{L(\theta ; x)}{L(\theta ; y)}$ does not depend on θ for $T(x)=T(y)$ and does depend on θ for $T(x) \neq T(y)$. This is equivalent to these properties holding for the \log likelihood; $\log L(\theta ; x)-\log L(\theta ; y)$.

The log likelihood function is:

$$
\begin{aligned}
& \log L(\mu, \eta ; \sigma, \tau ; \underline{x}, \underline{y})=-\frac{(n+m)}{2} \log (2 \pi)-m \log \sigma-n \log \tau \\
& \quad-\frac{1}{2 \sigma^{2}}\left(\sum_{j=1}^{m} x_{j}^{2}-\mu \sum_{j=1}^{m} x_{j}+m \mu^{2}\right)-\frac{1}{2 \tau^{2}}\left(\sum_{j=1}^{n} y_{j}^{2}-\eta \sum_{j=1}^{n} y_{j}+n \eta^{2}\right) .
\end{aligned}
$$

Write out

$$
\begin{aligned}
\log L\left(\theta ; \underline{x}_{1}, \underline{y}_{1}\right)-\log L\left(\theta ; \underline{x}_{2}, \underline{y}_{2}\right)= & -\frac{1}{2 \sigma^{2}}\left(\sum_{j=1}^{m} x_{1 j}^{2}-\sum_{j=1}^{m} x_{2 j}^{2}\right)+\frac{\mu}{2 \sigma^{2}}\left(\sum_{j=1}^{m} x_{1 j}-\sum_{j=1}^{m} x_{2 j}\right) \\
& -\frac{1}{2 \tau^{2}}\left(\sum_{j=1}^{n} y_{1 j}^{2}-\sum_{j=1}^{n} y_{2 j}^{2}\right)+\frac{\eta}{2 \tau^{2}}\left(\sum_{j=1}^{n} y_{1 j}-\sum_{j=1}^{n} y_{2 j}\right)
\end{aligned}
$$

and obtain:
(a) $\sum_{j=1}^{m} X_{j}, \sum_{j=1}^{m} X_{j}^{2}, \sum_{j=1}^{n} Y_{j}, \sum_{j=1}^{n} Y_{j}^{2}$.
(b) $\sum_{j=1}^{m} X_{j}, \sum_{j=1}^{n} Y_{j}, \sum_{j=1}^{m} X_{j}^{2}+\sum_{j=1}^{n} Y_{j}^{2}$.
(c) $\sum_{j=1}^{m} X_{j}, \sum_{j=1}^{n} Y_{j}, \sum_{j=1}^{n} X_{j}^{2}, \sum_{j=1}^{n} Y_{j}^{2}$. (same as part (a)).
8. Density is:

$$
f\left(y_{1}, \ldots, y_{n}\right)=\frac{1}{(2 \pi)^{n / 2} \sigma^{n}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(y^{t} y-2 y^{t} X \beta+\beta^{t} X^{t} X \beta\right)\right\}
$$

so, by the factorisation theorem, a $p+1$ dimensional sufficient statistic is $y^{t} X, y^{t} y$.
9. For an outcome $\left(Y_{1}, \ldots, Y_{n}\right)=\left(y_{1}, \ldots, y_{n}\right)$ where $\left(y_{1}, \ldots, y_{n}\right)$ is a vector of 0 's and 1 's, we have

$$
\mathbb{P}_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n}\right)=\frac{\prod_{j=1}^{n} \exp \left\{\left(1-y_{j}\right) \sum_{k=1}^{p} X_{j k} \beta_{k}\right\}}{\prod_{j=1}^{n}\left(1+\exp \left\{-\sum_{k=1}^{p} X_{j k} \beta_{k}\right\}\right)}
$$

The sufficient statistic is therefore $\left(\sum_{j=1}^{n} y_{j} X_{j k}: k=1, \ldots, p\right)$.

