
Tutorial 2

Identities for Estimating Moments

1. Let X1, . . . , Xn be a random sample, with sample average X = 1
n

∑n
j=1Xj and sample variance

S2 = 1
n−1

∑n
j=1(Xj −X)2. Show that

S2 =
1

2n(n− 1)

n∑

i=1

n∑

j=1

(Xi −Xj)
2

You may use:
n∑

j=1

yj =
1

2n

n∑

j,k=1

(yj + yk)

and x2 + y2 = (x− y)2 + 2xy.

2. Assume that E[X4
i ] < +∞ and set θ1 = E[Xi], θj = E[(Xi−θ1)

j ] for j = 2, 3, 4. Let Yj = Xj−θ1,

Y = 1
n

∑n
j=1 Yj and Y 2 = 1

n

∑n
j=1 Y

2
j .

(a) Compute E[Y
4
] and E[Y 2

2
] and E[Y 2Y

2
] in terms of θ1, θ2, θ3 and θ4.

(b) Show that

Var(S2) =
1

n

(
θ4 −

n− 3

n− 1
θ22

)
.

(c) Let X1, . . . , Xn be a random sample from a N(µ, σ2) population.

i. Find expressions for θ1, θ2, θ3, θ4 in terms of µ and σ2.

ii. Hence compute Var(S2) for a N(µ, σ2) random sample.

3. Establish the following recursion relations for means and variances. Let Xn and S2
n be the mean

and variance respectively of X1, . . . , Xn. Suppose another observation Xn+1 becomes available.

Show that

(a)

Xn+1 =
Xn+1 + nXn

n+ 1

(b)

nS2
n+1 = (n− 1)S2

n +

(
n

n+ 1

)
(Xn+1 −Xn)

2.

Parametric Families: Identifiability Let {Pθ : θ ∈ Θ} be a family of probability distributions.

The parametrisation θ is said to be identifiable if θ1 6= θ2 ⇒ Pθ1 6= Pθ2 . For example, let θ = (µ, σ2)

and Pθ denote the N(µ, σ2) distribution. The parameterisation is identifiable since

(µ1, σ
2
1) 6= (µ2, σ

2
2) ⇒ ∃A ∈ B(R) : Pθ1(A) 6= Pθ2(A)

where B(R) denotes the Borel subsets of R.

On the other hand, the parametrisation θ = (µ, ν, σ2) where Pθ is N(µ− ν, σ2) is not identifiable,

since θ1 = (µ, ν, θ) and θ2 = (µ+ a, ν + a, θ) give the same distribution.
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4. (a) Let Xij : i = 1, . . . , p; j = 1, . . . , b be independent with Xij ∼ N(µij , σ
2). Let µij =

ν + αi + βj . Let θ = (α1, . . . , αp, β1, . . . , βb, ν, σ
2) and Pθ the distribution of X11, . . . , Xpb.

Is the parametrisation identifiable? Prove or disprove.

(b) Now suppose that (α1, . . . , αp) and (β1, . . . , βb) are restricted to the sets
∑p

i=1 αi = 0 and∑b
j=1 βj = 0. Is the parametrisation identifiable? Prove or disprove.

5. A measuring instrument is being used to obtain n independent determinations of a physical

constant µ. Suppose that the measuring instrument is known to be biased by a positive constant

θ units, where θ is unknown and that the errors are otherwise identically distributed normal

random variables with known variance σ2. Is the parametrisation identifiable? Prove or disprove.

6. The number of eggs laid by an insect follows a Poisson distribution with unknown mean µ. Once

laid, each egg has an unknown chance p of hatching, independently of the others. An entomologist

studies a set of n such insects, observing only the number of eggs hatching for each nest. Is the

parametrisation identifiable?

Hazard and Survival

7. Let T1, . . . , Tm and T ′

1, . . . , T
′

n be random samples with parent variables T and T ′ respectively,

which are the survival times of two groups of patients receiving treatments A and B respectively.

The group survival for the two groups is defined as X = minj=1,...,m Tj and Y = minj=1,...,n T
′

j

respectively. Let SX(t) = P(X > t) and SY (t) = P(Y > t) denote the group survival func-

tions. Assume that the groups are independent of each other and that T and T ′ have the same

distribution.

(a) Show that SY (t) = S
n/m
X (t).

(b) Extending from rationals to δ ∈ (0,+∞) gives the Lehmann model: SY (t) = Sδ
X(t). Equiv-

alently, SY (t) = Snδ
0 (t) and SX(t) = Smδ

0 (t) for some survival function S0. Suppose that

X is a non negative continuous random variable with survival function SX(t) = Smδ
0 (t).

Compute the distribution function of X ′ := − logS0(X).

(c) Suppose that T and Y are two non-negative continuous random variables with survival

functions ST (t) and SY (t) respectively and densities fT (t) and fY (t) respectively. Their

hazard functions are defined as αT (t) = fT (t)
ST (t) and αY (t) = fY (t)

SY (t) respectively. Show that

αY = cαT if and only if SY = Sc
T . Such a model is known as the Cox proportional hazard

model.

Order Statistics and Glivenko-Cantelli Lemma

8. Let X1, . . . , Xn be i.i.d. random variables, with c.d.f. F and density f . The ordered vector

X1:n ≤ X2:n ≤ . . . ≤ Xn:n which is an ordering of X1, . . . , Xn from lowest to highest is the vector

of order statistics.

(a) Find the c.d.f. and density of Xk:n.
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(b) Hence, if X1, . . . , Xn be a random sample from a U(0, 1) distribution (uniform on the interval

(0, 1)), show that the density function for the jth order statistic Xj:n is

fXj:n
(x) = j

(
n

j

)
xj−1(1− x)n−j x ∈ [0, 1]

(c) Hence prove (again for a U(0, 1) random sample) that for positive integer p,

E

[
Xp

j:n

]
= j

(
n

j

)
Γ(j + p)Γ(n− j + 1)

Γ(n+ p+ 1)
.

You may assume the Beta integral:

∫ 1

0
xα−1(1− x)β−1dx =

Γ(α)Γ(β)

Γ(α+ β)
.

9. Let F be a continuous cumulative distribution function, X1, . . . , Xn a random sample generated

from F and F̂n the empirical distribution function. Let Dn = sup
−∞<x<+∞

|F (x) − F̂n(x)|.
Prove that for any ǫ > 0,

lim
n→+∞

P

(
sup

−∞<x<+∞

|F (x)− F̂n(x)| > ǫ

)
= 0.

You may use the result from the previous tutorial that the distribution of Dn does not depend

on the underlying F (and hence assume that the random sample is U(0, 1)).
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Short Answers

1.

S2 =
1

n− 1

n∑

j=1

(Xj −X)2

=
1

2n(n− 1)

n∑

j,k=1

{((Xj −X)2 + (Xk −X)2)}

=
1

2n(n− 1)

n∑

j,k=1

{(Xj −Xk)
2 + 2(Xj −X)(Xk −X)}

=
1

2n(n− 1)

n∑

j,k=1

(Xj −Xk)
2

because
∑

j(Xj −X) = 0.

2. (a)

E[Y
4
] =

1

n4

n∑

j1,j2,j3,j4=1

E[Yj1Yj2Yj3Yj4 ] =
1

n3
θ4 + 3

(
n− 1

n3

)
θ22

E[Y 2
2
] =

1

n2

n∑

j1,j2=1

E[Y 2
j1Y

2
j2 ] =

1

n
θ4 +

n− 1

n
θ22.

E[Y 2Y
2
] =

1

n3

∑

j1,j2,j3

E[Y 2
j1Yj2Yj3 ] =

1

n2
θ4 +

n− 1

n2
θ22

(b) E

[
Y

2
]
= θ2

n and E

[
Y 2

]
= θ2. For j 6= k, E[(Yj − Yk)

2] = 2θ2, so

Var(S2) =
1

4n2(n− 1)2
Var


∑

j,k

(Yj − Yk)
2




=
n2

(n− 1)2
Var

(
Y 2 − Y

2
)

=
n2

(n− 1)2
(E

[
Y 2

2
+ Y

4 − 2Y 2Y
2
]
− E[Y 2]2 − E[Y

2
]2 + 2E[Y 2E[Y

2
])

=
n2

(n− 1)2

((
1

n
θ4 +

n− 1

n
θ22

)
+

(
1

n3
θ4 + 3

(
n− 1

n3

)
θ22

)

−2

(
1

n2
θ4 +

n− 1

n2
θ22

)
− 2

(
1− 1

n

)2

θ22 +

(
1− 1

n

)2

θ22

)

=
1

n

(
θ4 −

n− 3

n− 1
θ22

)

(c) i. θ1 = µ, θ2 = σ2, θ3 = 0, θ4 = 3σ4. The only one that may cause problems is the last

one:
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θ4 =

∫
y4

1√
2πσ

e−y2/2σ2

dy = 2

∫
∞

0
y4

1√
2πσ

e−y2/2σ2

dy

substitute (for example) x = y2

2σ2 dx = ydy
σ2

θ4 =
4σ4

√
π

∫
∞

0
z3/2e−zdz =

4σ4Γ(5/2)√
π

= 3σ4

ii.

Var(S2) =
1

n

(
3− n− 3

n− 1

)
σ4 =

2

n− 1
σ4.

3. (a)

Xn+1 =
1

n+ 1

n+1∑

j=1

Xj =
1

n+ 1

n∑

j=1

Xj +
1

n+ 1
Xn+1 =

n

n+ 1
Xn +

1

n+ 1
Xn+1

(b)

nS2
n+1 =

n+1∑

j=1

(Xj −Xn+1)
2 =

n∑

j=1

(Xj −Xn)
2 + n(Xn −Xn+1)

2 + (Xn+1 −Xn+1)
2

= (n− 1)S2
n + n

(
1

n+ 1
Xn − 1

n+ 1
Xn+1

)2

+ (
n

n+ 1
Xn+1 −

n

n+ 1
Xn)

2

= (n− 1)S2
n +

n(1 + n)

(n+ 1)2
(Xn −Xn+1)

2 = (n− 1)S2
n +

n

n+ 1

(
Xn −Xn+1

)2
.

4. (a) Not identifiable: for example,

Pν,σ2,α1,...,αp,β1,...,βb
= P0,σ2,α1+aν,...,αp+aν,β1+(1−a)ν,...,βb+(1−a)ν

for any a ∈ R.

(b) Yes - it is identifiable. Joint density is

1

(2π)pb/2σpb
exp



− 1

2σ2

∑

ij

(xij − ν − αi − βj)
2





=
1

(2π)pb/2σpb
exp



− 1

2σ2


∑

ij

x2ij −
∑

ij

xij(ν + αi + βj) +
∑

ij

(ν + αi + βj)
2







If it is not identifiable, then different (ν, α, β) yield the same ν + αi + βj for each (i, j). If

ν1 + α1i + β1j = ν2 + α2i + β2j ∀(i, j)

plus zero sum conditions, then ν1 = ν2. Again, sum over j gives α1i = α2i for each i and

summing over i gives β1j = β2j . Hence it is identifiable.
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5. Not identifiable; Pν1,θ1,σ2 = Pν2,θ2,σ2 for all (µ1, θ1), (µ2, θ2) such that µ1 + θ1 = µ2 + θ2.

6. The parametrisation is (µ, p). Let X denote number of eggs laid, Y the number that hatch. Then

P(Y = y|X = x) =

(
x

y

)
py(1− p)x−y

P(X = x) =
µx

x!
e−µ

P(Y = y,X = x) =
x!

y!(x− y)!
py(1− p)x−y µ

x

x!
e−µ x ≥ y

so that

P(Y = y) = e−µµ
ypy

y!

∞∑

x=y

(1− p)x−yµx−y

(x− y)!
=

(µp)y

y!
e−µp.

No not identifiable.

7. (a)

SY (t) = P(min(T ′

1, . . . , T
′

n) > t) = P(T > t)n SX(t) = P(T > t)m

from which the result follows directly.

(b)

FX′(x) = P(X ′ ≤ x) = P(− logS0(X) ≤ t)

= P(S0(X) ≥ e−t) = P(SX(X) ≥ e−mδt)

= P(FX(X) ≤ 1− e−mδt) = 1− e−mδt.

(c)

αT (t) = − d

dt
logST (t) αY (t) = − d

dt
logSY (t).

αY = cαT ⇔ − d

dt
logST (t) = −c

d

dt
logSY (t) ⇔ − d

dt
logST (t) = − d

dt
logSc

Y (t)

Now using ST (0) = SY (0) = 1 gives:

ST (t) = Sc
Y (t) ∀t ≥ 1.

8. (a)

P(Xk:n ≤ x < Xk+1:n) = FXk:n
(x)− FXk+1:n

(x)

and

FXk:n
(x)− FXk+1:n

(x) =

(
n

k

)
P(X1 ≤ x, . . . ,Xk ≤ x,Xk+1 > x, . . . , Xn > x)

=

(
n

k

)
F (x)k(1− F (x))n−k.

To compute FXk:n
(x), we need FXn:n(x), but this is easy:

FXn:n(x) = F (x)n.
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Therefore:

FXk:n
(x) =

n∑

j=k

(
n

j

)
F (x)k(1− F (x))n−k.

To compute the density, take a derivative:

fXk:n
(x) =

n∑

j=k

(
n

j

)(
jF (x)j−1(1− F (x))n−j − (n− j)F (x)j(1− F (x))n−j−1

)
f(x)

= nf(x)
n∑

j=k

{(
n− 1

j − 1

)
F (x)j−1(1− F (x))n−j −

(
n− 1

j

)
F (x)j(1− F (x))n−j−1

}

= n

(
n− 1

k − 1

)
F (x)k−1(1− F (x))n−kf(x)

so that:

fXk:n
(x) =

n!

(k − 1)!(n− k)!
F (x)k−1(1− F (x))n−kf(x).

(b) For U(0, 1), F (x) = x for 0 ≤ x ≤ 1 and f(x) = 1[0,1](x) so that:

fXk:n
(x) = n

(
n− 1

k − 1

)
xk−1(1− x)n−k

1[0,1](x)

as required.

(c)

E[Xp
j:n] = j

(
n

j

)∫ 1

0
xpxj−1(1− x)n−jdx = j

(
n

j

)
Γ(j + p)Γ(n− j + 1)

Γ(n+ p+ 1)
.

Using Γ(n+ 1) = n!, it follows that

E[Xp
j:n] = j

n!

j!(n− j)!

(j + p− 1)!(n− j)!

(n+ p)!
=

∏p−1
k=0(j + k)∏p
k=1(n+ k)

.

9. First, for fixed ǫ, we consider the following grid: x1 = inf{z : F (z) ≥ ǫ}, xj = inf{z > xj−1 :

F (z)− F (xj−1) ≥ ǫ, define M as the smallest integer such that 1 ≥ F (xM ) > 1− ǫ. Since F is

continuous, F (xj)− F (xj−1) = ǫ for j = 2, . . . ,M .

Now, if |F̂n(xj) − F (xj)| ≤ ǫ and |F̂n(xj+1) − F (xj+1)| ≤ ǫ, then it is straightforward that

supx∈[xj ,xj+1] |F̂n(x)− F (x)| ≤ 2ǫ. Therefore

P

(
sup
x∈R

|F̂n(x)− F (x)| > ǫ

)
≤ P

(
max

j∈{1,...,M}
|F̂n(xj)− F (xj)| >

ǫ

2

)

≤
M∑

j=1

P

(
|F̂n(xj)− F (xj)| > ǫ

)

≤ M × 4

ǫ2
× sup

x

F (x)(1− F (x))

n
≤ 1

nǫ3
n→+∞−→ 0

using the fact that E[F̂n(x)] = F (x) and Var(F̂n(x)) =
F (x)(1−F (x))

n ≤ 1
4n .
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