Tutorial 1

Definitions and Notation

- Let X_{1}, \ldots, X_{n} be independent identically distributed. Such a collection is a random sample. The order statistics are defined as: $X_{1: n} \leq X_{2: n} \leq \ldots \leq X_{n: n} ; X_{k: n}$ is the k th lowest of the collection. Another common notation is the following: the order statistics of a sample size n are often written as $X_{(1)}, \ldots, X_{(n)}$
- The notation $X \sim B e(p)$ will be used to denote a Bernoulli trial with success probability p; $\mathbb{P}(X=1)=p, \mathbb{P}(X=0)=1-p$.
- The notation $Y \sim B i(n, p)$ will be used to denote the Binomial distribution;

$$
\mathbb{P}(Y=k)= \begin{cases}\binom{n}{k} p^{k}(1-p)^{n-k} & k=0,1, \ldots, n \\ 0 & \text { otherwise }\end{cases}
$$

- Let X be a random variable. If Y is a continuous random variable with density f_{Y}, then

$$
\mathbb{P}(X \in A)=\int \mathbb{P}(X \in A \mid Y=y) f_{Y}(y) d y
$$

Exercises

1. A generalisation of i.i.d. random variables is exchangeable random variables, an idea due to de Finetti (1972). The random variables X_{1}, \ldots, X_{n} are exchangeable if any permutation of any subset of them of size $k \leq n$ has the same distribution. This exercise gives an example of random variables that are exchangeable but not i.i.d. Let $X_{i} \mid P$ be i.i.d. $\operatorname{Be}(P)$ variables, where $P \sim U(0,1)$. That is, P is uniformly distributed on $[0,1]$. Conditioned on $P=p$, the variables X_{1}, \ldots, X_{n} are i.i.d. $B e(p)$ variables.
(a) Show that the marginal distribution of any k of the $X \mathrm{~s}$ is the same as

$$
\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right)=\int_{0}^{1} p^{t}(1-p)^{k-t} d p=\frac{t!(k-t)!}{(k+1)!}
$$

where $t=\sum_{i=1}^{k} x_{i}$.
(b) Show that, marginally,

$$
\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) \neq \prod_{j=1}^{n} \mathbb{P}\left(X_{j}=x_{j}\right)
$$

The distribution is exchangeable, but not i.i.d.
2. Let $U_{i}: 1,2, \ldots$ be i.i.d. $U(0,1)$ variables. (uniformly distributed on the interval $[0,1]$).
(a) Consider a random sample of size n, U_{1}, \ldots, U_{n}. Compute $p_{U_{1: n}}$, the density for the first order statistic.
(b) Suppose that X has the distribution

$$
\mathbb{P}(X=x)=\frac{c}{x!} \quad x=1,2,3, \ldots
$$

where $c=1 /(e-1)$. Find the distribution of

$$
Z=\min \left\{U_{1}, \ldots, U_{X}\right\}
$$

Hint Condition on X.
3. Let X_{1}, \ldots, X_{n} be a random sample from a population with p.d.f. (probability density function)

$$
p_{X}(x)=\frac{1}{\theta} \mathbf{1}_{[0, \theta]}(x)
$$

Let $X_{1: n}<\ldots<X_{1: n}$ be the order statistics.
(a) Show that the joint density of $\left(X_{1: n}, \ldots, X_{n: n}\right)$ is:

$$
p_{X_{1: n}, \ldots, X_{n: n}}\left(x_{1}, \ldots, x_{n}\right)=\frac{n!}{\theta^{n}} \mathbf{1}\left(0 \leq x_{1} \leq \ldots \leq x_{n} \leq \theta\right)
$$

(b) Show that $\frac{X_{1: n}}{X_{n: n}}$ and $X_{n: n}$ are independent random variables.
4. Let X_{1}, \ldots, X_{n} be a random sample from a population with p.d.f.

$$
p_{X}(x)=\frac{a}{\theta^{a}} x^{a-1} \mathbf{1}_{[0, \theta]}(x) .
$$

Let $X_{1: n}<\ldots<X_{n: n}$ be the order statistics. Show that $\frac{X_{1: n}}{X_{2: n}}, \frac{X_{2: n}}{X_{3: n}}, \ldots, \frac{X_{n-1: n}}{X_{n: n}}$ and $X_{n: n}$ are mutually independent random variables. Find the distribution of each of them.
5. Let X be a random variable with continuous distribution function F. Find the distribution function of $F(X)$.
6. Let $U \sim \operatorname{Unif}(0,1)$ (that is, U has uniform distribution over the interval $[0,1]$) and let F be a continuous, monotonically increasing cumulative distribution function. Show that the c.d.f. of $Y:=F^{-1}(U)$ is F. Is the result true if F is the c.d.f. of a discrete random variable, which takes values in the set $\left(x_{j}\right)_{j \geq 1}, x_{1}<x_{2}<\ldots ?$
7. Let $\left\{X_{1}, \ldots, X_{n}\right\}$ be a random sample from a population with continuous c.d.f. $F(x)=\mathbb{P}(X \leq x)$ (that is X_{1}, \ldots, X_{n} are independent identically distributed). Let

$$
\widehat{F}_{n}(x)=\frac{1}{n} \sum_{j=1}^{n} \mathbf{1}_{(-\infty, x]}\left(X_{j}\right)
$$

\widehat{F}_{n} is the empirical distribution function. Here $\mathbf{1}_{A}$ denotes the indicator function of a set A. That is,

$$
\mathbf{1}_{A}(x)= \begin{cases}1 & x \in A \\ 0 & x \notin A .\end{cases}
$$

(a) Show that $n \widehat{F}_{n}(x) \sim B i(n, F(x))$.
(b) Compute $\operatorname{Cov}\left(\widehat{F}_{n}(x), \widehat{F}_{n}(y)\right)$ (Cov denotes covariance).
(c) Let $D_{n}=\sup _{-\infty<x<+\infty}\left|\widehat{F}_{n}(x)-F(x)\right|$. Prove that the distribution of D_{n} is the same for all underlying continuous distribution functions F.
8. Let X and Y be independent random variables, with $\operatorname{Gamma}(\alpha, \lambda)$ and $\operatorname{Gamma}(\beta, \lambda)$ distributions respectively where $\alpha, \beta, \lambda>0$. Show that $X+Y \sim \operatorname{Gamma}(\alpha+\beta, \lambda)$. The $\operatorname{Gamma}(\alpha, \lambda)$ distribution has density:

$$
p(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} \mathbf{1}_{(0,+\infty)}(x) .
$$

9. Let $Z \sim N(0,1)$ (standard normal). Find the distribution of Z^{2}. This is the $\chi^{2}(1)$ distribution.
10. Let X_{1}, \ldots, X_{n} be i.i.d. $N\left(\mu, \sigma^{2}\right)$. Find the distribution of:

$$
\frac{1}{\sigma^{2}} \sum_{k=1}^{n}\left(X_{k}-\mu\right)^{2} .
$$

11. Let W_{1}, \ldots, W_{n} be i.i.d. $\chi^{2}(1)$ random variables, then $W_{1}+\ldots+W_{n} \sim \chi^{2}(n)$. Let Z and Y be independent random variables with standard normal and $\chi^{2}(n)$ distributions respectively. Find the density function of:

$$
T=\frac{Z}{\sqrt{Y / n}}
$$

Short Answers

1. (a) Since they're conditionally independent given $P=p$, it follows that, for a sequence $\left(x_{1}, \ldots, x_{k}\right)$ with t success and $k-t$ failure,

$$
\begin{aligned}
\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right) & =\int_{0}^{1} \mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k} \mid P=p\right) d p \\
& =\int_{0}^{1} \prod_{j=1}^{k} \mathbb{P}\left(X_{j}=x_{j} \mid P=p\right) d p \\
& =\int_{0}^{1} p^{t}(1-p)^{k-t} d p
\end{aligned}
$$

This is a standard integral, the beta integral. One way to compute it is by induction;

$$
I(k, t)=\int_{0}^{1} p^{t}(1-p)^{k-t} d p=\frac{k-t}{1+t} \int_{0}^{1} p^{t+1}(1-p)^{k-t-1} d p=\frac{k-t}{1+t} I(k, t+1)
$$

and

$$
I(k, k)=\int_{0}^{1} p^{k} d p=\frac{1}{k+1}
$$

giving

$$
I(k, t)=\frac{t!(k-t)!}{(k+1)!}
$$

(b)

$$
\begin{gathered}
\mathbb{P}\left(X_{j}=x_{j}\right)=\int_{0}^{1} p^{x_{j}}(1-p)^{1-x_{j}} d p=\frac{1}{2} \quad x_{j}=0,1 \\
\prod_{j=1}^{n} \mathbb{P}\left(X_{j}=x_{j}\right)=\frac{1}{2^{k}} \quad\left\{x_{1}, \ldots, x_{k}\right\} \in\{0,1\}^{k} \\
\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right)=\frac{t!(k-t)!}{(k+1)!}
\end{gathered}
$$

so they are not equal, hence the random variables are not i.i.d..
2. (a)

$$
\begin{gathered}
\mathbb{P}\left(U_{1: n}>x\right)=\mathbb{P}\left(U_{1}>x, \ldots, U_{n}>x\right)=\mathbb{P}(U>x)^{n}=(1-x)^{n} \quad 0 \leq x \leq 1 \\
p_{U_{1: n}}(x)=n(1-x)^{n-1} \quad 0 \leq x \leq 1
\end{gathered}
$$

(b)

$$
\begin{gathered}
\mathbb{P}(Z>y)=\sum_{x=1}^{\infty} \mathbb{P}\left(U_{x: n}>y\right) \frac{c}{x!}=\sum_{x=1}^{\infty} \frac{c(1-y)^{x}}{x!}=c\left(e^{1-y}-1\right)=\frac{e^{1-y}-1}{e-1} \quad 0 \leq y \leq 1 \\
F_{Z}(y)=1-\frac{e^{1-y}-1}{e-1}=\frac{e\left(1-e^{-y}\right)}{e-1} \quad 0 \leq y \leq 1 .
\end{gathered}
$$

3. (a) For any $A \subset\left\{0<x_{1}<\ldots<x_{n} \leq \theta\right\}$, let σ denote a permutation of $(1, \ldots, n)$ and let $A_{\sigma}=\left\{\left(x_{1}, \ldots, x_{n}\right):\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right) \in A\right\}$. By construction, the regions A_{σ} are disjoint.

$$
\mathbb{P}\left(\left(X_{1: n}, \ldots, X_{n: n}\right) \in A\right)=\sum_{\sigma} \mathbb{P}\left(\left(X_{1}, \ldots, X_{n}\right) \in A_{\sigma}\right)=n!\mathbb{P}\left(\left(X_{1}, \ldots, X_{n}\right) \in A\right)
$$

so that, for all $A \subset\left\{0<x_{1}<\ldots<x_{n} \leq \theta\right\}$,

$$
\mathbb{P}\left(\left(X_{1: n}, \ldots, X_{n: n}\right) \in A\right)=\frac{n!}{\theta^{n}} \int \mathbf{1}_{\left\{0 \leq x_{1}<\ldots<x_{n} \leq \theta\right\} \cap A} d x_{1} \ldots d x_{n}
$$

From this, it follows directly that the density is:

$$
p_{X_{1: n}, \ldots, X_{1: n}}\left(x_{1}, \ldots, x_{n}\right)=\frac{n!}{\theta^{n}} \mathbf{1}\left(0<x_{1}<\ldots<x_{n}<\theta\right) .
$$

(b) Density of ($X_{1: n}, X_{n: n}$) computed as follows:

$$
p_{X_{1: n}, X_{n: n}}\left(x_{1}, x_{n}\right)=\frac{n!}{\theta^{n}} \int_{x_{1}<\ldots<x_{n}} \int d x_{2} \ldots d x_{n-1}=\frac{n!}{\theta^{n}} \frac{1}{(n-2)!}\left(x_{n}-x_{1}\right)^{n-2}
$$

(the integral is the area of the $n-2$ dimensional simplex) so

$$
p_{X_{1: n}, X_{n: n}}\left(x_{1}, x_{n}\right)=\frac{n(n-1)}{\theta^{n}}\left(x_{n}-x_{1}\right)^{n-2} \quad 0<x_{1}<x_{n}<\theta
$$

Let $(Y, Z)=\left(\frac{X_{1: n}}{X_{n: n}}, X_{n: n}\right)$ so that

$$
\left(X_{1: n}, X_{n: n}\right)=(Y Z, Z) \quad Z=X_{n: n}
$$

Then

$$
J_{\left(x_{1}, x_{n}\right) \rightarrow(y, z)}=\left(\begin{array}{cc}
z & 0 \\
y & 1
\end{array}\right)
$$

so the determinant is $\left|J_{\left(x_{1}, x_{n}\right) \rightarrow(y, z)}\right|=z$. It follows that

$$
\begin{aligned}
f_{(Y, Z)}(y, z) & =\frac{n(n-1)}{\theta^{n}} z(z-z y)^{n-2} \\
& =\frac{n(n-1)}{\theta^{n}} z^{n-1}(1-y)^{n-2} \quad 0<y z<z<\theta \Rightarrow 0<y<1,0<z<\theta
\end{aligned}
$$

Density is in product form, therefore $Y \perp Z$.

$$
\begin{gathered}
p_{Z}(z)=\frac{n}{\theta^{n}} z^{n-1} \quad 0 \leq z \leq \theta \\
p_{Y}(y)=(n-1)(1-y)^{n-2} \quad 0 \leq y \leq 1
\end{gathered}
$$

4.

$$
\begin{gathered}
p_{X_{1: n}, \ldots, X_{n: n}}\left(x_{1}, \ldots, x_{n}\right)=\frac{n!a^{n}}{\theta^{n a}}\left(x_{1} \ldots x_{n}\right)^{a-1} \mathbf{1}\left(0 \leq x_{1} \leq \ldots \leq x_{n} \leq \theta\right) \\
\left(Y_{1}, \ldots Y_{n-1}, Y_{n}\right)=\left(\frac{X_{1: n}}{X_{2: n}}, \ldots, \frac{X_{n: n}}{X_{n-1: n}}, X_{n: n}\right)
\end{gathered}
$$

$$
\left(x_{1}, \ldots, x_{n}\right)=\left(\prod_{j=1}^{n} y_{j}, \prod_{j=2}^{n} y_{j}, \ldots, y_{n}\right)
$$

(here $x_{k}=\prod_{j=k}^{n} y_{j}$).

$$
J_{\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(y_{1}, \ldots, y_{n}\right)}=\left(\begin{array}{ccc}
\frac{\partial x_{1}}{\partial y_{1}} & \ldots & \frac{\partial x_{1}}{\partial y_{n}} \\
\vdots & & \vdots \\
\frac{\partial x_{n}}{\partial y_{1}} & \ldots & \frac{\partial x_{n}}{\partial y_{n}}
\end{array}\right)=\left(\begin{array}{cccc}
\prod_{j=2}^{n} y_{j} & \prod_{j \neq 2} y_{j} & \ldots & \prod_{j=1}^{n-1} y_{j} \\
0 & \prod_{j=3}^{n} y_{j} & \ldots & \prod_{j=2}^{n-1} y_{j} \\
\vdots & & \vdots & \\
0 & 0 & \ldots & 1
\end{array}\right)
$$

This matrix is upper triangular, with determinant $\prod_{j=2}^{n} y_{j}^{j-1}$.
Density for $Y_{1}, \ldots, Y_{n-1}, Y_{n}$ is therefore

$$
p_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n}\right)=\left(\prod_{j=2}^{n} y_{j}^{j-1}\right) \frac{n!a^{n}}{\theta^{n a}}\left(\prod_{j=1}^{n} y_{j}^{j(a-1)}\right) \quad 0 \leq \prod_{j=1}^{n} y_{j} \leq \prod_{j=2}^{n} y_{j} \leq y_{n-1} y_{n} \leq y_{n} \leq \theta
$$

which reduces to

$$
p_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n}\right)=\prod_{j=1}^{n} f_{Y_{j}}\left(y_{j}\right)
$$

where

$$
\begin{gathered}
p_{Y_{1}}\left(y_{1}\right)=a y_{1}^{a-1} \quad 0 \leq y_{1} \leq 1 \\
p_{Y_{j}}\left(y_{j}\right)=j a y_{j}^{j a-1} \quad 0 \leq y_{j} \leq 1 \quad 2 \leq j \leq n-1 \\
p_{Y_{n}}\left(y_{n}\right)=\frac{n a}{\theta^{n a}} y_{n}^{n a-1} \quad 0 \leq y_{n} \leq \theta .
\end{gathered}
$$

5. The function F is continuous and non-decreasing. Define:

$$
F^{-1}(u)=\sup \{x: F(x)<u\}
$$

Then $F\left(F^{-1}(u)\right)=u$, so that:

$$
\mathbb{P}(F(X) \leq x)=\mathbb{P}\left(X \leq F^{-1}(x)\right)=F\left(F^{-1}(x)\right)=x \quad x \in[0,1]
$$

hence $F(X) \sim \operatorname{Unif}(0,1)$.
6.

$$
\mathbb{P}(Y \leq x)=\mathbb{P}\left(F^{-1}(U) \leq x\right)=\mathbb{P}(U \leq F(x))=x
$$

Yes: define

$$
F^{-1}(u)=\sup \{x: F(x)<u\}
$$

if $\left(x_{j}\right)_{j \geq 1}$ denotes the points where the probability mass function has positive mass, where $\mathbb{P}(X=$ $\left.x_{j}\right)=p_{j}$ where $0<x_{1}<x_{2}<\ldots$ and $\sum_{j} p_{j}=1$, then

$$
\left\{\begin{array}{l}
\mathbb{P}\left(F^{-1}(U) \leq x_{1}\right)=p_{1} \\
\mathbb{P}\left(F^{-1}(U) \leq x_{j+1}\right)-\mathbb{P}\left(F^{-1}(U) \leq x_{j}\right)=p_{j+1} \quad j \geq 1
\end{array}\right.
$$

7. (a) $n \widehat{F}_{n}(x)=\sum_{j=1}^{n} \mathbf{1}_{\left\{X_{j} \leq x\right\}} . n \widehat{F}_{n}(x)$ is therefore the number of 'success' in n Bernoulli trials each with success parameter $F(x)$, so $n \widehat{F}_{n}(x) \sim B i(n, F(x))$. It follows that

$$
\mathbb{E}\left[\widehat{F}_{n}(x)\right]=F(x) \quad \operatorname{Var}\left(\widehat{F}_{n}(x)\right)=\frac{F(x)(1-F(x))}{n}
$$

(b)

$$
\begin{aligned}
\operatorname{Cov}\left(\widehat{F}_{n}(x), \widehat{F}_{n}(y)\right) & =\operatorname{Cov}\left(\frac{1}{n} \sum_{j=1}^{n} \mathbf{1}\left(X_{j} \leq x\right), \frac{1}{n} \sum_{k=1}^{n} \mathbf{1}\left(X_{k} \leq y\right)\right) \\
& =\frac{1}{n^{2}} \sum_{j, k} \operatorname{Cov}\left(\mathbf{1}\left(X_{j} \leq x\right), \mathbf{1}\left(X_{k} \leq y\right)\right)=\frac{1}{n^{2}} \sum_{j=1}^{n} \operatorname{Cov}\left(\mathbf{1}\left(X_{j} \leq x\right), \mathbf{1}\left(X_{j} \leq y\right)\right) \\
& =\frac{1}{n}\left(\mathbb{E}\left[\mathbf{1}\left(X_{j} \leq x\right) \mathbf{1}\left(X_{j} \leq y\right)\right]-F(x) F(y)\right) \\
& =\frac{1}{n} F(x)(1-F(y)) \quad x<y
\end{aligned}
$$

(c) First consider F strictly increasing. Then

$$
\begin{gathered}
D_{n}=\sup _{-\infty<y<+\infty}\left|\widehat{F}_{n}(y)-F(y)\right|=\sup _{0<x<1}\left|\widehat{F}_{n}\left(F^{-1}(x)\right)-F\left(F^{-1}(x)\right)\right|=\sup _{0<x<1}\left|\widehat{F}_{n}\left(F^{-1}(x)\right)-x\right| \\
\widehat{F}_{n}\left(F^{-1}(x)\right)=\frac{1}{n} \sum_{j=1}^{n} \mathbf{1}_{\left\{X_{j} \leq F^{-1}(x)\right\}}=\frac{1}{n} \sum_{j=1}^{n} \mathbf{1}_{\left\{F\left(X_{j}\right) \leq x\right\}}
\end{gathered}
$$

and the result follows since $F\left(X_{1}\right), \ldots, F\left(X_{n}\right)$ are i.i.d. $U(0,1)$ variables.
General case: use $F^{-1 *}(x)=\sup \{y \mid F(x)<y\}$. Then $F^{-1 *}(x) \leq z \Leftrightarrow x \leq F(z)$ and same proof follows.
Therefore, for any continous F, the distribution of D_{n} is the same as that of

$$
\sup _{0 \leq y \leq 1}\left|\widehat{F}_{n}(y)-y\right|
$$

where

$$
\widehat{F}_{n}(y)=\frac{1}{n} \sum_{j=1}^{n} \mathbf{1}_{\left\{U_{j} \leq y\right\}}
$$

for a random sample U_{1}, \ldots, U_{n} of $U(0,1)$ variables.
8. (8,9 and 10 form a sequence of questions, which follow on from each other). Let $W=X+Y$ then

$$
F_{W}(w)=\frac{\lambda^{\alpha+\beta}}{\Gamma(\alpha) \Gamma(\beta)} \int_{0}^{w} x^{\alpha-1} e^{-\lambda x}\left(\int_{0}^{w-x} y^{\beta-1} e^{-\lambda y} d y\right) d x
$$

so that

$$
\begin{aligned}
p_{W}(w) & =\frac{\lambda^{\alpha+\beta}}{\Gamma(\alpha) \Gamma(\beta)} e^{-\lambda w} \int_{0}^{w} x^{\alpha-1}(w-x)^{\beta-1} d x \\
& =\frac{\lambda^{\alpha+\beta}}{\Gamma(\alpha) \Gamma(\beta)} e^{-\lambda w} w^{\alpha+\beta-1} \int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1} d x \propto w^{\alpha+\beta-1} e^{-\lambda w}
\end{aligned}
$$

Since this is a density function, it follows (using the formula for a Gamma density function given in the question) that

$$
p_{W}(w)=\frac{\lambda^{\alpha+\beta}}{\Gamma(\alpha+\beta)} w^{\alpha+\beta-1} e^{-\lambda w} \mathbf{1}_{(0,+\infty)}(w)
$$

9. For $x>0$,

$$
\mathbb{P}\left(Z^{2} \leq x\right)=\int_{-\sqrt{x}}^{\sqrt{x}} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z
$$

so

$$
p_{Z^{2}}(x)=\frac{1}{\sqrt{2 \pi x}} e^{-x / 2} \mathbf{1}_{(0,+\infty)}(x) \propto x^{-1 / 2} e^{-x / 2} \mathbf{1}_{(0,+\infty)}(x) ; \quad \text { Gamma }\left(\frac{1}{2}, \frac{1}{2}\right)
$$

Note: the $\operatorname{Gamma}\left(\frac{1}{2}, \frac{1}{2}\right)$ is also known as a $\chi^{2}(1)$ distribution.
10. Let $Z_{k}=\frac{X_{k}-\mu}{\sigma}$ then Z_{1}, \ldots, Z_{n} are i.i.d. $N(0,1)$ and $\frac{1}{\sigma^{2}} \sum_{k=1}^{n}\left(X_{k}-\mu\right)^{2}=\sum_{j=1}^{n} Z_{j}^{2}$. Using the results of 8 and 9 , therefore, this has distribution Gamma $\left(\frac{n}{2}, \frac{1}{2}\right)$.

This is also known as a $\chi^{2}(n)$ distribution.
11.

$$
\mathbb{P}(T \leq x)=\mathbb{P}\left(Z \leq x \sqrt{\frac{Y}{n}}\right)=\frac{1}{\sqrt{2 \pi}} \frac{(1 / 2)^{n / 2}}{\Gamma(n / 2)} \int_{0}^{\infty} \int_{-\infty}^{x \sqrt{\frac{y}{n}}} e^{-z^{2} / 2} y^{(n / 2)-1} e^{-y / 2} d z d y
$$

The density is:

$$
\begin{aligned}
p_{T}(x) & =\frac{1}{2^{(n+1) / 2} \pi^{1 / 2} n^{1 / 2} \Gamma(n / 2)} \int_{0}^{\infty} y^{(n-1) / 2} \exp \left\{-\frac{y}{2}\left(1+\frac{x^{2}}{n}\right)\right\} d y \\
& =\frac{\left(1+\frac{x^{2}}{n}\right)^{-(n+1) / 2}}{2^{(n+1) / 2} \pi^{1 / 2} n^{1 / 2} \Gamma(n / 2)} \int_{0}^{\infty} v^{(n+1) / 2-1} e^{-v / 2} d v \\
& =\frac{\Gamma\left(\frac{n+1}{2}\right)}{n^{1 / 2} \pi^{1 / 2} \Gamma\left(\frac{n}{2}\right)} \frac{1}{\left(1+\frac{x^{2}}{n}\right)^{(n+1) / 2}}
\end{aligned}
$$

