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Chapter 1

Geometrical Representation and Distances

1.1 The Data Matrix

Consider p variables, and a random sample x4, ..., z, , where z;= (zj1,242,...,xjp) . Each observation
is a p vector, and there are n observations. A random sample means that x,,...,z,, is an observation

of Xy,...,X,,, where the (X ; )?:1 are independent, identically distributed random p-vectors.

Notation A random p-vector, where each component corresponds to a different variable, is usually
taken as a column vector, but when presented in a data matrix of n independent observations, the

transpose is taken and each p-variate observation is taken as a row.

Sampling If the observations were selected from a total population of N p-vectors, then a random

N

ordering of the n vectors occurred with probability % In general, a random sample is a sample that

sample would mean that any subset of n vectors from N was chosen with probability (— and each
n )

has the properties of such a sample for N >> n.

The most widely used standard is to store the data in an n x p matrix, denoted x, where

Iy
X111 ... xlp xt
X = =| — (1.1)
Ipl .- Tpp "
X

1.2 One Way Representations of Data Matrices: Andrews Curves

When considering a one way representation of a two dimensional data matrix, one can represent either
the n units, or the p variables. Each variable, may be represented by an appropriate curve or solid

pattern that highlights the similarities or disssimilarities between the constructions.
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One example is the method of Andrews Curves. For each unit (or p-variate observation) ¢ of the

data matrix, set

(p/2] [p/2]

1 .. .
fi(t) = —=zpn + x5 sin(jt) + Z xipj1cos(jt) te[-m ]
V2 j=1 j=1

Properties The Andrews curve satisfies the following properties:

1. Let f=1%7, f;(t), then

_ 1 [p/2] [p/2]
f(t)=—=T1+ Y Tojsin(jt)+ Y T gjicos(jt) te[-mm].

V2 j=1 j=1
2. This function representation preserves the Euclidean distance between the variables. That is, if
2 _ v 2
dij = Z(xzk - JUjk:)
k=1

then

= [T - )=,

3. Suppose (Xi,...,X,) are independent variables, each with variance o2, then for each 4,

"—2p p odd
V&I‘(fz(t)) = 0-22 2 2
S (p-1)+0°cos“(pt) p even.

The following features should be noted:
e An outlier appears as single Andrews’ curves that looks different from the rest.
e A subgroup of data is characterised by a set of simular curves.
e The order of the variables plays an important role for interpretation.

e For more than 20 observations we may obtain a bad “signal-to-ink-ratio”; i.e., too many curves

are overlaid in one picture.

Implementation There is a package in R named pracma, which may be installed by:
> install.packages("pracma")

if it isn’t already installed and activated by:

> library(pracma)

The following illustrates the Andrews curve for the Iris data set, which is a data set contained in R.
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data(iris)

A = as.matrix(iris[,-5])
f=as.integer(iris[,5])

andrewsplot (A,f,style="pol",npts=200)
andrewsplot (A,f,style="cart",npts=200)

The plot for datum 1 is:

fi(t) = 5—\/% +3.58in(t) + 1.4 cos(t) + 0.2sin(2t).

1.3 Subspace Projections

The data matrix x described by Equation (L.1)) of p quantitative measurements on n units may be

described either in the object space or the variable space, as defined below.

Definition 1.1 (Object Space). Let T = %Z?ﬂ x; denote the sample mean vector. The object space

is the p dimensional space with origin at T.

Multivariate analysis studies how the variables relate to each other; their covariance and correlation.
Centralising around the sample average helps to keep this in view. When studying object space, n

points in RP are considered, labelled (2)?:17 where Y, = - T.

Definition 1.2 (Variable Space). Let T = % Z;-‘:l xjk, the sample average for variable k. Consider the
vectors zp =z, — TRl eR™, k=1,...,p, where 1= (1,...,1)" € R™. These vectors are all perpendicular
to 1. The variable space is defined as the space spanned by these vectors. The variable space is
therefore a space of dimension less than or equal to p, embedded in the n — 1 dimensional subspace of

R™ perpendicular to the vector 1.

In the variable space, the scalar product ci; between gz, and g; is given by

n
Cki = Y ZikZil-
i=1

The quantity sg; = %ckl is defined as the sample covariance between variate k and variate [. This is
an unbiased estimator of the population covariance. The sample correlation between these variables is

defined as

Ckl

vV Ckkcll’

cos(ag) = p 1=

where oy is the angle between vector z;, and z;.

Note: It should be clear that the projection of the vector z, onto the one dimensional subspace of R"

spanned by the vector gz, is simply the linear regression of z; onto z;;

Ckk
Tkin | —Z1-
)]
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Definition 1.3. Set Sy = ﬁckl. The matriz S is the sample covariance matriz of the data matriz

X. The matriz R with entries ry; is the sample correlation matriz.

Remark When the n observations are considered in object space, their respective distances from
each other may be represented by the n x n matrix (di;)1<i<n,1<j<n. Considered in variable space, the
observations lead to the p x p correlation and covariance matrices and the p x p matrix of angles ayy,

all representing the similarity between the variables.

Lemma 1.4. The matrices S and R are non-negative definite.

Proof Consider any p vector a. Then

1.4 Distances and Proximity Matrices

When the p variables are numerical and observations of continuous random variables, the distance

between unit ¢ and j in object space may be given by the Euclidean distance;

p
dij = \| 2 Wik — yjr)*.
\J pret

Data sets often also give information in the form of categorical variables and it is useful to be able
to incorporate both numerical and categorical variables. Also, there is a common problem of missing
data; for an observation ¢, the datum x;; may be missing for some, but not all, values of k.

The following measure of distance between observations is known as Gower’s dissimilarity, which
deals with missing data and also with categorical data.

Let

5 1 @, 25, can be compared
ijk = .
/ 0 otherwise

Sijk = 0 if 5ijk =0.

If either x;;, or x;;, are missing, then both ¢;;; = 0 and s;;, = 0. For d;;, = 1, if variable k is a numerical

(quantitative) variable, let

|k — xjk|
maXg p |Tak — Lok

Sijk = 1=

If variable k is a categorical variable, let
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_ 1 Tk = Tjk
Sijk = )
0 otherwise

Gower then constructs a distance by:

(1= sijk)0ijk
dij =), #
k k Yijk

If greater weight is attached to some of the variables, this can be modified using weights;

dy =3 wi (1 = Sijk)Gijk
e Y Wik

Constructing a ‘Virtual’ data set from distances There are situations where the data matrix
x is not given, but instead the distance matrix (d;;) is given. The following discussion describes how
to construct a virtual data matrix x, which preserves the correct distances.

Let x be an n x p data matrix with entries x;; and let H,, = I, - %llt where 1 denotes an n-vector

where each entry is 1. Then it is an easy computation to see that
(Hnx)ij = xij — T 5.

Set
Q = (Hnx)(Hnx)',

then it is clear that

Qij = i(xik ~T ) (Tjk — T k).

k=1
Set y;; = x;5 — = ;. If the distance d;; is the Euclidean distance, then

2

Z(yik - yjk)2

%

S Ui U~ 2D Yikljk
% % %

Qii + Qjj — 2Qi;-

Note that Q;; = Qj; and that };°; Q;; = 0 for each j. Summing both sides over both i and j gives:
7 (2%}

Summing over j and using }; Q;; = % i dfj gives:

lo o 1 2
Qii = ;;dik—ﬁ%dzj

Therefore:

1 2 = 2 = 2 1 2
I S o SR O - A ol L 1.2
QJ 2(1] nkz::l kj n;; zk+n2izj: i ( )
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If the data matrix is not given, but instead the distances (di;)(; j)e(1,.. n}, then a matrix @ may be
constructed using the formula given by Equation (1.2]). The matrix constructed in this way is clearly

symmetric and can be diagonalised as

Q = PAP,
where P is orthonormal and A is diagonal. If the matrix (di;)(; jyeq1,...n)2 1S @ distance, in the sense
that it is symmetric, the entries are non negative and d;j < dip, + dy; for all (i,7,m) € {1,...,n}>,

then A = diag(A1,...,An), A1 > ... > A, > 0. Let \/\; denote the positive square root of \; and let

A2 = diag(VAL .. V).

Definition 1.5 (Data Matrix obtained by Metric Scaling). Let
X = PA1/27
then x is the data matriz corresponding to (d;j) obtained by metric scaling.

Recall that the situation considered here is where the original data is not given; rather, the analyst
has been presented with a matrix of distances between the original data points. The ‘data matrix’

obtained in this manner will preserve the distances between the original data.

Remarks

1. Metric scaling only works if the matrix @) is non negative definite (i.e. positive semi definite).

This holds if and only if the input matrix (d;;) satisfies the triangle inequality;

dij < dim +dpy  Y(i,5,k) €{1,...,n}>

2. By construction, the data matrix x obtained in this way is already centred; x = Hx.

3. Since x = Hx, it follows that rank(Q) < n -1, at least one eigenvalue is zero. If

M+ o+ A
A+ .o+ A

is sufficiently large for some m <n—1, then an approximate data matrix can be constructed from

the first m columns of P by taking x as the nxm matrix with entries x;; = Pjj\/d; i € {1,...,n},
je{l,...,m}.

1.5 Measuring and Testing Multivariate Distances

Often in multivariate analysis, the n observations are not an observed random sample from a single
population, but rather come from m different populations. Often, the aim is classification; to decide,
based on the p-variate observation, which population the observation belongs to.

Consider m populations (for example, 7 different types of dog), where p features (variables) are

measured (for example, p different bones within the body may be considered and the length of each
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measured for each animal). Suppose that n = nj; + ...+ n,,, where n, denotes the number of differ-
ent animals from population b, for each population b = 1,...,m. Let x4, denote the observation:
observation a, population b, variable ¢. Suppose you are given an observation, but you are not told
which population the observation comes from. As a first step for making a guess, it is useful to have

a measure of distance between the various populations.

1.6 Penrose and Mahalanobis Distance
Penrose Distance Let n=)", n; denote the total number of observations and let

2 Ypeq (1 — 1)351;
s, = ———— .
n-m

The observed Penrose distance between two populations « and ( is defined as

Z (x ok =T ,,Bk)Q
P st

Formal tests, of whether or not an observed Penrose distance is significantly different from zero, may

Pap = —

be carried out under distributional assumtions. If it is assumed that the the observations 4. are from

independent random variables Xp., where

Xabc ~ N(ch; 0—?)

(that is, the variables are normal and for variate ¢, the population variance is the same for each

population b=1,...,m), then the distribution of

1 i (X .ok~ X 51)?
P i Sk

under the null hypothesis that K, =My mAY be computed.

The Mahalanobis Distance The Penrose distance does not take into account correlations between
the variables. The Mahalanobis distance is a modification of the Penrose distance that takes into
account possible correlations. If the independence assumption holds, then the Penrose distance is
better, because there are fewer parameters involved. Let X denote a random vector that models
population a, with E[X ;] = and C(X,) = C (the notation C is used to denote a covariance matrix),
where C'is the same for each population a = 1,...,m. Let Z,; denote the jth component of the vector
z,, the sample average from population a. Let S denote the pooled estimate of the covariance matrix

and let V' = 7!, The Mahalanobis distance between two populations o and § is defined as

p P
Daﬁ = Z Z(j.,a,r - f.,ﬁ,r)vrs(f‘,a,s - j.,sﬁ) = (Ea - Zﬂ)tv(za _Zﬁ)'
r=1s=1

To test whether the sample Mahalanobis distance, computed from the sample means and sample covari-
ance matrix is statistically significant, one uses Hotelling’s T2 distribution; under the null hypothesis

(of no difference),
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Ng+np—p—1 ngny

b"‘F, +np—p-1-
(ng +np—2)png+ny Pritatiiomp

Note that there are p(p + 1)/2 terms to be estimated in the covariance matrix for the Mahalanobis
distance, while there are only p variances to be estimated for the Penrose distance. Therefore, if there
is reason to believe that an independence assumption gives an accurate model, the Penrose distance is
a better measure of distance; rather many observations are required to obtain the whole matrix S~

with accuracy.
Example 1.1 (Egyptian Skull Data).

The data set on Egyptian skulls, found in skulls.dat on the course home page gives the measurements
X7 = maximum breadth, X, = basibregmatic height, X3 = basialveolar length and X4 = nasal height.
The data is for a total of 150 skulls, 30 from each of 5 groupings; —4000 Early Predynastic, —3300 Late
Predynastic, —1850 12th and 13th Dynasties, —200 Ptolemaic Period, 150 Roman Period.

Firstly, the sample mean vector for (X1, X2, X3, X4)! is computed for each period, and the pooled
covariance matrix. That is, firstly S, the sample covariance matrix for period a is computed for each
of the 5 periods and then

_¥h 298,
S 145
Here S is a 4 x 4 covariance matrix, with the sample variances along the diagonal.

S

The Penrose distances may now be computed directly; to compute the Mahalanobis distances, the

inverse S7! is required. These distances turn out to be:

Penrose
1 11 i 1v v
T _
11 0.023 -
117 0.216 0.163 -
IV 0.493 0.404 0.108 -
vV 0.736 0.583 0.244 0.066 -
Mahalanobis
1 11 i  1v v
I _
II  0.091 -

11T 0.903 0.729 -
IV 1.881 1.594 0.443 -
V2697 2176 0.911 0.219 -

Due to the change of scale (the Penrose is divided by a 1/p) it does not make sense to compare the
absolute values of these distances, but the ratios should be comparable, giving the change between one
group and another. The ratio of the I — II and I — V distance is 0.736/0.023 = 32.0 for the Penrose
and 2.697/0.091 = 29.6 for the Mahalanobis measure; the results are similar. O
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Implementation The computation may be implemented in R as follows: the data is found on the

course home page under skulls.dat and is loaded as follows:

www2 = "https://www.mimuw.edu.pl/“noble/courses/MultivariateStatistics/data/skulls.dat"
skulls = read.table(www2,header=T)

To get the means for each variable by category, try

> x2 <- by(skulls[,-5],skulls[,5],colMeans)
> y<-simplify2array(x2)

and for the covariance matrices by category, try

> S <- by(skulls[,-5],skulls[,5],cov)
> Sarray<-simplify2array(S)

To obtain the pooled covariance,

> Spooled <-
29%(Sarrayl[,,1]+Sarray[,,2]+Sarray[,,3]+Sarrayl[, ,4]+Sarray[,,5])/145
> Spooled
MB BH BL NH
MB 21.11080460 0.03678161 0.07908046 2.008966
BH 0.03678161 23.48459770 5.20000000 2.845057
BL 0.07908046 5.20000000 24.17908046 1.133333
NH 2.00896552 2.84505747 1.13333333 10.152644

To obtain the Mahalanobis distance,

> mahalanobis(y[,1],y[,2],Spooled,inverted=FALSE)
[1] 0.09103424

I have not found an existing R script that gives the whole array of Mahalanobis distances presented in

a single matrix, but this is a relatively easy exercise.

1.7 The Mantel Randomisation Test

The Mantel test (1967) was introduced to detect space / time clustering of diseases. Suppose that n
objects are being studied and suppose that there are observations on two sets of observations. Let M
be the n x n matrix where M;; is the distance between object ¢ and object j based on the first set of
variables and let E be a matrix of distances between the objects based on the second set of variables.

Mantel’s test assesses whether or not the elements in M and E show some significant correlation. Let

n j-1
Z=7% % MjEj.
=2 k=1
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This is compared with observations

n j-1
Zo =3 Y Moot Ej;
J=2k=1

where o is a randomly chosen permutation of (1,...,n). The values z, are computed for each of the n!
permutations o and then it is seen if Z is a ‘typical’ observation of this distribution (i.e. does it land
between the § x100 and 1-§ x 100 percentiles of this empirical distribution, where « is the significance
level?)

For the Egyptian skulls data, the n objects are the n different skulls. To perform a Mantel ran-
domisation test, the two sets of variables are: Set 1 (on which M is based) are the measurements of

the skulls and Set 2 (on which F is based) is the single variable, the period from which the skull comes.
Example 1.2 (Ozone data).
To perform a Mantel test, the ade4 package may be used:

> install.packages("aded")
> library("ade4")

Load the ozone.csv data set.

> ozone <- read.csv(""/ozone.csv'")
> View(ozone)
> head(ozone)
Station  Av8top Lat Lon

1 60 7.225806 34.13583 -117.9236
2 69 5.899194 34.17611 -118.3153
3 72 4.052885 33.82361 -118.1875
4 74 7.181452 34.19944 -118.5347
5 75 6.076613 34.06694 -117.7514
6 84 3.157258 33.92917 -118.2097

This contains ozone measurements from thirty-two locations in the Los Angeles area aggregated over
one month. The dataset includes the station number (Station), the latitude and longitude of the
station (Lat and Lon), and the average of the highest eight hour daily averages (Av8top). We want
to test whether the differences in ozone measurements are smaller for stations that are closer together
than for stations that are far apart.

To run a Mantel test, generate two distance matrices, one containing spatial distances and one
containing distances between measured outcomes at the given points. In the spatial distance matrix,
entries for pairs of points that are close together are lower than for pairs of points that are far apart.
In the measured outcome matrix, entries for pairs of locations with similar outcomes are lower than
for pairs of points with dissimilar outcomes. This may be done using the dist function. The Mantel

test function requires objects of this ‘distance’ class.
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> station.dists <- dist(cbind(ozone$lLon, ozone$lat))
> ozone.dists <- dist(ozone$Av8top)
> as.matrix(station.dists)[1:5, 1:5]

1 2 3 4 5
0.0000000 0.3937326 0.4088031 0.6144127 0.1854888
0.3937326 0.0000000 0.3749446 0.2206810 0.5743590
0.4088031 0.3749446 0.0000000 0.5116772 0.4994034
0.6144127 0.2206810 0.5116772 0.0000000 0.7944601
0.1854888 0.5743590 0.4994034 0.7944601 0.0000000
as.matrix(ozone.dists)[1:5, 1:5]

1 2 3 4 5
0.000000 1.326612 3.172921 0.044354 1.149193
1.326612 0.000000 1.846309 1.282258 0.177419
3.172921 1.846309 0.000000 3.128567 2.023728
0.044354 1.282258 3.128567 0.000000 1.104839
1.149193 0.177419 2.023728 1.104839 0.000000

v oo w N

g W N

These are the two matrices which the function will test for a correlation. The test consists of calculating
the correlation of the entries in the matrices, then permuting the matrices and calculating the same
test statistic under each permutation and comparing the original test statistic to the distribution
of test statistics from the permutations to generate a p-value. The number of permutations defines
the precision with which the p-value can be calculated. The function to perform the Mantel test is
mantel.rtest and the required arguments are the two distance matrices. The number of permutations

can also be specified by the user; the default value is 99.

> mantel.rtest(station.dists, ozone.dists, nrepet = 9999)

Monte-Carlo test

Observation: 0.1636308

Call: mantel.rtest(ml = station.dists, m2 = ozone.dists, nrepet = 9999)
Based on 9999 replicates

Simulated p-value: 0.0293

Based on these results, we can reject the null hypothesis that these two matrices, spatial distance and
ozone distance, are unrelated with a =.05. The observed correlation, r = 0.1636308, suggests that the
matrix entries are positively associated. So smaller differences in ozone are generally seen among pairs
of stations that are close to each other than far from each other. Note that since this test is based on
random permutations, the same code will always arrive at the same observed correlation but rarely

the same estimate of the p-value. O
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Lecture 1: Exercises

1. Consider the data matrix 4ris, which is available as one of the datasets in R. Type

> iris

to see the names of the variables, their recorded values and the numbers of observations. Typing

>?iris

will give a brief description in the help window (bottom right).

Plot the Andrews curves corresponding to the first ten individuals of each of the three groups
into one diagram using x1 as sepal length, xo as sepal width, x3 as petal length, x4 as petal

width. Try to spot clusters and outliers.

Now plot the corresponding Andrews curves with z1 as petal length, x4 as petal width, x5 as

sepal length, x4 as sepal width.

The pattern has changed significantly, indicating that with Andrews curves, some permutations

of the variables can be more informative than others.

2. Consider the data for ozone measurements from thirty two locations in the Los Angeles area,
found in the file ozone.csv in the course data directory. Perform a Mantel test to see whether

the differences between ozone measurements are smaller for stations that are closer together.



Chapter 2

Principal Component and Factor Analysis

2.1 Introduction

Let x denote an n x p data matrix of n p-variate observations. Principal Component Analysis is a
technique applied when some of the variables are highly correlated. The aim is to find m linear com-
binations of the variables, where m < p, which describe the sample covariance or correlation structure
of the data set.

PCA may be carried out on either S, the sample covariance matrix, or R, the sample correlation
matrix. The sample correlation matrix is preferable if the p variables in the data set have widely
varying scales.

The aim is
e data reduction (reducing p variables to m,p linear combinations of the variables)

e interpretation (we examine which variables influence the principal components and, from this,

try to determine hidden factors; the principal components are factors).

2.2 Principal Component Analysis

Since PCA is concerned with the covariance / correlation structure of the variables, the data matrix

is first centred, so that the columns are all mean zero. Let

1
H=1,--1,1} (2.1)
n

where I,, denotes the n x n identity matrix and 1,, denotes the n-vector with each entry 1. Let
z = Hx,
then the entries of the n x p matrix z are
Zij = Tij — T 5.

13
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The sample covariance matrix S of x is given by:

1

z'z. (2.2)
n-1

1 n
S=——> (@ —Ti)(wp; - T ;) =
n—1ga

A principal component analysis simply finds the eigenvalues A1 > A2 > ... > A, of the sample covariance
matrix S and the corresponding eigenvectors P; : j = 1,...,p. The principal components are the
uncorrelated linear combinations; y = zP, where y 1 has the largest possible statistical variance among
orthonormal transformations of z and y 4 has the largest statistical variance under the constraint that

it is uncorrelated with (y.1,...,¥.¢-1)-

Lemma 2.1. Let S be the sample covariance matriz defined by Equation (2.2) and let A1 be the largest

eigenvalue of S and let v denole the corresponding normalised eigenvector; namely,
5
Sy=hy, 25 =L
=1

Let z;j = xjj — T j. Then, for any p- vector a, with Z?zl a? =1,

Proof

n p 2 n p
S(Eum) - 55 wme

i=1jk=1
(n-1)> ajarSj, = (n-1)a'Sa = (n-1)a'P'DPa = (n-1)b' Db,
gk

where b = Pa. Note that b'b = a’ P!Pa = a'a = 1, so b is a unit vector. Since D = diag(\y, ..., Ap) where

A1 > ... > )p, it follows that the expression is maximised if b = (1,0,...,0), so

2
Z(Zajzij) S(n—l)/\l.
i=1 \j=1

Meanwhile, since 7 is a unit eigenvector of S with eigenvalue Ay, it follows that

2
n p
Z( %‘Zz'j) =(n-1)7'Sy=(n-M'v=(n-1)\
i=1 \j=1

and the result follows. O



2.2. PRINCIPAL COMPONENT ANALYSIS 15

Notation )\ will be used to denote the kth largest eigenvalue.

Definition 2.2 (Principal Component, Loading Vector). Let x denote the n x p data matriz, n multi-
variate observations on p variables. Let P denote the orthonormal matriz and D the diagonal matriz
with elements arranged in decreasing order such that S = PDP'. Let H be the n x n matriz defined by
Equation (2.1). The columns of the matriz

y = HxP (2.3)

are called the sample principal components. The ith element of the kth column represents the score of
the kth principal component for the ith observation. The kth column of the orthonormal matriz P is

the loading vector for the kth principal component.
The following theorem is stated without proof; it is left as an exercise.

Theorem 2.3. Let x be an nxp data matriz; n p-variate observations. Let P denote the orthonormal
matriz and D the diagonal matriz with elements from highest to lowest such that S = PDP', where S

1s the unbiased sample covariance matriz. Let

y = HxP
where
1
H=1,--11%
n
Let
s oL g
n—1
Then
1.
s = p
2. Let zj, = (1%, - - - ,zn,k)t where zji, = Tk — % Y1 xik. Then the linear combinations
Pimzy + ...+ Pomz,, m=1,...,q<p

span the parallelepiped with the largest volume among all parallelepipeds spanned by standardised

linear combinations of x in variable space.

3. Let c,(;) =Y vikYa- The largest volume is given by

\/d6t((Cg))(k,l)e{L...,q}?) = (n-1)"\/dy .. dy.

tr(SCY = tr(SP)) = Ay +... + A,
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Recall For a symmetric p x p matrix, the sum of the trace is equal to the sum of the eigenvalues. It
follows that tr(S) = X7, A; = tr(D).

Interpretation

e Plotting y 1,...,y.4 for ¢ <pin object space gives the ‘best’ ¢ dimensional summary of x if one
is looking for the parallelepiped of largest volume spanned by standardised linear combinations

of x in variable space (recall that the point z' := (T.1,...,7.p) is the origin in variable space.

e [t often turns out that all the loadings for the first principal component are positive. If this is the
case, then it can be interpreted as a measurement of size. If this is the case, then it necessarily
follows that all the other principal components have both positive and negative loadings and are
therefore interpreted in terms of shape. Since the general idea is to reduce the data and to only

use m principal components where m < p, they will not cover all possibilities for shape.

e The sum of the unbiased sample variances, that is tr(S) is also called the total sample variation

of x. If only m principal components are used, then

A+ Ay
AL+ A

represents the proportion of the variance explained by the first m sample principal components.
There are two usual criteria for deciding how many to use:
1. The m sample prinicipal components explain 90% of the variation.
2. (Kaiser’s criterion) The variances of the sample principal components beyond the mth prin-
cipal components account for less than the average Z—ljtr(S ).

When p < 20, the second of these tends to include too few components.

e After deciding on the number of principal components m to include, the data is represented only

using the first m principal components: using

y = HxP =zP,
it follows that
x=1,7 +yP!
the components m + 1,...,p are estimated by 0, giving X, the estimate of x as:
P11 - Pp1

x=1x"+(y.a|---[y.m) :
le Ppm

Recall that the vector (Pig,...,P,x)" is the kth loading vector.
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e Sometimes it is better to use standardised variables. This occurs if variables on a smaller scale
give significant information, which can be lost if the raw data is used. The solution is to start
by standardising the data (namely, for each column, removing the sample mean and dividing
through by the sample standard deviation) and applying a principal component analysis to the
standardised data. This is equivalent to carrying out a PCA on the correlation matrix rather

than the covariance matrix.

The analysis is not scale invariant; the relative importance of the eigenvalues may change, the
loadings will change and their interpretation may change. Whether the data or the standardised

data is to be used depends on the situation.

e It may be possible to decide that some of the p variables are redundant, based on the PCA analysis
on the correlation matrix. This is done by considering the last sample principal component and
discarding the variable assigned to the loading with largest absolute value. Then continue with
the loadings of the second last principal component, and so on. Stop discarding if certain criteria

are satisfied: for example,

1. the eigenvalue corresponding to the loadings is greater than 0.7 (this seems to work in

practice)

2. the sample principal components corresponding to the loadings you have not yet considered

explain less than 80% of the variation.
Using either criterion, at least four variables should always be retained.

The columns of the matrix P are often called the coefficients.

Prinipal component analysis is only useful as a tool if some of the eigenvalues of the statistical corre-
lation matrix are very small. Absolutely nothing is achieved by a principal component analysis if all

the eigenvalues of the correlation matrix are significant.

2.3 How to do a Principal Component Analysis

Throughout this discussion, variance refers to statistical variance, covariance to statistical covariance
and correlation to statistical correlation. Firstly, suppose that the PCA is being carried out on the co-
variance. The procedure is as follows: suppose there are n independent observations from (X1,...,X,).

Firstly, the data is centralised:

z=Hx

and the statistical covariance is computed;

The first principal component is
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Yi= P112.1 +...+ Pplz_p,

where Pjy,..., Py are chosen to maximise Var(y ;) subject to the constraint that Zi:l P131 =1. That
is, to maximise

PSP,
where P; is taken as a column vector, subject to the constraint. Once the first component has been
established, the second component
Yo2= Plgz,l +...+ PpQZ.p

is established by finding (Pig,. .., Pp2) that maximises Var(y 2) subject to the constraints

p
ZP]?2 = ].,
k=1
PLSPy =0.

That is, Py is chosen to ensure that the statistical correlation is zero. Inductively, once P; have been

established for j=1,...,k—1, Py are established by maximising the estimate of Var(yx),

PSPy,
subject to the constraints that
S -1
1=1
and the statistical covariances Cov(y.;,y. ) are zero for j =1,...,k—1. That is

PYSPL=0, j=1,... k-1

Note that the statistical variances of the principal components are the eigenvalues of the sample

covariance matrix and that the columns P} are the eigenvectors.
Recall that, for a symmetric m x m matrix C, with eigenvalue A1, ..., Ay,
m
tF(C) = Z )‘j'
j=1
Let A; denote the estimates of Var(Z;). It follows that
P P
2. Sii = 2 A
j=1 j=1

Since principal component analysis considers dependence and independence, it is usual to code the
variables x 1,...,x, so that they each have mean 0 and variance 1 at the beginning of the analysis.

The procedure with this modification is therefore as follows:
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1. Compute T for k=1,...,pand Sy = % o1 (zjk =7 k) (75— ), the sample means and sample

covariance matrix.

: L TjpT
2. Compute the coded variables, y;1 = e
3. Compute the correlation matrix
Ski
Ry =

VSkkSu

This is the covariance matrix for the coded variables.

4. Find the eigenvalues A1,...,\, and the corresponding eigenvectors Pq,..., P, in the way de-

scribed above.

5. Discard any principal components that do not account for a significant variation in the data.
This means that y j,...,y, are discarded for k such that Z?:ku Aj<a< Z?zk Aj where « is the
level of the variation that is to be ignored. Usually, this is roughly 20% or, when the data is

standardised, components corresponding to eigenvalues less than 1 are ignored.

2.4 Confidence Intervals for PCA Eigenvalues and Eigenvectors

There exists some results in the literature. The proofs of these are long and technical. Much more
seriously, they all rely on the assumption that the data comes from i.i.d. p-variate Gaussian variables

and that n is large.

Theorem 2.4 (Lawley (1956)). If \; is a distinct eigenvalue of the covariance (correlation) matriz,
then

IE<:-—Z +0(n7?)

j#z l )‘J

so that the estimate is asymptotically unbiased and:

2
V) = 2212 (1+lz(A AiA ) )+O(n3).

VE

Also, let ; denote the estimate of the ith eigenvector h; with )\; the ith eigenvalue, then

V(A= 2) — ) Np(0,24%)
where A = diag(A1,...,Ap)

Vn(h; = b;) — 2y Np(0, E;)
where

t
Ei= MY 50 )\)Qhkh

k+i
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3. Foreachi=1,..

Since the ‘normality’ assumption for these results is not usually satisfied and size of the data set is often

insufficient for a ‘central limit theorem effect’, these results are of limited value. To find confidence
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D ’XZ J—Ei'

intervals for eigenvalues, bootstrap methods may be used.

If we have an n xp data matrix, a bootstrap method takes randomly chosen subsets of size m, were
m < n and performs the PCA on the subset of size m. By taking M such randomly chosen subsets, an

empirical distribution for the estimate of the eigenvalue \; may be constructed.

2.5 Implementation in R

2.5.1 Sparrow Data

The implementation in R is shown by application to the Bumpus Sparrow data set.

Example 2.1 (Bumpus Sparrow Data).

In 1898, H.C. Bumpus collected data from 49 female sparrows, which he picked up after a severe storm.
Birds 1 to 21 survived; birds 22 to 49 died. The variables measured were X; total length, Xs alar
extent X3 length of beak and head, X, length of humerus, X5 length of keel of sternum, Xg returns a

1 if the bird survived and a 0 otherwise. This data set is found in sparrow.dat on the course home

page.

www<-"https://www.mimuw.edu.pl/"noble/courses/QPEDataScience/data/spar

row.dat"

sparrow <- read.table(www,header=T,quote="\"")

View(sparrow)

A principal component analysis can be carried out quite simply using the command prcomp.

pca <- prcomp(sparrowl[,-6],scale=TRUE)

print(pca)

Standard deviations:
[1] 1.8834858 0.7399002 0.6203523 0.5756578

Rotation:

PC1
LENGTH 0.4528873
ALAR 0.4481098
HEADBK 0.4559146
HUMERUS 0.4749343
STERNUM 0.4008366

The correlation matrix may be obtained in the following way:

PC2
-0.08190723
0.40195407
0.2693939%4
0.16267408
-0.855697207

PC3
0.6184031 O.
0.4199159 -0.

-0.5192954 O.
-0.4015361 -0.
-0.1017315 -0.

0.4345230

pPC4
5613384
5570644
4895259
2960348
2174999

PC5
-0.3010998
0.3885620
0.4585472
-0.7064748
0.2213285
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> cormat <- cor(sparrowl[,-6])

> cormat

LENGTH
1.0000000
0.6761409
HEADBK 0.6618119
HUMERUS 0.6452841
STERNUM 0.6051247

LENGTH
ALAR

ALAR
0.6761409
1.0000000
0.6433941
0.7287194
0.4887925

HEADBK
0.6618119
0.6433941
1.0000000
0.7631899
0.5262701

0.
0.
0.
1.
0.

HUMERUS
6452841
7287194
7631899
0000000

0.
0.
0.
0.
6066493 1.

STERNUM
6051247
4887925
5262701
6066493
0000000

The eigenvalues and eigenvectors from the correlation matrix can be obtained in the following way:

> ev <- eigen(cor(sparrow[,-6]1))

> ev

$values

[1] 3.5475186 0.5474524 0.3848369 0.3313819 0.1888102

$vectors

[,1] [,2] [,3] [,4] [,5]
[1,] -0.4528873 -0.08190723 0.6184031 0.5613384 -0.3010998
[2,] -0.4481098 0.40195407 0.4199159 -0.5570644 0.3885620
[3,]1 -0.4559146 0.26939394 -0.5192954 0.4895259 0.4585472
[4,] -0.4749343 0.16267408 -0.4015361 -0.2960348 -0.7064748
[6,] -0.4008366 -0.85597207 -0.1017315 -0.2174999 0.2213285

Note that A1 + Ao + A3 + Ay + A5 = 5, the sum of the trace.

The first component accounts for % x 100 = 70.95% of the total variance. The other principal
components account for 10.95%, 7.70%, 6.63% and 3.77% respectively of the total variance.

Another way of looking at it is as follows: after standardisation, all the original variables have
variance 1. Therefore, the first principal component has a variance 3.616 times as much as one of the
original variables, while the second only accounts for half as much as any of the original variables. The
first principal component is clearly by far the most important.

The first principal component, in terms of the standardised variables, is

Y7 =0.452977 + 0.448175 + 0.455975 + 0.47497Z,4 + 0.4008 Z5.
The coefficients are all nearly equal, so Y7 is an index of the size of the sparrows. Therefore, about
72.3% of the variation in the data is due to differences in the size of the sparrows.
The second principal component is

Ys =-0.08197; + 0.4020Z5 + 0.2694 75 + 0.162724 — 0.8560Z5.

This contrasts Zs, Zs and Z4 on the one hand, with the length of the keel of the sternum Z5 on the

other. Here Y5 represents a shape difference between the sparrows. O
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2.5.2 Bootstrap for Confidence Intervals

Consider the Fisher Iris data. Suppose we want a 95% confidence interval for the loading of the first

principal component with respect to Sepal length.

library(boot)

getPrcStat <- function (samdf,vname,pcnum){
prcs <- prcomp(samdf([1:4]) # returns matrix

return(prcs$rotation[ vname,pcnum ]) # pick out the thing we need

bootEst <- function(df,d){
sampledDf <- df[ d, 1 # resample dataframe
return(getPrcStat (sampledDf,"Sepal.Length",1))

bootOut <- boot(iris,bootEst,R=10000)
boot.ci(bootOut,type=c("basic"))

This gives the output:

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates

CALL :
boot.ci(boot.out = bootOut, type = c("basic"))

Intervals :
Level Basic
95% ( 0.3364, 1.1086 )

Calculations and Intervals on (Original Scale

2.5.3 Using the Principal Components

In the ‘Sparrow’ data set, we see that by far the most of the variation is accounted for by the first
two principal components, so these two components should be useful for most analysis of the data; the
other three components should not add much.

The question we now consider is whether the 5 quantitative variables can be used to show differences
between the two groups, those that survived the storm and those that did not.

A scree plot gives the proportion of the variance attributable to each component; this is found in
Figure
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> screeplot(pca)

pca

Veriances

< [

Figure 2.1: Scree plot for Sparrow principal components

Now let us make a scatter plot of the first two principal components. A nice package for plots and
visualisation is ggplot2. Firstly, we add the first two principal components to the ‘sparrow’ data frame

as follows:

spa <- sparrow
spa$pcl <- pca$x[,1]
spa$pc2 <- pca$x[,2]

Using the plotting command from ggplot2:
gplot(pc2,pcl,colour=SURVIVE,data=spa)

gives the scatterplot in Figure 2.2] This illustrates that the population of birds that did not survive

has more ‘extreme’ values than the population that did survive.

2.6 Weighted Projection Methods

Let x be the n x p data matrix, corresponding to n p-variate observations z,,...,z,. Let YooY,
denote the corresponding n points obtained by projecting onto a ¢ dimensional subspace of the object
space. The following properties characterise the ¢ dimensional subspace found by PCA.

1. The points z,...,z,, are projected perpendicularly onto YooY, -

2. The data points y RERRRY'N have the greatest variance among standardised ¢ dimensional subspace

projections.
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Figure 2.2: Scatter plot for first two Sparrow principal components

The points are those in the g dimensional space that minimise:

3 (dy—d

i=17=1
where
p . P
Y (i — )2, dij =\| D (Wir — yjn)?-
k=1 k=1
A disadvantage of the constraint that y el have the largest possible variation is that observations

close to the centre in the projected space may be far from the centre in the higher dimensional space.
A better quantity to minimise is

Z Z wij(dij — dij) 2

i=1j

where w;; controls the accuracy of the comparisons. For example, take w;; = d;; if accurate repre-

sentation of large distances is required and w;; = % if accurate representation of small distances is
]

required.

2.7 Factor Analysis

As usual with descriptive statistics, ‘Var’ represents a statistical variance and ‘Cov’ represents statistical
covariance; the terms refer to the statistics computed from the data and not to any features of the
population distribution.

Factor analysis may be seen as an extension of Principal Component Analysis. Given p variables
X1,...,Xp, it is hoped that they can be expressed, or mostly expressed, by a reduced number of factors,
which are linear combinations of the variables. Based on the original variables, it is hoped that these

factors may have an interpretation.
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Suppose there are n observations, (zj1,...,2;,)j.; of the p variables. One starts by applying
a principal component analysis on the correlation (that is, on the standardised data). A suitable
value of m is chosen and principal components after level m are neglected. Let Y7,...,Y), denote the
principal components, with corresponding eigenvalues A; > ... > A\,. Suppose that the data has been
standardised. Then Y = P'X. In co-ordinates,

YkZPlle-l-...-i-Pkap, ]{521,...7]).

These linear combinations of the variables, as discussed earlier, are statistically uncorrelated. Now,
choose m, the number of factors in the model. As discussed earlier, there are two usual methods;
either let m equal the number of eigenvalues greater than or equal to 1 (Kaiser’s method) or else let

m denote the lowest number of eigenvalues that account for more than 80% of the variation.

Recall that P is orthonormal and hence P~! = P!, It follows that X = PY. In co-ordinates,

XjZPﬂYl-l-...Pij}), j=l,...,p.

Set F; = —i for j =1,...,m, then the (F;)"?, are uncorrelated and Var(F;) =1 for each j=1,...,m.
it ilj=1 J
J

Let
Ajk=\/)‘kpjk: j=1,...,p, k=1,...m.

Let €= Y% _ 1 Ay Then, for j=1,...,p,

XjZAj1F1+...+Aijm+€j, jzl,...,p.
The Fi,..., Fy, are uncorrelated factors with Var(F;) =1 for all j=1,...,m.

Definition 2.5 (Specificity). The quantity Var(e,) is known as the specificity of X,, the part of the

variance that is unrelated to the common factors.

The elements Ag1, ..., Agm are known as the provisional factor loadings for variable a.

Definition 2.6 (Factor Loadings). Once the errors ei,...,€, have been determined, along with the
factors Fy, ..., Fp, to be used, the factor loadings for the factor a are the coefficients Aq1, ..., Aam Such
that

m
Xa = Z Aaij + €q.
j=1

Definition 2.7 (Communality). The communality of a variable X; in a factor analysis is defined as
Yoy A?k, where m is the number of factors. It gives the correlation between X; and the part of X;

explained by the factors.

An orthonormal transformation of uncorrelated variables yields uncorrelated variables. Therefore, any

orthonormal transformation D yielding factors F'* given by
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F* = DF

will produce a suitable decomposition of X into uncorrelated factors. The second stage of the analysis
is to find a rotation matrix D that produces rotated factors that are most convenient.

The last stage is to calculate the factor scores (Fj*l, e ,Fj*m) for each observation j=1,...,n.

Note that the factors produced by a principal component analysis are orthogonal (i.e. uncorrelated).
In the second stage, an orthonormal transformation will preserve this feature. If other transformations

are used, the factors will not be independent.

The Varimax Rotation This is the transformation taken from the orthogonal transforms that

maximises the variance of the squared loadings; that is, choose D to maximise

k p

V:zlz

12 ?
Aji - (‘ > A?l)
=1\ j=1 pj=1
The logic behind this is that if this is large, then each values of A;; is close to either 0 or 1, so that
the variable is explained as much as possible by a single factor.
Note that, by standardisation, Var(F};) =1 for all j and Cov(F}, Fy,) =0 for j # k. If € is small (as
it should be if the variables are properly explained by m factors), then the correlation structure of X

(where the variables have been standardised) is given by

COV(Xj,Xk) = COV(Z AjaF(u Z Akab) = Z AjaAka-
a=1 b=1 a=1

The Value of Factor Analysis

Factor analysis is often useful for gaining qualitative insight into the structure of multivariate data,
but it should be regarded purely as a piece of descriptive statistics; it has no value whatsoever for
formal inferential statistics. It is not appropriate if it is carried out on a single small sample that
cannot be replicated and then assuming that the factors obtained must represent underlying variables.
Simulations have shown that even if a postulated factor model is correct, the chance of recovering it

using the available methods is not very high.

2.8 Example: Country Employment Profiles

This example considers the percentages of people employed in nine industry sectos in various Euro-
pean countries in the years from 1989 to 1995. 30 countries are considered and 9 different industry
sectors (X7 = AGR: agriculture forestry and fishing, X5 = MIN: mining and quarrying, X3 = MAN:
manufacturing, X4 = PS: power and water supplies, X5 = CON: construction, Xg = SER: services, X7 =
FIN: finance, Xg = SPS: social and personal services and Xg = TC: transport and communications.

In addition, the countries were classified as to whether they belonged to the EU, or EFTA, or were
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Eastern European, or ‘other’. The data is from 1995 and uses the classifications that were appropriate
then. For ‘USSR’ read ‘former USSR’, for ‘“Yugoslavia’ read ‘former Yugoslavia’, etc ... The data set

is found on the course home page under employment.csv.

www<-"https://www.mimuw.edu.pl/ noble/courses/QPEDataScience/data/empl
oyment.csv"
employment <- read.csv(www)

View(employment)

—
Q

country group AGR MIN MAN PS CON SER FIN SPS

1 Belgium EU .6 0.2 20.80.8 6.3 16.9 8.7 36.9 6.9
2 Denmark EU .6 0.120.40.7 6.4 14.5 9.1 36.3 7.0
3 France EU .1 0.3 20.20.9 7.116.7 10.2 33.1 6.4
4 Germany EU .2 0.7 24.81.0 9.4 17.2 9.6 28.4 5.6
5 Greece EU 22.2 0.5 19.2 1.0 6.8 18.2 5.3 19.8 6.9
6 Ireland EU 13.8 0.6 19.8 1.2 7.1 17.8 8.4 25.5 5.8
7 Italy EU .4 1.121.9 0.0 9.1 21.6 4.6 28.0 5.3
8 Luxemb. EU .3 0.119.6 0.7 9.9 21.2 8.7 29.6 6.8
9  Netherl. EU .2 0.119.20.7 0.6 18.5 11.5 38.3 6.8
10 Portugal EU 11.5 0.5 23.6 0.7 8.2 19.8 6.3 24.6 4.8
11 Spain EU .9 0.521.1 0.6 9.5 20.1 5.9 26.7 5.8
12 U.K. EU .2 0.721.31.2 7.0 20.212.4 28.4 6.5
13  Austria EFTA .4 0.326.91.2 8.519.1 6.7 23.3 6.4
14  Finland EFTA .5 0.2 19.31.2 6.8 14.6 8.6 33.2 7.5
15  Iceland EFTA 10.5 0.0 18.7 0.9 10.0 14.5 8.0 30.7 6.7
16 Norway EFTA .8 1.1 14.6 1.1 6.5 17.6 7.6 37.5 8.1
17 Sweden EFTA .2 0.319.00.8 6.4 14.2 9.4 39.5 7.2
18 Switzerl. EFTA .6 0.024.7 0.0 9.2 20.5 10.7 23.1 6.2
19  Albania Eastern 55.5 19.4 0.0 0.0 3.4 .3 156.3 0.0 3.0
20 Bulgaria Eastern 19.0 0.0 35.0 0.0 6.7 .4 1.5 20.9 7.5
21 Czech/S1. Eastern 12.8 37.3 .00.0 8.4 10.2 1.6 22.9 6.9
22  Hungary Eastern 15.3 28.9 .0 0.0 6.4 13.3 0.0 27.3 8.8
23 Poland Eastern 23.6 3.9 24.1 0.9 6.3 10.3 1.3 24.5 5.2
24 Romania Eastern 22.0 2.6 37.9 2.0 5.8 .9 0.6 15.3 6.8
25 USSR Eastern 18.5 0.0 28.8 0.0 10.2 .9 0.6 25.6 8.4
26 Yugoslav. Eastern 5.0 2.2 38.7 2.2 8.1 13.8 3.1 19.1 7.8
27 Cyprus  Other 13.5 0.3 19.0 0.5 .1 23.7 6.7 21.2 6.0
28 Gibraltar  Other .0 0.0 6.8 2.0 16.9 24.5 10.8 34.0 5.0
29 Malta  Other .6 0.6 27.9 1.5 4.6 10.2 3.9 41.6 7.2
30 Turken  Other 44.8 0.9 15.3 0.2 .2 12.4 .4 14.5 4.4
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Firstly, the sample correlation matrix for the standardised variables for the nine industries may be

obtained:

> cormat <- cor(employment[,3:11])
> cormat
AGR MIN MAN PS CON SER
AGR 1.0000000 0.31606875 -0.25438889 -0.38235660 -0.34861031 -0.60471243
MIN 0.3160688 1.00000000 -0.67193466 -0.38737805 -0.12902071 -0.40654843
MAN -0.2543889 -0.67193466 1.00000000 0.38789059 -0.03445846 -0.03294004
PS -0.3823566 -0.38737805 0.38789059 1.00000000 0.16479638 0.15498141
CON -0.3486103 -0.12902071 -0.03445846 0.16479638 1.00000000 0.47308319
SER -0.6047124 -0.40654843 -0.03294004 0.15498141 0.47308319 1.00000000
FIN -0.1757533 -0.24805846 -0.27374053 0.09430991 -0.01802316 0.37928368
SPS -0.8114755 -0.31641839 0.05028408 0.23774016 0.07200705 0.38798122
TC -0.4890732 0.04363923 0.24283766 0.10527250 -0.05581358 -0.08413452
FIN SPS TC
AGR -0.17575329 -0.81147553 -0.48907320
MIN -0.24805846 -0.31641839 0.04363923
MAN -0.27374053 .05028408 0.24283766
PS  0.09430991 .23774016 0.10527250
CON -0.01802316 .07200705 -0.05581358
SER 0.37928368 .38798122 -0.08413452
FIN 1.00000000 .16601516 -0.38953393
SPS 0.16601516 .00000000 0.47766783
TC -0.38953393 .47766783 1.00000000

O =, O O O O O

The eigenvalues and eigenvectors may be obtained by:

> ev <- eigen(cormat)

> ev

$values

[1] 3.113358e+00 1.808358e+00 1.496866e+00 1.063671e+00 7.102833e-01
3.113942¢-01

[7] 2.927508e-01 2.033110e-01 7.945502e-06

$vectors
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.5115354 0.0232344722 -0.27813086 0.01485514 -0.02439567 -0.04269187
[2,] 0.3747526 -0.0007024389 0.51486608 0.11531920 0.34654797 0.19857793
[3,] -0.2461080 -0.4314434990 -0.50242351 0.05793390 -0.23361655 -0.03084313
[4,] -0.3159322 -0.1085180547 -0.29430765 0.02293593 0.85439646 0.20623295
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(5,]
(6,]
7,1
(s,]
[9,]

[1,]
2,]
(3,]
[4,]
(5,]
(6,1
7,]
(8,]
[9,]

-0.2212564 0.2441275695 0.06938066 0.78219676 0.06182311 -0.50302464
0.4090143576 0.06449693 0.16822359 -0.26685196 0.67268477
-0.1309033 0.5524403796 -0.09429308 -0.49138387 0.13088760 -0.40566601
-0.4283699 -0.0552823165 0.36065300 -0.31507798 -0.04512635 -0.15820227
-0.2063304 -0.5161419256 0.41300662 -0.04165603 -0.02322350 -0.14187821

-0.3812441

[,7]
0.16697139
-0.21599546
-0.23891313
0.06108782
0.01933405
-0.17317838
-0.45674441
0.62182700
-0.48888289

[,8]

.53949206
.44673451
.43014036

0.15521495
0.03159870
0.20281109

.02535405
.04639853
.50530953

[,9]
.568212143
.41883163
.44707205
.03031326
.12874070
.24507813
.19070896
.41013704
.06084925

The eigenvalues, with the percentages of the total of nine in parentheses, are
3.112(34.6%), 1.809(20.1%), 1.496(16.6%),
1.063(11.8%), 0.710(7.9%), 0.311(3.5%), 0.293(3.3%), 0.204(2.3%), 0.000(0.0%).

The last value is necessarily zero, because the data is percentages of the workforce, which necessarily

adds up to 100. Therefore, although there are 9 variables, there are only 8 free variables.

information may be obtained as follows:

> pca <- prcomp(employment[,3:11],scale = TRUE)

> summary(pca)

Importance of components:

PC8

Standard deviation

PC9

0.45090 0.002819
Proportion of Variance 0.3459 0.2009 0.1663 0.1182 0.07892 0.0346 0.03253
0.02259 0.000000
Cumulative Proportion 0.3459 0.5469 0.7132 0.8314 0.91028 0.9449 0.97741
1.00000 1.000000

PC1

PC2

PC5 pPCé PC7

1.7645 1.3448 1.2235 1.0313 0.84278 0.5580 0.54106

29

This

It is a matter of judgement whether or not to use 4 or 5 components. The first 4 components account

for 83% of the variation; the first 5 account for over 90% of the variation. From the eigenvectors,

71 = 0.51(AGR) +0.37(MIN)

~0.25(MAN) - 0.31(PS) - 0.22(CON) - 0.38(SER) - 0.13(FIN) - 0.42(SPS) - 0.21(TC),
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Zy = -0.02(AGR) + 0.00(MIN)
+0.43(MAN) +0.11(PS) - 0.24(CON) - 0.41(SER) - 0.55(FIN) + 0.05(SPS) + 0.52(TC).

and the others similarly.

The first component contrasts (AGR) and (MIN) on the one hand with (MAN), (PS), (CON), (SER),
(FIN), (SPS) and (TC) on the other hand.

The second component gives little or no weight to (AGR), (MIN), (SPS) and constrasts (MAN), (PS),
(TC) with (CON), (SER), (FIN).

Interpretations for the other components may be derived similarly.

While PC1 and PC2 are uncorrelated when taken with respect to the whole data set, ignoring the
classifications, it is interesting to plot PC1 against PC2, using different symbols for the four categories
(Western EU, EFTA| Eastern European, Other). When prcomp is used and the results stored in pca,
the principal component values are stored under pca$x. They may be added to the data frame in the

following way:

> emp <- employment

> emp$pcl <- pca$x[,1]
> emp$pc2 <- pca$x[,2]

> library("ggplot2")
> gplot(pc2,pcl,colour=group,data=emp)

50-
group
Eastern
2.5-
b EFTA
o
e EU
[ ]
0.0 - o Other
(X J ® o
oo
-2.5-
1 1 1 1 1 1 1
-3 -2 -1 0 1 2 3
pc2

Figure 2.3: First two principal components for employment data, coloured by group

The analysis may be continued to give a factor analysis. There are four eigenvalues greater than 1 for
the standardised variables in the principal component analysis, so the ‘rule of thumb’ suggests that

four factors are appropriate using (initially) F}; = %, giving
J
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Xj = Alel +Aj2F2+Aj3F3 +Aj4F4+6j,...j = 1,...,9.

It is useful if each variable can be expressed in terms of as few factors as possible. The next step
is therefore to try a rotation, which keeps the factors uncorrelated. That is, F* = OF, where O is a
rotation matrix, which tries to ensure that for each variable the loading is weighted as much as possible

towards one predominant factor. The varimax seems to work quite well.

> install.packages("GPArotation")

>library("GPArotation")

>install.packages("psych")

>library("psych")

> fit <- principal(emp[,3:11], nfactors=4, rotate="varimax")

> fit

Principal Components Analysis

Call: principal(r = empl[, 3:11], nfactors = 4, rotate = "varimax")

Standardized loadings (pattern matrix) based upon correlation matrix
RC1 RC3 RC2 RC4 h2 u2

AGR -0.85 -0.27 -0.10 -0.36 0.93 0.068
MIN -0.11 -0.86 -0.30 -0.10 0.85 0.152
MAN 0.03 0.89 -0.32 -0.09 0.91 0.093
PS 0.19 0.64 0.04 0.14 0.46 0.538
CON 0.02 0.04 -0.08 0.95 0.92 0.082
SER 0.35 0.15 0.48 0.65 0.79 0.209
FIN 0.08 0.00 0.93 -0.01 0.88 0.125
SPS 0.91 0.12 0.18 0.04 0.88 0.123
TC 0.73 0.03 -0.56 -0.14 0.87 0.129
RC1 RC3 RC2 RC4
SS loadings 2.26 2.05 1.66 1.51
Proportion Var 0.25 0.23 0.18 0.17
Cumulative Var 0.25 0.48 0.66 0.83

Proportion Explained 0.30 0.27 0.22 0.20
Cumulative Proportion 0.30 0.58 0.80 1.00

For the employment data, this yields the model (where the communality is indicated on the right)

X, =-0.85F; —0.10F; - 0.27F; —-0.36F; +¢;  0.93
Xy = -0.11F} - 0.30F; — 0.86F; —0.10F; +¢;  0.85
X3 =0.03F} - 0.32F; + 0.89F; —0.09F; +e5  0.91
X4 =0.19F +0.04F;0.64F; +0.14F} +¢;,  0.46
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X5 =0.02F] - 0.08Fy +0.04F5 +0.95F; + €5 0.92
Xg=0.35F] +0.48F; +0.15F +0.65F; +¢5  0.79
X7 =0.08F;+0.93F; +0.00Fy —0.01F; +¢;  0.87
Xs=0.91F +0.18F5 + 0.12F5 + 0.04F; + eg 0.88
Xo=0.73F —0.57F; +0.03F; —0.14F} +¢y  0.87.

The ‘varimax’ rotation has conveniently expressed each variable in terms of a predominant factor plus
other less important factors for that variable. The only variable that seems to have fwo predominant
factors is Xy.

Following the varimax rotation, the results are interpreted by considering the four factors in terms

of the variables. From that, it may be possible to give useful labels to each factor.

Here, it is clear that F}* has high positive loadings for X; (agriculture, forestry and fishing) and
high negative loadings for Xg ( social and personal services) and Xg (transport and communications).
Therefore, F|" measures the extent to which people are employed in agriculture rather than services and

communications. It could be labelled ‘rural industries rather than social service and communication’.

Factor Iy turns out to have a high negative loading for X7 (finance). The loading for Xy (transport
and communication) seems to be higher than the others. A possible labelling could be ‘lack of finance

industries’. O



Chapter 3

Cluster Analysis

3.1 Introduction

Cluster Analysis is the most well-known example of unsupervised learning. Unsupervised learning
means that we do not have a training set of examples where the classification is known; we learn the
number of the classes and assign objects to classes purely using the data. It is a tool for arranging
large quantities of multivariate data into natural groups.

Consider a sample of n independent observations on p variables, (x;1,... ,xjp)?:l. The data may
come from various groups, but the number or size of each group may not be known in advance. The
idea of cluster analysis is to derive, from the data, the characteristics of the various groups from which
the outcomes in the sample came.

Absolutely nothing is assumed about the data, except that the n observations come from K group-
ings (where K is not known in advance), where for group j, E[X] = I The number K and the vectors
s j=1,..., K have to be estimated from the data through cluster analysis. In other words, cluster
analysis only attempts to locate the collection of different average values and assigns the observations
to the groups determined by these averages.

Cluster analysis techniques are purely numerical, measuring distances and assigning observations
to groups based on the distance measures; the techniques do not involve statistics. On the one hand,
the techniques do not seem to be very powerful; in a few cases, where the data seems to have some
very pronounced centres, cluster analysis techniques can locate them. Having said that, they can work
well for large data sets.The important advantage of clustering is that very few modelling assumptions
are required.

There are numerous ways of clustering a data set of n independent observations on p correlated

variables. We consider three:

1. Clustering Observations This is the usual use of the term ‘clustering’; we divide the observa-

tions into K groups.

2. Clustering Variables In situations where there are large numbers of variables, many of which

are highly correlated with each other (for example gene expression levels), We may wish to

33
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partition the p wvariables into K distinct groups. For each cluster of variables, a representative

variable is taken and used.

3. Two-way clustering In some situations, both variables and observations may be clustered
together. For example, we may want to cluster both genes and tissue samples at the same time

to see which subset of genes is most closely related to which subset of tissue samples.

In this lecture, we concentrate on the first of these tasks, clustering observations.

Warning In many situations, cluster analysis is a total waste of time; the algorithms will only detect
the simplest patterns. Consider, for example, a bivariate data set, coming from two random variables;
the first uniformly distributed in the circle of radius 1 and the second uniformly distributed in the
annulus {(z,y)[1.5 < 2? +y* < 2.5}. A cluster analysis is unlikely to detect that there are two different

groups.

3.2 Distance and Dissimilarity Measures

Let z;;, denote observation ¢ on variable k, where there are n observations on p variables. Usually,

quantitative variables are standardised before the analysis;

1 n
= _— g o— 2
Sk " 1j§:1(33]k l‘k)

and
_ Tik— Tk
Yik = ———.
Sk

For quantitative variables, a common distance measure in cluster analysis is the Fuclidean distance:

p
dij = \| 2. (yir — yjr)?-
k1

The statistical distance between two p-variate observations z and y is usually of the form

d(z,y) = \/(z -y)tS(z-y)

where S is the sample covariance matrix. This is the simply the Mahalanobis distance. The Penrose

distance may be used instead. There are many choices of distance.

In situations where the data is categorical, such a distance measure is not meaningful. It is then useful
to try and compare data by the presence and absence of certain characteristics in the p variables. The
distance is then the number of differences. For example, suppose p =5 and the five variables for items

7 and k£ are coded as
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~
—_ = =
— ol
o O Ww
— =
o |

Then the distance d(i, k) = 2.

In some cases, a 1 — 1 match is stronger evidence of similarity than a 0 — 0 match. For example, if two
people can understand ancient Greek, this is stronger evidence of a similarity than if both of them do

not read ancient Greek. Then the following table is useful:

i\k| 1 0

1 a b a+b

0 c d c+d
a+c b+d|p=a+b+c+d

This leads to the definition of similarity, which is a number that lies between 0 and 1, equal to 1 if the
two objects are identical and equal to 0 if the two objects have nothing in common. The following are

common similarity measures that are used depending on the situation.

1. s = %l if equal weight is given to 1 -1 and 0 — 0 matches.
2. Sip = % if double weight is given to 1 — 1 matches than 0 — 0 matches

3. Sik = % if the 0 — 0 matches do not contribute to similarity.

4. sig = 3= if the 0 — 0 matches are considered irrelevant.
5. S = ﬁ Double weight for 1 — 1 matches, 0 — 0 matches irrelevant
6. sk = m 0 — 0 matches irrelvant, double weight for unmatched pairs.

7. sy = 755 Ratio of matches to mis-matches, the 0 — 0 matches excluded.

The dissimilarity is defined as d; = 1 — S

3.3 Clustering Techniques

We first consider hierarchical metohds for clustering. These methods start by computing the distances,
or dissimilarities (depending on the type of data) from each object to every other object in the sample
and storing this as a dissimilarity matrix. Groups are then formed by a process of agglomeration or
division. Agglomeration techniques start with all individuals in groups of size 1. Close groups are
merged until the process is complete. With division, all objects start in a single group. This group
is split into two and then the subgroups are split into pairs until all the elements in each group are

sufficiently similar and the groups as a whole are sufficiently far apart from each other.
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There is also a partitioning approach to cluster analysis. For algorithms that fall into this class,
objects are permitted to move in and out of groups at various stages in the analysis. First, some more
or less arbitrary group centres are chosen. Objects are allocated to the nearest group centre. New
centres are then calculated, representing the averages of the objects in the groups. An object is then
moved to a new group if it is closer to that group’s centre than the centre of the present group. Groups
that are close together are merged; groups that are spread out are split, following some defined rules.
The process continues iteratively until stability is achieved with a predetermined number of groups.
For each run, the number of groups is fixed in advance. This is repeated over a range of values for the
group number and the output is the most successful one, where some criteria for goodness of fit are

given.

3.4 Hierarchic Methods

First, a matrix of distances between each object is calculated. For example, if there are 5 objects, the

matrix might be

object
object 1 2 3 4 5
1 _
2 2 -
3 6 5 -
4 10 9 -
5 9 8 5 3 -

Firstly, each object is considered to be in a group on its own. Then run through all possible distances,
from lowest to highest. As the distance is increased, a criterion for deciding whether groups should

merge is decided upon.

Single Linkage With single linkage, also known as nearest neighbour linkage, the groups are merged
as the distance increases if one of the objects in a group has distance less than or equal to that distance
from an object in another group. In the example above, no merging takes place for a distance less
than 2. At 2, (1) and (2) merge to form a new group, (1,2). The groups, formed according to nearest

neighbour linkage, are given below, as the distance increases.

distance groups

0,1 (1),(2),(3),(4),(5)
2 (1,2),(3),(4),(5)
3 (1,2),(3),(4,5)

4 (1,2),(3,4,5)

5 (1,2,3,4,5)

This may be expressed as a dendrogram.
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Complete Linkage With complete linkage, also known as furthest neighbour linkage, two groups
merge only if the most distant members of the two groups are close enough. Starting with each
member in a group on its own, the groups formed under furtherst neighbour linkage, as the distance

is increased and using the groups already formed, are given below.

distance groups
0,1 (1),(2),(3), (4),(5)
2 (1,2),(3),(4),(5)

3 (1,2),(3),(4,5)
) (1,2),(3,4,5)
10 (1,2,3,4,5)

As with all hierarchical techniques, the dendrogram is a natural way to visualise it graphically. With
group average linkage, two groups merge if the average distance between them is small enough. Merging

groups based on average distance, letting the distance range through the continuum, yields

distance groups
0 (1),(2),(3),(4),(5)
2 (1,2),(3),(4),(5)

3 (1,2), (3), (4,5)
45 (1,2), (3,4,5)
7.8 (1,2,3,4,5)

Average Linkage Again, the input into the algorithm may be distances or dissimilarities. The
algorithm begins by searching for the closest objects. Suppose these are U and V. These are then
merged to form a cluster (UV).

Now, suppose that (UV) and W are clusters. The distance between the two clusters is defined as

1
S di.

darvyw = ———— Sd;
wviw NauvyNw

The Ward Clustering Algorithm

The Ward Clustering Algorithm does not measure the distance between groups in terms of nearest
neighbours, furthest neighbours or group centres. Rather, it tries to join groups that do not increase
a given measure of heterogeneity too much. That is, the distance is related to the wvariance within
the group; two groups are merged if the within-group variance of the merged group is lower than a
specified level.

The Ward Clustering algoritm uses the following distance function: let the distance between groups

containing single multivariate observations z and y be

d(z,y) = | ‘ i(%‘ -yj)%
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Then, for larger groups, the distance between them is computed inductively. If two distinct groups P
and @) are merged to form a group P u (@), the distance between P U () and another group R, in terms
of the previously calculated d(P, R) and d(Q, R) is given by

nrp+np

dP.R)+—2" g ry-— "B 4(P,Q),

d(PUQ,R)= ———"F
( Q ) nrt+tnp+ng nr+np+ng nr+np+ng

where ng,np,ng are the numbers in R, P,Q respectively Two groups are merged when the Ward

distance between them reaches the specified level.

Motivation The inertia of a group R is defined as
1 728 :
Igp=— Z d2(£(])723)5

in other words, the inertia is the average squared distance from each group member to the group centre.
When two distinct groups P and @ are merged, the new group Pu(@ has a larger inertia than the sum
of inertias of P and ). That is, if P and @ are disjoint, then a straightforward computation yields
that:

IPUQZIP+IQ.

More precisely, if d is the Ward measure, then a straightforward computation gives the following

expression for Ip,g —Ip — Ig:

nonp
A(P,Q) :=Ip,g - (Ip+1g) = demﬂ, Q).

With the Ward algorithm, therefore, the next pair of groups to be joined as the distance parameter

increases is the pair of groups that currently gives the smallest value for A(P, Q).

3.5 Divisive Analysis (diana)

Divisive hierarchic methods are less common. Objects start in a single group. Then, the object furthest
from the mean is split off. Then objects from the main group are moved to the new group if they are
closer to the new group as it stands, than from the main group. The pair of groups from the original
group has been established when all objects are closest to the centre of the group they are in.The
most-used divisive hierarchical clustering procedure was proposed by MacNaughton-Smith, Williams,
Dale, and Mockett (1964).

Suppose the algorithm has reached a stage where there are several clusters. Let the current collec-
tion of clusters be C. The cluster C' € C that has the largest average dissimilarity between an item and
the remaining items in the cluster is chosen.

A splinter group (say cluster A) is computed, where A ¢ C'. The splinter group is initiated by

extracting the item that has the largest average dissimilarity from all the other items in A.
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Let B = C\A. For each of the items in B, we compute (1) the average dissimilarity between that
item and all the other items in B and (2) the average dissimilarity between that item and all the items
in A. We compute the difference (1)-(2) for each item in B. If all the differences are negative, we stop.
If any of the differences are positive, we move the item with the largest (1)-(2) into A and then repeat
until we have a division of C into two clusters, A and B. This is continued recursively; after each

division, the largest average distance between each item and the other items in the cluster is recorded.

3.6 Non-hierarchical Clustering Methods

Non-hierarchical methods start from either (1) an initial partition of items into groups or (2) an initial
set of seed points, which will form the nuclei of clusters. One way to start is to randomly select seed

points from among the items or to randomly partition them into groups. This eliminates bias.

3.6.1 K-means method

This algorithm proceeds as follows:

1. Partition the items into K initial clusters.

2. Proceed through the list of items assigning an item to the cluster whose mean is nearest. Distance
is usually computed using Euclidean measure with standardised variables. Recalculate the mean

for the cluster receiving the new item and for the cluster losing the item.
3. Repeat step 2 until no more reassignments take place.
Example 3.1.

Consider 4 measurements, A, B,C, D of the two variables (X1, X2). The data is

A
Als5 3
Bl-1 1
cl1 -2
D|-3 -2

Suppose they are to be divided into two clusters. To start with, randomly assign them to two clusters.
For example, suppose this were AB and C'D. Then the co-ordinates for the cluster centres (means)
e 54(-1) 3+1
+ (- +
(AB): (31,72) = (2, 520) = (2,2)
1+(-3) -2+ (-2)
, ) =(-1,-2).

2 2

Using Euclidean distance, the distance from each item to each group centre is computed and then the

(CD): (z1,72) = (

group centre updated to:

NT;+Ti; . .
——~ item j added
n+l
—_ NT; —T;; . .
Zinew = ﬁ item j removed

T no change
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In the first round, if A were re-assigned to group (ACD), the group centres would then be

_ 1 _

EACD:(L_g)a QB:(_Ll)'
Since A is closer (using Euclidean distance) to the centre of AB than to ACD, it is not moved. By
proceeding, the final partition is (A4), (BCD).

3.6.2 K-medoids

A medoid is simply a representative object. The K-medoids algorithm searches for K ‘representative
objects’ rather than the centroids. A dissimilarity-based distance is used instead of squared-Euclidean
distance. Because it minimises a sum of dissimilarities instead of a sum of squared Euclidean distances,
it is more robust to data anomalies such as outliers and missing values.

K-medoids starts with the proximity matrix D and an initial configuration into K clusters. The
representative object is the object that minimises the total dissimilarity to all other items in the cluster.
From this point onwards, the role of centroids in K-means is replaced by represenative objects in K-
medoids and the sum of squares of Euclidean distances replaced by the sum of squares of dissimilarities.

With these changes, the algorithm proceeds in the same way.

3.6.3 Partitioning Around Medoids (pam)

This clustering method is a modification of the K-medoids algorithm.The pam algorithm modifies K-
medoids by introducing a swapping strategy by which the medoid of a cluster is replaced by the item
in the cluster that minimises the value of an objective function that may be different from the sum of
squares of the dissimilarities.

K-medoids and pam run well on small data sets, but are not efficient enough to use for clustering

large data sets.

3.6.4 Silhouette Plot

With kmeans and pam, the result of the partition can be represented graphically in a so-called silhouette
plot. Suppose the data is split into K clusters. Let ¢(i) denote the cluster of item i. Let ¢ be some
cluster different from c(i) and d(7,c) the average dissimilarity between i and items of c. We compute
d(i,c) for all clusters other than ¢(i). let

b; = min d(i,c)

cte(i)
and a; the average dissimilarity between ¢ and all items of the same cluster. The ith silhouette value
is
bl' — Qy
SiKk = ————.
maxag, bl

Large positive values indicate that item ¢ is well clustered, large negative that it is badly clustered. A
silhouette plot is a plot of these after they have been ranked in decreasing order for each cluster, where

the length of the bar is s;x.
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The average silhouette width may also be used to find the best value of K, by maximising Sx. The

silhouette coefficient is s¢ = maxg Sk .

3.7 Self Organising Maps (SOM)

The self-organising map algorithm is due to Kohonen (1982). The basic idea is data reduction. A set
of n observations in (say) R? is reduced to a number K = K; x K3 nodes, where K << n. These nodes
are represented on a 2-d grid. To each node m is assigned a representative value x,,, € RP, or whatever
the state space for the observations is. Observations are assigned to a node m if they lie within the
neighbourhood of the representative value x,,. These nodes may be considered as nodes of a neural
network and there is a link between two nodes a and b if their representative values lie within each
others neighbourhood.

Two versions of the algorithm are available; the on-line version and the batch version. The end
product of SOM, after a large number of iterative steps, is a graphical image known as an SOM plot.
This is displayed in output space and consists of a grid (or network) of a large number of inter-connected

nodes or artificial neurons. The SOM algorithm has much in common with K-means.

3.7.1 On-Line Version

For a 2-d SOM, firstly set up the map size K; x Ky (select K7 and K5 usually larger than intended for
the final output). Let K denote the space of labels; k= (i,j) e Kforie {1,..., Ky} and j € {1,..., K2}.
For each k € K, choose at random a representative value my € RP (or whatever the input space is) for
the standardised data matrix.

Firstly, the data set is standardised so that the columns have mean 0 and variance 1. At each

stage, an input vector X is randomly selected and assigned to k£* where

E* = argming | X — my|.
k* is declared to be the winning node. We then look at nodes that are ‘neighbours’ of the winning
node. Two nodes k and k" are neighbours if the Euclidean distance between my and my is less than
a given threshold ¢. We update the value of my, for the winning node and for all its neighbours using:

my < my + a(X —my) ke N(K").
Here v € (0,1) is the learning factor.
A useful rule of thumb is to run the algorithm for 500 x K7 x Ko steps.
A distance weighted strategy is more popular:
mg < mg + Oéhk(X - mk)

where
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2
=g — M*
hi = exp {|T} 1{keNc(k*)}
where N (k) denotes the neighbourhood of k with parameter c. Values of ¢, a and o are provided by

the user, but may change during the process.

Batch Version my is updated by listing all items X; already examined whose my« € N (k). These

are averaged over and the average is used for the update. This turns out to be much faster.

3.8 Implementation in R

We’ll see whether or not a cluster analysis on the European Employment Data can recover the four

categories.
e step 1: standardise the nine variables.

e step 2: compute the Euclidean distances between all pairs of countries, using the standardised

variables.

e step 3: construct a dendrogram using, for example, the agglomerative, nearest neigbour, hierar-

chic process.

> WWW =
"https://www.mimuw.edu.pl/ " noble/courses/QPEDataScience/data/
employment.csv"

> employment <- read.csv(www,header=T)

> y<-scale(employment[,3:11])

> emp<-employment

> emp[,3:11]<-y

The ‘Ward’ method may be implemented as follows:

> d <- dist(y, method = "euclidean")
> fit <- hclust(d, method="ward.D2")
> plot(fit,labels=employment$group)

> rect.hclust(fit, k=4, border="red")

The plot is shown in figure |3.1
At a distance of about 1, there are four clusters. The performance of the clustering algorithm, using

the Ward distance is clear from the plot. Other distance measures give less satisfactory results.
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Cluster Dendrogram

d
hclust (*, "ward")

Figure 3.1: Dendrogram for employment data
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Cluster Analysis: Example

The package cluster is extremely useful and contains most of the methods (for example diana and

pam) discussed in the lecture. Install this package and check it out.

Consider the data set satimage.txt in the course data directory. Since 1972, Landsat satellites orbiting
the Earth have been using a combination of scanning geometry, satellite orbit and Earth rotation to
collect high-resolution multispectral digital information for detecting and monitoring different types
of land surface cover characteristics. The 36 variables in the data set are arranged in groups of 4
spectral bands: 1,2,3 and 4, covering each pixel of a 3 x 3 neighbourhood (top-left TL, top-centre TC,
top-right TR, centre-left CL, centre-right CR, centre-centre CC, bottom-left BL, bottom-centre BC,
bottom-right BR. The centre pixel CC of each of the 4435 neighbourhoods is classified into one of
six classes: 1-red soil, 2-cotton crop, 3-grey soil, 4-damp grey soil, 5-soil with vegetation stubble and
7-very damp grey soil. There is no class 6.

Warning The data file is rather large and therefore the clustering methods are rather slow and
take a long time. You should select a random subset of the data (say 500 observations from the data
set) and work with these. Make sure your sample contains sufficient numbers of observations from

each class.

1. Do not use the class variable. Standardise the other variables and perform cluster analysis using
SL (single linkage), AL-average linkage, CL-complete linkage, K-means and pam (partition around

medioids. How do the various clustering methods perform?

2. Construct a silhouette plot for partitioning around medioids (pam) with K = 6 clusters. A

silhouette plot is a ba plot of all the

bi —ay

SiIK= @ 3
maXiec ’bj - CLj|

after they have been ranked in decreasing order, where the length of the ith bar is s;x. Let d(i,7)

denote the dissimilarity between items ¢ and j, then a; is the average dissimilarity that item ¢

has to other items in the same cluster and b; = min,..(;) d(i,c) where c(i) denotes the cluster

containing item ¢ and d(i,c) is the average dissimilarity between item ¢ and items in cluster c.
3. Construct a confusion table for pam clustering with K = 6 clusters.

4. Run the clustering algorithms for the satimage.txt data, but only using the centre pixels (i.e.
the variables CC1, CC2, CC3, CC4) of each 3 x 3 neighbourhood. Compare your results with
those obtained from the full data set.

5. There are several R packages tha deal with self organising maps. I draw attention to kohonen.

We’ll put it through its paces.
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Make a 6x6 hexagonal batch-SOM plot of the Landsat satellite image data. The circles correspond
to nodes and the projected points are plotted randomly within the appropriate circle to which

they were deemed closest. Use the six classes of vegetation as plotting symbols.

Solution We start by loading the data:

> wuw =

"https://www.mimuw.edu.pl/ " noble/courses/QPEDataScience/data/satimage.
txt"

> satellite = read.table(www,header=T)

The data frame is satellite. This data set (sadly) is too large for my small laptop, so I take a random

subset of 500 rows.
> satdata = satellite[sample(nrow(satellite),500),]

and this is what we will use. Firstly, we scale the data; this operation centres the data (so that each

column has mean 0 and scales the data (so that each column has standard deviation 1).
> scaleddata = sapply(satdatal,1:36],scale)
This operation does not return a data frame, so we make it a data frame.
> scaleddata = as.data.frame(scaleddata)
Now let us add the class variable:
> scaleddata$class = satdata$class

1. Clustering: Illustration with Ward and PAM Firstly, let us see how the Ward clustering

algorithm performs.

> d = dist(scaleddatal,1:36] ,method="euclidean")
> satward=hclust(d,method="ward.D")
> plot(satward,labels=scaleddata$class)

There are 6 different classes in the data. We can see that we get 5 classes at a height of approximately

30. In fact, two of the classes are difficult to distinguish from each other.

Now let us try pam, partition around means. Let us see how it performs with 6 clusters, which is the
true number.

The partition around means for this data is given, quite simply, by:
> satpam <-pam(scaleddatal,1:36],6)
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2. Silhouette Plot Now try a silhouette plot:

> silpam = silhouette(satpam)
> plot(silpam,border=NA)

The border = NA is an RStudio issue; without this, the graph can go wrong. This indicates that the

6 cluster solution is reasonably good; not many of the entries are negative.

3. Confusion Table Now we make a confusion table, comparing with the value of the class variable.

> tabsat = table(satpam$clustering,scaleddata$class)
> tabsat

1 2 3 4 5 7
3r 9 0 517 ©
2 02628 3 36
0 1 0 33589
059 0 0 0 O
71 0 0 0 2 O
2 067 8 0 O

A O W NN -

We can see how well the clustering compares with the ‘true’ classes. The labels are clearly different,
but some of the classes have been detected reasonably well. The dendrogram from the Ward clustering

indicates that things are not clear cut. The confusion table results are in line with the silhouette plot.

B

. Self Organising Map Now let us try a SOM. We need the package kohonen

library(kohonen)
satdat=as.matrix(scaleddatal,1:36])

somnet = som{satdat,somgrid(7,7,"hexagonal))

sommap = map(somnet,satdat)

predict <- predict(somnet,satdat)
plot(somnet, type="mapping", col = as.integer(scaleddata$class),

pchs = as.integer(scaleddata$class), bgcol = predict,

+ 4+ VvV V V V V V

main = "another mapping plot", shape = "straight", border = NA)



Chapter 4

Conditional Independence and Graphical
Models

The first lecture dealt with the data matrix, geometry, distance between different objects. The second
lecture dealt with principal component analysis, the aim of which is to reduce the dimension of the
problem. Related to this was exploratory Factor Analysis, whereby the important principal components
could suggest hidden (or latent) factors which influenced the variables.

We now turn to the topic of graphical models, where again we try to reduce the computational
complexity of the problem. This time, we do this by finding and exploiting the independence structure
between variables. We’ll also touch on causality; the attempt to ascertain whether one variable has a
causal influence on other variables.

The idea of a graphical model is that the variables are represented as nodes on a graph and the edges
in the graph represent a direct link between two variables. If two variables X and Y are graphically
separated by a set of variables S, then all the influence that X and Y have on each other is mediated
through the variables in S; X and Y are conditionally independent given S.

The problem of ascertaining statistical independence thereby becomes a problem of graphical sep-
aration and a powerful toolbox of graphical separation algorithms becomes available.

It is important to stress that, in a graphical model, graphical separation implies conditional in-
dependence, but the converse does not (in general) hold; there are often conditional independence

relations that a graphical model cannot detect.

Introduction A graphical model for a probability distribution over several variables is, quite simply,
a graph, where the random variables correspond to the node set of the graph and each graphical
separation statement implies the corresponding conditional independence statement for the random
variables. The opposite (that conditional independence implies graphical separation) in general does
not hold. In a system with a large numbers of variables, the task of determining graphical separation
statements is, in general, computationally far less demanding than the task of determining conditional
independence.

A Bayesian network is the representation of a probability distribution on a directed acyclic graph
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(DAG). In this setting, the most useful notion of separation is D-separation, defined later. If a prob-
ability distribution factorises along a DAG, then D-separation statements in the DAG imply the
corresponding conditional independence statements (although the reverse implication is, in general,
false).

In many problems, for example gene expression data where there are thousands of variables, it may
not be either possible or desirable to obtain a complete description of the dependence structure. The
aim for such problems is to learn a DAG which encodes the most important features of the dependence
structure. In classification problems, a complete description of the dependence structure is usually
unnecessary; algorithms only locate the key features of the dependence structure to ensure accurate

classification.

4.1 Conditional Independence and Factorisation

Definition 4.1 (Independence). Two random vectors X andY are independent if their joint probability
distribution factorises as

Pxy =PxPy.
X and Y are conditionally independent given a random vector X if
Pxy,z =Px|zPyzPz.
This is written X 1 Y|Z.
Example 4.1 (Binary Variables).

Suppose X1, ..., Xy are binary variables (i.e. each takes values in {0,1}). Then the state space
is {0, l}d, which has 2% possible configurations. To specify the probability distribution Px,...x,, we

therefore need to specify 2¢ — 1 values (since all the values sum to 1).

Suppose that Xi,..., Xy are mutually independent. Then we only need to specify d values; we need
]P)Xl(l), cee ,de(l), since PXi(O) =1- [Pxi(l) for i = 1, ce ,Cl.

For large d, there is therefore much computational advantage to be gained from exploiting the inde-

pendence structure between the variables. ]

4.2 Definition of a Bayesian Network

Consider a probability distribution over d variables Px, . x,.

Recall that for any collection of events Aq,..., Ay,

(Al ﬂAg) ]P’(Alﬂ...ﬂAn)

P
P(A1n...nA,) =P(A;) P(41) ~P(Ain...nA,q)
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so that (using the definition P(A|B) = P](P?;?)):

]P’(Al n...N An) = P(Al)P(AglAl) .. P(An|141 n...N An—1)~

Clearly, any probability distribution Px, . x, over X may be factorised as

d
Pxi,.xq = PXU(I) 1—[2PXa(j)|Xa(1)7m7Xa(j-1)
j:

for any permutation o of 1,...,d. Let Pa‘®(j) c {o(1),...,0(j — 1)} satisfy

d

]P)X X :]P)X P (o), .
1se-50d 0(1)]1:12 Xo.(j)|Pa (])

d
Px,,..x, = ]P)Xo'(l) HQ]P)XGQ)\@(J')
j=

if any ©(j) is a strict subset of Pag.a).

Unless otherwise stated, it will be assumed that the variables are labelled in such a way that o = I,
the identity.
For Paj = {l;1,...,ljm,}, the state space of Xpyj s A, x ... x A, . For discrete variables, there

Jym
are qj = HZZ ki;,, configurations. These may be labelled (77](.”)?11 and the parameters required for the

probability distribution Px, . x, are

. l . .
ejilszj|XPa(j)(Z|7T](-)) j=1,...,d i=0,... k-1, 1=1,...,q;.

Estimating Parameters Suppose we have an n x d data matrix x; to estimate the parameter 0,

we use

_. number of appearances of (i, 7r§) configuration in x
il =

number of appearances of 7T§» configuartion in x

Factorising a Probability Distribution along a Directed Acyclic Graph The factorisation of
a Bayesian network may be represented by a Directed Acyclic Graph. For example, if the probability
distribution over X,Y, Z, W satisfies

Pxy,zw =PxPyixPzxPwy,z,

the factorisation may be represented by the graph in Figure 4.1
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Figure 4.1: DAG representing the factorisation of a probability distribution

Figure 4.2: A Chain Connection

4.3 Connections in a Directed Acyclic Graph and Conditional Inde-

pendence

Definition 4.2 (Instantiated). When the state of variable is known, the variable is said to be instan-
tiated.

Within a directed acyclic graph, there are three basic ways in which two nodes «,« such that o - v ¢ D
and v - a ¢ D can be connected via a third node. They are the chain, fork and collider connections

respectively.

Chain Connections A chain connection between nodes « and ~ is a connection via a node 3 such

that the graph contains directed edges a — 3 and § — v, but no edge between « and ~.
Consider a probability distribution over (X, X3, X,) factorised according to the graph in Fig-
ure , as IP)XQIPXMXQPXﬂXB'

Clearly, X, [ X, in general;

Px, x, (z1,23) =Px, (¥1) Y Puxyx, (zale1)Px, x, (x3]22)
JSQEXQ

and, without further assumptions, this cannot be expressed in product form.

Conditioned on the instantiation Xg = x9,
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Figure 4.3: A Fork Connection

Px.xpx, (5 22,)  Pxo CO)Pxx, (22| )Px |x, (|72)

R P, (e2)
Px, ()Px,x., (22].)
= ( X ijfz) 2 ) (P, x, (122)) = (Pxaix, (l22)) (Pxjx, (J22))

where Bayes rule has been used and so X, L X,|X3.

Fork Connections A fork connection between two nodes X, and X, is a situation where there is no
edge between X, and X, but there is a node X3 such that the graph contains directed edges Xz X,
and Xp ~ X,. It is illustrated in Figure [£.3]

A distribution over the variables (X4, X3, X,) that factorises according to the DAG in Figure

has factorisation

Px..x5x, = PxPx, 1x,Px x;-

It is clear that X, [/ X, in general;

Px,x,(z1,23) = Y Px,(22)Px,x, (21]22)Px, x, (23]22)
xQGXQ

and, without further assumptions, this cannot be expressed in product form. Conditioned on Xg,
though:

]P) _ PX&7X77X[? _ PXﬁPXa|XBIP)X’Y‘X5 _ ]P P
Xa,X~| X5 ~ - ~— L Xa|Xgt X4 Xa
X5 B PX PX@ al B ~] B

8
It follows that X, 1 X,|X3.

Collider Connections A collider connection between two nodes « and ~ is a connection such that
the graph does not contain an edge between « and ~, but there is a node § such that the graph contains
directed edges a— (3 and v~ . A collider connection is illustrated in Figure [£.4]

The factorisation of the distribution Px Xp.X, corresponding to the DAG for the collider is

Px..xsx, = Px.,Px, Px,x, x, -
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Figure 4.4: A Collider Connection

In general, X, [ X,|X3. But for each (x,2) € X, x X,

Px,.x,(z,2) = Y Px,(2)Px, (2)Px,x,.x, Wz, 2)
yeXs

Px,(2)Px, (2) Y Px,ix,.x, (ylr, 2)
yEXg

Px, (2)Px, (2).

so that X, L X,.

A Causal Interpretation So far, the discussion has considered sets of random variables where,
based on the ordering of the variables, the parent set of a variable is a subset of those of a lower
order. The representation of a probability distribution by factorising along a Directed Acyclic Graph
may be particularly useful if there are cause to effect relations between the variables, the ancestors
being the cause and the descendants the effect. For a causal model, the connections have the following

interpretations:

Fork Connection: Common cause For the fork connection, illustrated by Figure X may
be a cause that influences both X, and X, which are effects. The variables are only related through
Xp. The situation is illustrated by the following example, taken from a cartoon by Albert Engstrom;
‘during a convivial discussion at the bar one evening, about the unhygienic nature of galoshes, one
of the participants pipes up, “you have a very good point there. Every time I wake up wearing my
galoshes, T have a sore head.”

Let X, denote the state of the feet and X, the state of the head. These two variables are related;
Xo | Xp. But there is a common cause; Xo, which denotes the activities of the previous evening.
Once it is known that he has spent a convivial evening drinking, the state of the feet gives no further
information about the state of the head; X, L X,|X3.

Chain Connection This may similarly be understood as cause to effect. X, influences X3, which
in turn influences X, but there is no direct causal relationship between the values taken by X, and
those taken by X,. If Xg is unknown, then X, [ X, but once the state of X3 is established, X, and
X, give no further information about each other; X, L X, |X3.
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Collider Connection For the collider connection, X, and Xz are unrelated; X, 1L X,. But they
both influence Xg. For example, consider a burglar alarm (Xpg) that is activated if a burglary takes
place, but can also be activated if there is a minor earth tremor.

One day, somebody calls you while you are at work to say that your burglar alarm is activated.
You get into the car to go home. But on the way home, you hear on the radio that there has been an
earth tremor in the area. As a result, you return to work.

Once Xjg is instantiated, the information that there has been an earth tremor influences the likeli-
hood that a burglary has taken place; X, [ X,|X3.

This is known as explaining away.

4.4 Separation within a DAG

Attention is now turned to trails within a DAG, and characterisation of those along which information

can pass.

Definition 4.3 (S-Active Trail). Let G = (V,D) be a directed acyclic graph. Let S c V and let

a,BeV\S. A trail T between the two variables o and ( is said to be S-active if

1. Every collider node in T is in S, or has a descendant in S (that is, for each collider node « € T,

there is a directed path o — 5y — ... = By, = for some v € S).
2. Every other node is outside S.

Definition 4.4 (Blocked Trail). A trail between o« and B that is not S-active is said to be blocked by
S.

The following definition is basic; it will be seen that if a probability distribution factorises along a
DAG G and two nodes a and (3 are D-separated by S, then X, 1 X3|Xg.

Definition 4.5 (D-separation). Let G = (V, D) be a directed acyclic graph, where V ={1,...,d}. Let
S c V. Two distinct nodes a and 58 not in S are D-separated by S if all trails between o and B are
blocked by S.

Let A and B denote two sets of nodes. If every trail from any node in A to any node in B is blocked
by S, then the sets A and B are said to be D-separated by S. This is written

AL B ||g S. (4.1)

The terminology D-separation is short for directed separation. The insertion of the letter ‘D’ points

out that this is not the standard use of the term ‘separation’ found in graph theory.

Definition 4.6 (D-connected). If two nodes o and 5 are not D-separated, they are said to be D-

connected.
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Notation The notation « f 3| gS denotes that o and 8 are D-connected by S in the DAG G. Here

«a and 8 may refer to individual nodes or sets of nodes.
Example 4.2.

Consider the chain connection a ~ f +~ v in the DAG in Figure .2 and the fork connection of
Figure [£.3] For the chain connection of Figure the D-separation statements are: a L v|gf8
while o L v|g$ (¢ denotes the empty set). For the DAG in Figure 1.3 a L v|g8 while a § v[g¢.
These correspond to the conditional independence statements derived for probability distributions
that factorise along these graphs. For Figure 1.4 o 1 v|g¢ while o ) v||g3. Again, these statements
correspond to the conditional independence statements that may be derived from the fact that a
distribution factorises along the DAG of Figure [4.4] O

Let MB(«) denote the set of nodes which are either parents of « or children of a or a node which
shares a common child with a. Then « is D-separated from the rest of the network by MB(«). This

set of nodes is known as the Markov blanket of the node «.

Definition 4.7 (Markov Blanket). The Markov blanket of a node o in a DAG G = (V, D), denote
MB(«), is the set consisting of the parents of «, the children of o and the nodes sharing a common

child with «.

4.4.1 Bayes Ball

The Bayes ball provides a convenient method for deciding whether or not two nodes are D-separated
by a set S in a DAG G = (V, D). Variables are D-connected by a set S if the Bayes ball can be passed
between them employing the following rule. The nodes which are not in S are depicted as unshaded;

nodes in S as shaded.

Definition 4.8 (Instantiated Nodes). Let G = (V, D) be a directed acyclic graph. When considering
statements o 1L B|gS and o L 8| gS, the nodes in S are referred to as instantiated.

Consider the three types of connection in a DAG; chain, collider and fork.

e For the chain connection illustrated in Figure the Bayes ball algorithm indicates that if node
[ is instantiated, then the ball does not move from « to v through 8. The communication in the

trail is blocked. If the node is not instantiated, then communication is possible.

e For the fork connection illustrated in Figure[d.3] the algorithm states that ifnode /3 is instantiated,
then again communication between o and « is blocked. If the node is not instantiated, then

communication is possible.

e For the collider connection illustrated in Figure the Bayes ball algorithm states that the ball
does move from « to v if node « or any of its descendants is instantiated. If 5 or a descendant
is instantiated, this opens communication between the parents. If neither 8 nor any of its

descendants are instantiated, then there is no communication.
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Figure 4.5: Bayes Ball

For a collider node §, instantiating any of the descendants of 8 also opens communication. If node

is not instantiated, and none of its descendants are instantiated, then there is no communication.

A DAG G = (V, D) satisfies the following important property:

Theorem 4.9. A DAG G = (V, D) contains an edge between two nodes «, B € V if and only if a f B gS
for any S < V\{«a, 5}.

Proof The proof of this is straightforward and left as an exercise. O

4.5 D-Separation and Conditional Independence

The following key result shows that if a probability distribution factorises along a given DAG G,
then every D-separation statement for the DAG implies the corresponding conditional independence

statement for the distribution.

Theorem 4.10 (D-Separation Implies Conditional Independence). Let G = (V, D) be a directed acyclic
graph and let P be a probability distribution that factorises along G. Then for any three disjoint subsets
A,B,S cV, it holds that X4 1L Xp|Xs (Xa and Xp are independent given Xg) if A 1L B|gA (A and
B are D-separated by S).

Proof of Theorem Omitted O

Of course, the converse is not true in general; D-separation is a convenient way of locating some of
the independence structure of a distribution. It does not, in general, locate the entire independence

structure.



o6 CHAPTER 4. CONDITIONAL INDEPENDENCE AND GRAPHICAL MODELS

4.6 Queries

Once a probability distribution has been factorised according to a Bayesian Network, the next task is

to use it to answer queries.

Definition 4.11 (Query). A query in probabilistic inference is simply a conditional probability distri-

bution, over the variables of interest (the query wvariables) conditioned on information received.

4.7 Bayesian Networks in R

4.8 Introduction

It has become clear that R is now the most effective and dominant language of statistical computing.
There are excellent packages available in R for Bayesian Networks, for inference using a given Bayesian
Network and for learning the structure of a Bayesian Network. This chapter introduces some of the
software in R available for Bayesian Networks and discusses graphs in R and inference using networks
that have already been defined. Parameter learning and structure learning are considered later.

The packages considered are gRain by Sgren Hgjsgaard and bnlearn.

Having installed R and a suitable editor (for example Rstudio), the relevant packages have to be

installed.

gRain and related packages Information for gRain is available on the author’s web page:
http://people.math.aau.dk/ sorenh/software/gR/

The package, along with all the supporting packages, has to be installed. As pointed out on the web
page, the package uses the packages graph, RBGL and Rgraphviz. These packages are not on
CRAN, but on ‘bioconductor’. To install these packages, execute

install.packages("BiocManager")
setRepositories()

and then make sure that all are activated (23456 7 8)

Now install using:

install.packages("gRbase", dependencies=TRUE);
install.packages("gRain", dependencies=TRUE);
install.packages("gRim", dependencies=TRUE)

The package bnlearn also has some useful inference functions, although its main consideration is

learning. Install it in the usual way:

> install.packages("bnlearn")
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4.9 Graphs in R

This section considers the various graphs that appear in graphical modelling and how to render them
in R. In addition to the packages mentioned so far, the package ggm, has some useful functions for

graphical Markov models.
>install.packages("ggm")

Another useful graphics package is igraph
>install.packages("igraph")

We also need the package RBGL, which is not available on CRAN, but is only available on BioCon-

ductor. So set repositories with

setRepositories()

make sure that the appropriate repositories are checked and then
install.packages ("RBGL")

These packages should be activated:

library("bnlearn")
library("gRain")
library("ggm")
library("igraph")
library("RBGL")
library("gRbase")

vV V V V V VvV

4.10 Example: ‘Asia’ by Lauritzen

We consider the ‘Asia’ example of Lauritzen et. al. You have returned from holiday in Asia and you
are feeling unwell. There may be nothing seriously wrong with you, but you could be suffering from
tuberculosis, lung cancer or bronchitis. The causal diagram is shown in Figure Let A denote ‘visit
to Asia’ with values ‘yes’ or ‘no’. Similarly, all the other variables are binary and are llabelled .S for
smoker, T for tuberculosis, L for lung cancer, B for bronchitis, E for either, X for X-ray (‘yes’ for

indication of a problem, ‘no’ for clear), D for dyspnoea (shortness of breath)

P(A =yes) =0.01
P(T = yes|A = yes) = 0.05 P(T = yes|A =no) =0.01

P(S =yes) =0.5
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P(L =yes|S = yes) =0.1 P(L = yes|S =no) =0.01
P(B = yes|S = yes) = 0.6 P(B =yes|S =no) =0.3
P(E =yes|L =yes,B=yes) =1, P(E =yes|L=yes,B=no)=1
P(E = yes|L =no, B =yes) =1, P(E = yes|L =no,B=mn0) =0
P(X =yes|E =yes) =0.98 P(X =yes|E =no) =0.05
P(D =yes|B =yes, E =yes) =0.9 P(D =yes|B =yes, F=no) =0.7
P(D =yes|B =no, E = yes) =0.8 P(D = yes|B =no, £ =no) =0.1

We can programme the network into R as follows. We need the packages gRain and gRbase. The

conditional probability potentials may be specified as follows:

> library("gRain")

Loading required package: gRbase
> yn <- c("yes","no")

> a<-cptable(~asia, values=c(1,99),levels=yn)

> t.a<-cptable(“tub+tasia,values=c(5,95,1,99),levels=yn)

> s<-cptable(~smoke, values=c(5,5),levels=yn)

> 1l.s<-cptable("lung+smoke,values=c(1,9,1,99),levels=yn)

> b.s<-cptable(~bronc+smoke,values=c(6,4,3,7),levels=yn)

> e.lt<-cptable(~either+lung+tub,values=c(1,0,1,0,1,0,0,1),levels=yn)
> x.e<-cptable("xray+either,values=c(98,2,5,95),levels=yn)

> d.be<-cptable(~dysp+bronc+either, values=c(9,1,7,3,8,2,1,9), levels
= yn)

The + operator could be considered slightly misleading. There are other ways to enter the conditional

probability potentials:

> t.a<-cptable(“tublasia,values=c(5,95,1,99),levels=yn)
> t.a<-cptable(c("tub","asia"),values=c(5,95,1,99),levels=yn)

There are also special functions ortable() and andtable. For example, e.1t () could be entered by:

> e.lt <-ortable("either+lung+tub, levels=yn)

4.10.1 Building the Network

A network is created with the function grain(), which returns an object of class grain:
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> plist<-compileCPT(list(a, t.a, s, l1.s, b.s, e.lt, x.e, d.be))
> grnl<-grain(plist)

> summary(grnl)

Independence network: Compiled: FALSE Propagated: FALSE

Nodes : chr [1:8] "asia" "tub" '"smoke" "lung" "bronc" "either"
> plot(grnl)

Figure 4.6: Asia Network

The plot is shown in Figure

4.10.2 Compilation

The network has to be compiled and propagated before queries can be made.

> grnlc<-compile(grnl)
> summary (grnic)
Independence network: Compiled: TRUE Propagated: FALSE

Nodes : chr [1:8] "asia" '"tub" "smoke" "lung" "bronc" "either"

Number of cliques: 6
Maximal clique size: 3
Maximal state space in cliques: 8

4.10.3 Absorbing Evidence and Answering Queries

Evidence may be entered as follows: for example, suppose we have evidence that someone has visited

asia and has dyspnoea. This is entered as follows:

> grnlc.ev<-

+ setFinding(grnlc,nodes=c("asia","dysp"),states=c("yes","yes"))
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This creates a new grain object. The grain objects with (grnic.ev) and without (granic) can be

queried to give marginal probabilities:

> querygrain(grnlc.ev,nodes=c("lung","bronc"),type="marginal")
$lung
lung
yes no
0.09952515 0.90047485

$bronc
bronc

yes no
0.8114021 0.1885979

> querygrain(grnlc,nodes=c("lung","bronc"),type="marginal')
$lung
lung
yes no
0.055 0.945

$bronc
bronc
yes no
0.45 0.55

The evidence in a grain object can be retrieved with the getFinding() function, while the probability

of observing the evidence is obtained using the pFinding() function:

> getFinding(grnlc.ev)

Finding:
asia: yes
dysp: yes

Pr(Finding)= 0.004501375
> pFinding(grnic.ev)
[1] 0.004501375

Joint and conditional distributions may be computed as follows:

> querygrain(grnlc.ev,nodes=c("lung","bronc") ,type="joint")
bronc
lung yes no
yes 0.06298076 0.03654439
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no 0.74842132 0.15205354
> querygrain(grnlc.ev,nodes=c("lung","bronc"),type="conditional")
bronc
lung yes no
yes 0.07761966 0.1937688
no 0.92238034 0.8062312

These are both conditioned on the evidence; the former the joint distribution of lung and bronc
conditioned on the evidence, while the latter is the conditional distribution of lung given bronc and

the evidence.



62

CHAPTER 4. CONDITIONAL INDEPENDENCE AND GRAPHICAL MODELS



Chapter 5

Intervention Calculus

5.1 Causal Models and Bayesian Networks

In many applications, a Bayesian network is constructed as a causal model, where for each variable, its
parent variables are considered to be direct causes that influence the value taken by the variable.

For example, an earth tremor or a burglary can cause the burglar alarm to go off and the arrows
in the associated collider DAG represent cause to effect relations. It is self evident, but nevertheless
has to be stated, that only associations can be inferred from an n x d data matrix x of instantiations;
directions of cause to effect cannot be inferred from data alone. When conditional independence
statements are learned from data, this can be interpreted as a Markov model and it may be possible to
construct an efficient factorisation of the distribution using these conditional independence statements.
Clearly, this factorisation cannot be understood as a causal model, unless there are other modelling
assumptions. For example, consider a model containing observable variables A, B, C, where there are
hidden variables Hy, Hs that are unknown to the experimenter. If the causal diagram representing the
causal relations between these variables is given by the DAG on the left in Figure[5.1], then the learned
DAG, along which the distribution of A, B, C can be factorised, is the DAG on the right of Figure[5.1

This is the correct DAG, in that it preserves the d-connection properties between A, B, C, but the
collider connection cannot be interpreted as A and B having a causal effect on C'; they are effects of
the latent common causes Hy and Ho.

If a Bayesian network is to be interpreted as a causal model, then the possible directions of cause

Figure 5.1: Hidden causes and the learned DAG

63
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to effect must be part of the modelling assumptions before the data is analysed, determined by other
considerations. The data analysis only determines which directed edges remain and which are removed.
From data, one can determine whether or not there is an association between earth tremors and alarms
triggered; it is not possible to determine from the data what causes what.

This is self evident, but surprisingly it turns out that it is necessary to state this. An article by
Freedman and Humphreys from 1999 pointed out the obvious fact that causality could not be inferred
from data alone and was a necessary response to obvious errors in the literature, where the term ‘causal
discovery’ has been used in surprising ways, even after it had been established, with simple concrete
and obvious examples, that the concept was ridiculous and long after publication of the Friedman
Humphreys article illustrating that it was ridiculous. The article by Freedman and Humphreys is a
good article; it is surprising that the literature had degenerated to such an extent that it was necessary
for the authors to write it.

To define a causal network, an additional ingredient is needed; this is the concept of intervention,

introduced by Judea Pearl in a seminal article from 1995.

5.2 Conditioning by Observation and by Intervention

Let X and Y be two random variables and suppose that X = x is observed. Then the conditional

probability of Y =y is defined as

]P)X7Y(x7y)
Px(ﬂf)

This formula describes the way that the probability distribution of the random variable Y changes

PY\X(Z/W?) =

after X = x is observed. If, instead, the value X = z is forced by the observer, irrespective of other
considerations, the conditional probability statement is invalid.

If random variables are linked through a causal model, expressed by a directed acyclic graph,
where parent variables have a causal effect on their children, some attempt can be made to compute
the probability distribution over the remaining variables when the states of some variables are forced.

In a controlled experiment, a variable is forced to take a particular value, chosen at random,
irrespective of the other variables in the network. In terms of the directed acyclic graph, the variable
is instantiated with this value, the directed edges between the variable and its parents are removed
(because the parents no longer have influence on the state of the variable) and all other conditional

probabilities remain unaltered.

5.3 The Intervention Calculus for a Bayesian Network

Definition 5.1 (The Intervention Formula). The conditional probability of X4 = T\, given that

the variables X o were forced to take the values x4 independently of all else, is written

Paja(@nalXa < za) or Pyyaja(av|za)
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and defined as

Pyyaja(@nalXa < 24) = Priaja(@nalza) = [T Pypag) (@l pagy)- (5.1)
veV\A
Note that (5.1]) is equivalent to:

Py (zv)
Hoea Pypaoy) (l‘v|$Pa(u))

Py aja(zalza) = (5.2)

The last expression of Equation is in terms of the required factorisation; instantiation of the
variables indexed by the set A and elimination of those edges in D which lead from the parents of the
nodes in A to the nodes in V\ A. The terminology ‘local surgery’ is used to describe such an elimination.
A local surgery is performed and the conditional probabilities on the remaining edges are multiplied.
This yields a factorisation along a mutilated graph where the direct causes of the manipulated variable

are put out of effect.

The intervention formula is obtained by wiping out those factors from the factorisation which cor-
respond to the interventions. An explicit translation of intervention in terms of ‘wiping out’ equations
was first proposed by Strotz and Wold (1960).

The quantity Pyy4ja(-[|74) from Definition defines a family of probability measures over Xy 4,
which depends on the values x 4, which may be considered as parameters. These are the values forced
on the variables indexed by A. This family includes original probability measure; if A = ¢, then
Py\aja(llza) = Px(.). This family is known as the intervention measure. In addition, the expression
on the right hand side of is called the intervention formula.

Intervention An ‘intervention’ is an action taken to force a variable into a certain state, without
reference to its own current state, or the states of any of the other variables. It may be thought of as
choosing the values 27 for the variables X 4 by using a random generator independent of the variables
X.

Remark In the same style of notation, conditioning by observation is

PXV\A\XA (93V\A|See(95A)) = IP)XV\AlXA (9EV\A|9UA) (5.3)

where, by the standard definition of conditional probability,

Py\aja(zy\alra) = PE(V(—%‘ (5.4)

Example 5.1.

Consider the DAG given in Figure 5.2} for ‘X having causal effect on Y.
The factorisation of Px y along the DAG in Figure [5.2]is

Pxy(z,y) = Py x (ylz)Px ()
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O—®

Figure 5.2: A DAG for X having causal effect on Y

and the intervention formula gives

Py x (y|z) = Py x (y|z).

Since X is a parent of Y, the intervention to force X = x produces exactly the same conditional
probability distribution over Y as observing X = z. But if instead Y is forced, the intervention formula

yields

Pxy(z]y) =Px(z).

Clearly, Px |y (z|y) # Pxjy (x|y) as functions unless X and Y are independent. O
Example 5.2 (The DAG for a wet pavement).

The ‘wet pavement’ example is a classic illustration, introduced by Judea Pearl. The DAG represents
a causal model for a wet pavement and is given in Figure The season A has four states; spring,
summer autumn, winter. Rain B has two states; yes / no. Sprinkler C has two states; on / off. Wet

pavement D has two states; yes / no. Slippery pavement E has two states; yes / no.

Figure 5.3: DAG for wet pavement, no intervention

The joint probability distribution is factorised as

PaB.cDE=PaPpAPc1aAPp|B,cPED-

Suppose, without reference to the values of any of the other variables and without reference to the
current state of the sprinkler, ‘sprinkler on’ is now enforced. This could be, for example, regular mainte-
nance work, which is carried out at regular intervals, irrespective of the season or other considerations.
Then
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Pagp,Ejc(|C«1)=PaPpaPppc(|, )Pgp-
After observing that the sprinkler is on, it may be inferred that the season is dry and that it probably
did not rain and so on. If ‘sprinkler on’ is enforced, without reference to the state of the system when
the action is taken, then no such inference should be drawn in evaluating the effects of the intervention.
The resulting DAG is given in Figure It is the same as before, except that C' =1 is fixed and the
edge between C' and A disappears. The deletion of the factor Pg 4 represents the understanding that

whatever relationships existed between sprinklers and seasons prior to the action, found from

]P)A,B,D,E'|C('7 D |1)
are no longer in effect when the state of the variable is forced, as in a controlled experiment, without

reference to the state of the system.

Figure 5.4: Sprinkler ‘on’ is forced

After observing that the sprinkler is on, it may be inferred that the season is dry, that it probably
did not rain and so on. No such inferences may be drawn in evaluating the effects of the intervention

‘ensure that the sprinkler is on’. O

5.4 Causal Models

Having defined the family of intervention measures, the concept of causal model may now be defined.

Definition 5.2 (Causal Model). Let X = (X1,...,Xy) be a random vector and let V = {1,...,d}

denote the indexing set. A causal model consists of the following:

1. A Bayesian Network for Px, that is, an ordering o of the indices V, a factorisation of the

probability distribution

d
Py =[P - 5.5
v ﬂ o(IPa'” () (5:5)

where Pa'?) (j) € {o(1),...,0(j —1)} and is the smallest such subset such that (5.5) holds.
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2. The node set V consists of two types of nodes; Vi and Vi, where VinVy = ¢ and ViuVy =
V. The nodes Vi are the interventional nodes and Vi are the non-interventional nodes, where
no intervention is possible. The intervention formula (5.1) holds for each subset A ¢ Vi of

interventional nodes and each x4 € Xy.

The arrows o — (3 of the DAG for either a or B (or both) in Vi are causal arrows, indicating direct
cause to effect. The remaining arrows are non-causal; a cause to effect relation between nodes o and

B cannot be inferred from an arrow o~ B if both a, B € V.

5.4.1 Establishing a Causal Model via a Controlled Experiment

If sufficient data is available, a suitable Bayesian Network may be learned from the data. A causal
model cannot be established from data alone. Additional information is needed, which is obtained
through interventions on the interventional variables.

For example, the three graphs in Figure [5.5] are Markov equivalent; if the probability distribution
factorises along one of these graphs, it also factorises along the others. The chains o« - v — 8 and
a < v < f and the fork a < v — 8 are all Markov equivalent, with D-separation structure o 1L §|~.
If any of these DAGs represents a causal network, then it is not possible to learn the causal network
from the data alone.

Suppose that it is possible to intervene by controlling the variable X, then if one of these graphs is
the DAG for a causal network, it will be possible to establish which one through a controlled experiment.
Figure shows the associated structural model when the control X, < z has been applied, forcing
X, to be independent of its ancestors. A controlled experiment, where the direct causal links between
X, and its parent variables have been eliminated, will exhibit independence structure X, 1 {Xg, X}
in the first case, X, L Xs|X, in the second {X,,X,} L Xz in the third. Once the associations
Xo L XXy, Xo [ X5, Xa L Xy, Xo L X,|Xp, Xg L Xy and Xg [ X,|X, have been established, an
additional controlled experiment, if it is possible to control the variable X, with interventions to force

all possible values of X, will determine which graph within the equivalence class is appropriate.

Figure 5.5: Three Markov Equivalent Graphs

If it is possible to control variables, then it is possible to learn whether or not a collider represents
independent causes with a common effect. If the DAG on the left hand side of Figure represents
a causal structure, then an experiment where variable A is controlled will establish that it is not a
direct cause of C, since an intervention on A leaves it separated from the rest of the network, as in
Figure
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Figure 5.6: Graphs from Figure with intervention X, « z applied

Figure 5.7: Hidden causes H; and Hs; intervention A = a

5.5 Confounding, The ‘Sure Thing’ Principle and Simpson’s Paradox

5.5.1 Confounding

Consider the DAG given in Figure 5.8 It corresponds to the factorisation:

Figure 5.8: Hlustration for Confounding

Pa,B.c =PpjacPacPc.

Consider the conditional probability of B, when A is controlled; Ppj4(.[a). The DAG illustrating the
intervention is shown in Figure [5.9] Note that

Ppja(-la) = > Ppcjal.,cla).

CEXC

and that

Ppcja(s,-la) =Ppiejal-la)Pejal.la) = Pgiac(la, . )Pc,
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Figure 5.9: Intervention on A

where in the second term, the do-conditioning of A < a is applied first, and then C' is observed. It
follows that

Pgja(-lla) = > Ppac(la,c)Pe(c).

CGXC

This shows that to estimate Ppj4(.[la) from data alone (i.e. without controlling A), it is necessary to
be able to estimate Ppi4 o and Po from data. If C is observable, then the effect on the probability
distribution of B of manipulating A may be estimated. But if C'is a hidden random variable (sometimes
the term latent is used) in the sense that no direct sample of the outcomes of C' may be obtained, it
will not be possible to estimate the probabilities used on the right hand side and hence it will not be

possible to predict the effect on B of manipulating A. This is known as confounding.

5.5.2 Simpson’s Paradox

Consider three binary variables, A, B and C. Simpson’s paradox is the observation that there are

situations where

Ppic,a(1]1,1)/Ppic a(0[1,1) Ppc,4(1]0,1)/Ppc,4(0]0,1)
> and > 1,
Ppic,a(1]1,0)/Ppic,4(0]1,0) Ppic,4(1]0,0)/Ppic,4(00,0)

but

Poa(UL)/Pra(0]1)
Poa(110) /B (00) ©

For example let A denote ‘treatment’, B ‘recovery’ and C' ‘blood pressure’. Simpson’s paradox states

that even if the ‘treatment’ may improve the chances of recovery for those with high blood pressure
and those with low blood pressure, it may nevertheless be bad for the population as a whole. It could
be that although the treatment is comparatively good within the group where high blood pressure
is observed after treatment and also comparatively good within the group where low blood pressure
is observed after treatment, it may be bad for the population as a whole. This occurs if ‘treatment’
increases blood pressure and increased blood pressure reduces the chances of recovery.

This situation is illustrated by the DAG given in Figure where A denotes treatment, B

recovery and C' blood pressure. Suppose that C' is a hidden variable. Even if the ‘treatment’ variable
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A can be controlled, an intervention on A does not remove any arrows from the causal diagram; there
is the possibility of a Simpson’s paradox, even with a controlled experiment.

If A denotes ‘treatment’ and B ‘recovery’ and C' denotes a common cause of both A and B, as in
Figure [5.8 Simpson’s paradox may be resolved if A can be controlled, because controlling A breaks
the causal link between C' and A. This is the sure thing principle, considered next, which states that if
the treatment improves the chances of recovery for each level of the ‘common cause’ variable C, then

it is good for the population as a whole.

9‘9

Figure 5.10: A=treatment / B=recovery / C=blood pressure

5.5.3 The Sure Thing Principle

Consider again the situation of Figure [5.8] Suppose that A is controlled; values for the variable A are
assigned at random, so the link C' - A is broken and hence the effect on B of manipulating A is not
confounded by the effects of hidden variables. The following result is referred to as ‘The Sure Thing
Principle’. Tt states that when Figure represents the causal structure and there is do-conditioning

on A, then Simpson’s paradox does not hold.

Proposition 5.3. Consider three binary variables A, B, C' with the network given in Figure[5.8

If

Pgioja(11]1) < Pgjcya(1]1]0)
and

Ppicja(1]0]1) <Ppicpa(1]0]0)
then

Ppja(1]1) <Pgja(1]0).

The notation means: first A is forced, then C is observed.

Proof Firstly,

Ppia(11) = Picpa(L1[1)Peya(1]1) + Ppiepa(1[0]1)Peya(0]1).

Since C' is a parent of A,
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Poja(-1) =Pc(.).

It follows that

1 1
Pgja(1]1) = Z%PB|CHA(1|$H1)]P’C\|A(xH1) = ZE)PB|C|\A(1|35H1)PC(QU)‘

Similarly,

1
Ppa(1]0) = Z%]PB\CHA(”xHO)PC(m)-

It now follows directly from the assumptions that

Ppja(1]1) <Pgja(1]0),

which is the stated result. O

Identifiability An effect is said to be identifiable if it can be estimated from data alone.

In the example above, when C is a common cause of both A and B, the effect of A on B is
identifiable.

When C' is on the causal path between A and B, the effect of treatment A on condition B is not

identifiable from data alone; it is necessary to additionally control for the effect of B

5.6 Identifiability: Back-Door and Front-Door Criteria

In a wide variety of situations, the aim is to compute the effects of an intervention, when it is not
possible to carry out a controlled experiment. The following example, introduced by Pearl, introduced

the issues involved.
Example 5.3.

Consider an experiment in which soil fumigants X are to be used to increase oat crop yields Y,
by controlling the eelworm population, Z. These may also have direct effects, both beneficial and
adverse, on yields, besides the control of eelworms. We would like to assess the total effects of the
fumigants on yields when the study is complicated by several factors. First, controlled, randomised
experiments are infeasible: farmers insist on deciding for themselves which plots are to be fumigated.
Secondly, the farmers’ choice of treatment depends on last year’s eelworm population Zy. This is an
unknown quantity, but is strongly correlated with this year’s population. This presents a classic case
of confounding bias, which interferes with the assessment of the treatment effects, regardless of sample
size. Fortunately, through laboratory analysis of soil samples, the eelworm populations before and
after treatment can be determined. Furthermore, since fumigants are only active for a short period,

they do not affect the growth of eelworms surviving the treatment; eelworm growth depends on the
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population of bird and other predators. This, in turn, is correlated with last year’s eelworm population

and hence with the treatment itself.

The situation may be represented by the causal diagram in Figure [5.11} The variables are:

X fumigants,

Y crop yields,

Zy last year’s eelworm population,

Z1 eelworm population before treatment,

Z9 eelworm population after treatment,

Z3 eelworm population at the end of the season,

e B population of birds and other predators.

Figure 5.11: A causal diagram representing the effect of fumigants X on yields YV

In this example, the variables B and Zy are hidden variables.

The issue is whether interventional probabilities Py x (.|| X < x) may be computed from information
on the observables (71, Z5, Z3,X,Y). When they can, they are said to be identifiable.

Definition 5.4 (Identifiable). The causal effect of X on Y is said to be identifiable if the quantity

Py x can be computed uniquely from the probability distribution of the observable variables.

In this section, two graphical conditions are described which ensure that causal effects can be
estimated consistently from observational data. The first of these is named back door criterion and is
equivalent to the ignorability condition of Rosenbaum and Rubin. The second of these is the front-door

criterion. This involves covariates which are affected by the treatment (in this example Z5 and Z3).
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5.6.1 Back Door Criterion

The back door criterion is defined as follows:

Definition 5.5 (Back Door Criterion). A set of nodes C satisfies the back door criterion relative to
an ordered pair of nodes (X,Y) eV xV if

1. no node of C is a descendant of X and

2. C blocks every trail (in the sense of D-separation) between X and Y which contains an edge

pointing to X.

If A and B are two disjoint subsets of nodes, C is said to satisfy the back door criterion relative to
(A, B) if it satisfies the back door criterion relative to any pair (X;, X;) € Ax B.

Example 5.4.

In Figure [5.11], the set C' = {Zy} satisfies the back door criterion relative to (X,Y). The node Z
is unobservable. The set C' = {Z1,Z,,Z3} does block all trails between X and Y with an arrow
pointing into X, but Zs and Z3 are descendants of X and therefore this set does not satisfy back door

criterion. n

The name ‘back door criterion’ reflects the fact that the second condition requires that only trails with

nodes pointing at X; be blocked. The remaining trails can be seen as entering X; through a back door.
Example 5.5.

Consider the back door criterion DAG, given in Figure .12l The sets of variables Cy = {Z3, Z4}
and Cy = {Z4, Z5} satisfy the back door criterion relative to the ordered pair of nodes (X,Y’), whereas
C3 = {Z4} does not satisfy the criterion relative to the ordered pair of nodes (X,Y"); if Z, is instantiated,
the Bayes ball may pass through the collider connection from Z; to Zs.

Figure 5.12: Back Door Criterion
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Identifiability Consider a causal network and A a subset of the variables which satisfies the back
door criterion with respect to an ordered pair (X,Y). Such a set of variables A plays a similar role to
the variable C' in the discussion on confounding; if we can observe these variables, then we can estimate
the intervention probability without a controlled experiment; otherwise we cannot.

If a set of variables A satisfying the back door criterion with respect to (X,Y’) can be chosen such
that P4 and Py|4 x can be estimated from the observed data, then the distribution Py x can also be

estimated from the observed data.

Identifiability If a set of variables Z satisfies the back door criterion relative to (X,Y"), then the
causal effect of X to Y is given by the formula

)l(XUY)

Py|x = (Py|x,zPz (5.6)

and the intervention of X on Y is said to be identifiable.

Formula (5.6]) is named adjustment for concomitants. The word identifiability refers to the fact that the
concomitants Z satisfying the back door criterion are observable and hence it is possible to compute, or

identify the intervention probability Py x (y[z) using the ‘see’ conditional probabilities (PXj\Paj )?:1.

5.6.2 Front Door Criterion

The front door criterion is defined as follows:

Definition 5.6 (Front Door Criterion). A set of variables Z satisfies the front door criterion relative
to the ordered pair (X,Y") if:

e 7 intercepts all directed paths from X to Y,
e there is no back-door path between X and Z,
e cvery back-door path between Z and Y 1is blocked by X.

The situation is illustrated in Figure [5.13] The variable U is a hidden (latent) variable. The variable

Z satisfies the front door criterion relative to (X,Y").

6@@

Figure 5.13: Front Door Criterion

The result is the following:
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Theorem 5.7 (Front Door Criterion). Let Z satisfy the front door criterion relative to the ordered
pair (X,Y). Then the causal effect on'Y of an intervention on X is:

Pyx = (PZ|X]P>Y\Z)lZ :

This is self evident; note that Py, = (IP’Y‘ZU}PU)KYUZ)

and Py7 are available, then the intervention Py x may be computed. O

. In other words, if the see-conditional Pz x

5.6.3 Non-Indentifiability

There are various conditions for non-identifiability of Py x. These include:

1. A necessary condition is that there is an unblockable back-door path between X and Y'; that
is, a path ending with an arrow pointing into X which cannot be blocked by observable non-
descendants of X. This is not a sufficient condition, as Figure illustrates. This shows a
situation where there is a non-blockable back-door path, yet Py x is identifiable (front-door

criterion).

2. A sufficient condition for identifiability of Py x is existence of a confounding path between X

and any of its children on a path from X to Y; two examples are given in Figure [5.14]

Figure 5.14: Sufficient condition for identifiability

3. Local identifiability is not a sufficient condition for global identifiability. In Figure Pzx;
IP)ZZ”X’ PYHZN PYHZQ are all identiﬁable, but PYHX is not.

PN

A&

Figure 5.15: Sufficient condition for identifiability



Chapter 6

Time Series

6.1 Introduction

This chapter provides a very brief introduction to Time Series data, the decomposition into trends,
seasonal (oscillating) components and noise, which is usually a stationary process. We'll discuss Holt-
Winters filtering, a robust technique for forecasting which dates back to 1960 and which, nevertheless,
still outperforms many more ‘modern’ techniques.

An observed time series is a set of observations (x4 )ty

Definition 6.1 (Time Series Model). A time series model for the observed data {x; :t € T} is the
hypothesis that the observed data is an observation of a sequence of random variables {X;:t €T} and

the specification of its joint probability distribution, or possibly only its expectations and covariances.

A time series can only be observed at a finite number of times, (x:);.; and the n observations are a
realisation of an n dimensional random vector X = (X1, X»,...,X,). These random variables may be

considered to come from an infinite sequence {Xy, t € Z, or Z}, a stochastic process.
Example 6.1 (The binary process).

A simple example of a stochastic process {X;, t € Z,} is a process where the variables are i.i.d.

(independent identically distributed) satisfying

1
P(X;=1)=P(X;=-1) = 5
For this process, the finite dimensional marginals are well defined; for any i1 < ... < iy,

]P)(—Xll :j17 XlQ :j27 . '7’Xin :]n) = 27”
for any {j1,...,Jn} € {-1,1}" O

Definition 6.2 (IID noise). A process { Xy, t € Z} is said to be an IID noise with mean 0 and variance

o2, written

{X:} ~ 1ID(0,07),
if the random variables X, are independent and identically distributed with B[ X;] =0 and V(X;) = 0.

77
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Notation Througout, V(.) will be used to denote variance.
The binary process is clearly an example of an IID(0, 1) noise, since the variables are independent,
E[X;]=-1x3+1x3=0and V(X;) =E[X?] -E[X?] =E[X?] = 1.

In many situations, the complete specification of the underlying stochastic process is not required; the
methods will generally rely only on its means and covariances. Sometimes even less general assumptions

are needed, but these will not be treated here.

Definition 6.3 (Mean function, Covariance function). Let {Xy, t € T} be a stochastic process with
V(X;) < oo for each t € T. The mean function of {X;} is denoted by ux, or simply u when there is
no danger of ambiguity:

px(t) =E[X:], teT (6.1)
The covariance function of {X;} is denoted by Cx or C when there is no danger of ambiguity and is
defined as:

Cx(r,s):=C(X,, Xs), m,s5€T. (6.2)

The symbol C will be used to denote covariance.

6.2 Stationarity

A stochastic process is said to be stationary, if its statistical properties do not change with time.

Formally, stationarity is defined in the following way.

Definition 6.4 (Stationary, Strictly Stationary, Wide sense stationary). A time series {X;, t € Z} is

said to be weakly stationary, or wide sense stationary, or simply stationary if

1. V(Xy)<oo  forallteZ,
2. ux(t)=p foralltelZ,

3. Cx(r,r+h)=Cx(0,h) forallr,heZ.

A process is said to be strictly stationary if any finite collection (X, ..., Xp, ) has the same distribution

as (Xn,+ts - s Xnpst) for any k> 1 and any (ny,...,ng,t) € Z.

Let B be the backward shift operator (BX); = X;_1, with powers given by (B/X); = Xi—j. Strict
stationarity means that B"X has the same distribution for all h € Z,.

In most practical situations, only weak stationarity is considered; usually only expectation and
covariance, at most, can reasonably be assessed from data.

The third point in the definition of weak stationarity implies that Cx(r,s) depends on r and s

only through r —s. It is therefore convenient to define
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vx (h) := Cx (h,0).
If only one time argument appears in «, then the process is stationary. The value h is referred to as

the lag.

Definition 6.5. Let {Xy, t € Z} be a stationary time series. The autocovariance function (ACVF) of
{X:} is defined as
vx(h) = C(Xpn, X).

The autocorrelation function (ACF) is defined as:

_x(h)
vx(0)

A simple example of a stationary process is the so-called white noise.

px(h):

Definition 6.6 (White noise). A process {X, t € Z} is said to be a white noise with mean p and

2

variance o<, writlen

{Xe} ~ WN(u, 0%),
if B[ X¢] = for all t € Z and
o ifh=0,
v(h) = ‘
0 ifh=0.

Note that IID noise is an example of white noise, but not necessarily vice versa; the underlying

distribution can be different even if the mean and covariance structures are the same.

A strictly stationary time series {X;, t € Z} with V(X}) < oo is stationary. A stationary time series
{ Xy, t € Z} does not need to be strictly stationary

From now on, the term ‘stationary’ will be used to denote ‘weakly’ or ‘wide sense stationary’; the term
strictly stationary will be used for the stronger assumption.
Example 6.2 (AR(1) process).

Autoregressive (AR) processes will be considered in more detail later. A process {Xy,t € Z} is said to
be AR(1) if it stationary and satisfies:

Xi=0Xe 1+ 2 {Z) ~WN(0,0%).
For this process, the autocovariance may be computed as follows: by squaring up both sides and using
7x(0) = V(Xy),

0_2

1-¢2

vx(0) = ¢*yx(0) + 0% = yx(0) =
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for h > 1,

'YX(h) = C(Xt+h7Xt) = ¢C(Xt+h—1,Xt) + C(Zt+haXt) = ¢yx(h - 1)

so that, since yx(=h) =vyx(h),

vx(h) = .
(1-9¢%)
Its autocorrelation function (ACF) is
px(h) =",
Note that the AR(1) process is not well defined if |¢| > 1. O

6.3 Trends and Seasonal Components

The classical decomposition model is:

Xi=pe+se+Ye,
where
e 1 is a slowly changing function (the ‘trend component’);
e s; is a function with known period d (the ‘seasonal component’);
e Y, is a stationary time series.
The aim is to extract the deterministic components p; and s; and estimate them and then check
whether or not the residual component Y; is a stationary time series.

6.3.1 No Seasonal Component

Assume that
Xt:,ut+Yt, t=1,...,7’L

where, without loss of generality, E[Y;] = 0. There are several methods for estimating p. Three are

considered here; least squares, moving average and differencing.

Method 1 : Least Squares estimation of y; The function u; is modelled by a function with as few
parameters as necessary for accurate modelling and the parameters are estimated by the least squares
technique. For example, suppose that z; can be modelled by a quadratic function, p; = ag + a1t + ast?.

The parameters (ak)izo are estimated by (Zik)izo, chosen to minimise

n
Z(xt —ag—ait— a2t2)2.
=1
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Method 2 : Smoothing by means of a moving average Let g be a non-negative integer and

consider a smoothed version of X defined by

Wy = ZX“J’ qg+1<t<n-—q.

2q +1,2=,

If it turns out that u is approximately linear over the time interval [t — ¢,t + q] and also that ¢ is

sufficiently large so that Z]__q Y;; =0, then

q+1

q

1
Z Ht+j + 2q+ 1 Z Yt+j = -

Jj=—q Jj=—q

2q +1
For t <q and t >n —q, W has to be defined in a different way. For example,

1 t _
Wt:{ T Ljt Kt t=1,...,q

1 ~t —
W ?zf(nft)Xt_j t—n—q+1,...,n

Unless p; is a straight line and the stationary time series component Y is very small, it will not be
possible to find a ¢ satisfying both the conditions that p is approximately linear over the interval
[t -q,t+q] (requiring small ¢) and such that 3arT L Zt+qY ~ 0 (requiring large q).

A more general expression for a linear filter is:

T = a; X,
J

where Y a; = 1 and a; = a—;. Such a filter will allow a linear trend p; = ag + a1t to pass without

distortion since

Yoaj(ag+ai(t+7)) = (ao+at) Y aj+a1 ), a;j = ag +ast.
J J J
It is possible to choose the weights {a;} so that a larger class of trend functions pass without distortion.

For example, the Spencer 15-point moving average, defined as

[0, @1, ., as7] = 55 [74,67,46,21,3, -5, 6, -3]
aj =0 for [j| >7

allows a cubic trend to pass without distortion. That is, applied to p = at + bt? + ct + d,

Ty = Zant+j = ZajMHj + ZanHj ~ Zajﬂmj = 1.

Conditions required for a filter to pass a trend which is polynomial of degree k£ without distortion may

be computed.
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Method 3: Differencing to generate stationarity The difference operator V is defined by
VXt = Xt - Xt—l = (1 - B)Xt,

where B is the backward shift operator. That is, (BX); = X;_1. For positive integer k, v* is defined
by: by:

vEX, = v(VFLX),.
For example,
VX = VX - VX1 = (Xi - Xpo1) = (Xio1 - Xpo9) = Xp = 2X4 1 + Xyo.
Using the backward shift operator, this may be expressed as:
ViX, = (1-B)2X,=(1-2B+BY)X; = X; - 2X;_1 + Xy_o.

For a linear trend p; = a + bt,

VX =V +VYi=a+bt-a-b(t-1)+ VY, =b+ VY,
For the covariance,
C(VY:,VYs) = C(Yy,Ys) - C(Yi1,Ys) - C(Ye,Ys1) + CYyq, Y1)

= w(t-8)—vw({t-s=-1)—y(t—-s+1)+yy(t—s)
= 29y (t—s)—yy(t-s+1)—yy(t-s-1).

It follows that VX, is stationary with
pyx =b  yx(h) =29y (h) =y (h+1) = yy(h-1).

In general, if y; = Z?:o cjtj, then
VEX, = Kl + V'Y,

which is stationary.

6.3.2 Trend and Seasonality

Now consider the model with a seasonal component:

X =g+ 5+ Y,

where E[Y;] = 0, 5444 = 8¢ and Y.¢_ s;, = 0. For simplicity in the representation, assume that n/d is an

integer; in any reasonable modelling situation, n and d will be chosen so that n/d is an integer.

In models with a seasonal component, the data is often indexed by period and time-unit;
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) n
xj,k:$k+d(j—1)7 kz].,...,d,jz].,...,g.

In this notation, x; is the observation at the k:th time-unit of the j:th period.
Three methods for dealing with seasonal components will be considered; the small trend method,

the mowving average estimation method and the differencing at lag d method.

Method S1: Small trends If the trend is considered to be constant during each period, the model
may be written as:
Xj,k = Wy + SE + YVj’k.

A natural way to estimate the trend is:

1

= 2, Tik

k=1

and a natural method for the seasonal component is:

n

> (@jn — 1))
j=1

—

Sk =

Method S2: Moving average estimation For a known period d, the trend is estimated by
applying a moving average to eliminate the seasonal component and to reduce the noise. For d even
set ¢ = d/2. The trend is estimated by:

051 g+mp_ge1 + o+ Tppgo1 +0.57444

e = d .
For for d odd, set ¢ = (d—1)/2. The trend is estimated by:

Tp—qt Ti—g+1 + "+ Tirg-1 1 Tiag

d )

it =
forg+1<t<n—gq.

The seasonal component s is then estimated in the following way. Set

Z (xk+jd_ﬁk+jd)'

qg-k _._mn-g-k
a IS4

1
Wg =
number of summands

The seasonal component satisfies Zzzl 3, = 0 and therefore the estimates are:

1 d
fs\k:wk—EZwi, k=1,...,d.
i=1

Method S3: Differencing at lag d Define the lag-d difference operator V4 by
VaXi=X; - Xiq=(1-BY)X,.

Then
VaXt = Vapt + VaYi.

This has no seasonal component and the methods for dealing with time series without a seasonal

component may be applied.
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6.4 Autocovariance and Spectral Density of a stationary time series

Recall Definition of a weakly stationary time series. It follows directly from the definition that:

7(0) >0,
|v(h)| <~v(0) for all heZ, (6.3)
~v(h) =~v(=h) for all heZ.

An autocovariance function is clearly non-negative definite, since Z?:l S hoq ajary(tj—ty) is the variance
n
Of Z]=1 CLthj .

6.5 Extracting Trend, Seasonal and Noise in R

The stl command may be used to decompose a time series into trend, seasonal component and noise.
The computation of ‘trend’ is based on moving average. For illustration, consider the carbon dioxide

data from Mauna Loa in the file atmospheric-carbon-dioxide-recor.csv .

> www =
"https://www.mimuw.edu.pl/"noble/courses/QPEDataScience/data/
atmospheric-carbon-dioxide-recor.csv"

> carbon = read.csv(www)

Delete observation 611 which is ‘na’:

> carbon = carbon[-611,]

(this deletes the last row, which is ‘na’).

> y = carbon$MaunaloaC02
> MaunlLoaCo2 = ts(data = y, frequency = 12)

(this gets it into an appropriate format - each row represents a year)

> output.stl = stl(MaunLoaCo2, s.window = "periodic")

> plot(output.stl)
This gives a plot of the original data, the seasonal component, the trend and the ‘remainder’.

> a <- output.stl$time.series
> acf(a)

The time.series part of the stl output gives a decomposition into trend, the seasonal and the noise. The
acf gives the autocorrelation for each of these; the trend, seasonal and noise, while the off-diagonals
show the cross autocorrelations.

The dotted blue lines indicate ‘error’ bars. The plot of interest is the residual (or ‘remainder’). The
acf indicates clear correlations between the residuals; they are not WN(0,02). The plot is in Figure

To get the sample standard deviation of each column in the time series, try:
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seasonal ssnl & trnd ssnl & rmnd
5 '|J1 L|J1L i ] ]
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Figure 6.1: Mauna Loa: estimated acf for decomposition

> apply(a,2,sd)
seasonal trend remainder
2.0402413 21.0085895 0.2735003

This indicates that the remainder is small compared with the trend and seasonal components.

6.6 Holt Winters Filtering
No trend, no seasonal component Given observations X1, Xo,..., X, from the model:

Xe=p+Zy  {Z} ~WN(0,0?%)

where p is considered to be approximately constant. The method of exponential smoothing is to

compute a smoothed series:

Xi=2X;+(1-M)X;1 Ae(0,1) (6.4)
where A is the smoothing parameter. The forecast for time ¢ + h given the series up to time ¢ is
Xt+h|t =X,

The quantity X; is the estimate of w at time t; the assumption is that the underlying value of p will

not change between t and ¢ + h.

Linear trend, no seasonal component Holt and Winters independently extended this idea (Holt
(1959) and Winters (1960)) to deal with the model

Xe=w+Z  {Z}~WN(0,0%)
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under the assumption that the trend is approximately linear. Let m; = py — p14—1. Then the equations

suggested by Holt and Winters are:

Xt = )\1Xt + (1 - )\1) (Xt—l + mt_l)
mt = )\2 (Xt - Xt—l) + (1 - Ag)mt_l

where my is the estimate of m; at time t. The h-step ahead forecasts are then given by:
Xionje = Xi + hiig.

Holt Winters with linear trend and additive seasonal component Now suppose that {X;} is
a time series with both trend and seasonal component where the seasonal component {s;} has period
d:

Xt :Ht+5t+Zt {Zt} NWN(O,O'Q)

The Holt-Winters algorithm accommodates the seasonal component in the following way: let Y; =

X — s¢, then Y, is an approximation of u; and

Yy = A (Xe = F-q) + (1= M) (Yie1 + 1)
e = Aa(Ye = Yio1) + (1 = Ao) s
St =X3(Xe - Y1) + (1 - A3)3p-a

The initial conditions are:
?d+1 = Xan1

Mds1 = (li(XdJrl _Xl)
5i=Xi— (X1+Mg1(i-1)) i=1,...,d+1

The predictors are:

Kiop = Vo + bty +30n - h=1,2,...

The parameters Aj, A2, A3 € (0,1) may be chosen by minimising the sum of squares of the one-step

prediction error on data that has already been observed:

n = 2
> (X - Xyia)
i=d+2
Holt Winters Seasonal Multiplicative: Exercise The same technique can be used for an un-
derlying model:
X, =(a+bt)s;+ 2, {2} ~1ID(0,0°).

If P denotes the period, then the forecasting model for time ¢ + 7 with forecasting origin ¢ is:
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Ty 47 = (G + T/l;t)gm‘r—P

where:

ap =\ (gf_tp) +(1=M1) (@1 + 1)

’b\t = Ag(’dt —a\t,l) + (1 - )\2)/515,1
St = )\3 (%) + (1 - )\3)St_p.

The justification of this is left as an exercise.

6.6.1 Illustration

The ‘Air Passengers’ data set is included in the data sets that come with R. Implementation of Holt-

Winters can be carried out as follows: Type

> data(AirPassengers)

> AP <- AirPassengers

> str(AP)

Time-Series [1:144] from 1949 to 1961: 112 118 132 129 121 135 148 148 136 119

The data set is now loaded. To see what the data looks like, try
> plot(AP)

and clearly it is seasonal, with a trend.

Type
> 7HoltWinters

to obtain the syntax for the command. Note that values for A, Ay and A3 may be given; if the user
does not give the values, then they are computed by minimising the sum of squares of the one-step

prediction errors as outlined above. To make a multiplicative seasonal Holt Winters, try:

> AP.hw <- HoltWinters(AP,seasonal="mult")
> plot (AP.hw)
> legend("topleft",c("observed","fitted"),lty=1,col=1:2)

This gives a plot showing both the original data and the one-step predictors. The plot is in Figure 6.2
Prediction is made quite simply using the ‘predict’ command, which makes the arithmetical computa-

tions from the Holt Winters object. The following shows the predictions for the next four years.

> AP.predict <-predict(AP.hw,n.ahead=4%12)
> ts.plot (AP,AP.predict,lty=1:2)

The plot is found in Figure
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Holt-Winters filtering
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Figure 6.2: Air Passenger data with Holt Winters filtering
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Figure 6.3: Air Passenger data: Holt Winters prediction
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6.7 Linear Time Series Models

The classical decomposition of a time series is into trend, seasonal component and a stationary compo-
nent. Prediction can be improved with better understanding of the stationary process. Very often, the
stationary component is not WN(0,0?); there are correlations. The next task is to build a suitable
family of models for the stationary process. The classical models for the stationary process are linear

processes.

6.8 Definitions and first properties

Definition 6.7 (Linear process, Strictly Linear Process). A process {Xi, t € Z} is said to be a linear

process if it has the representation

Xe=p+ i ijt—ﬁ {Zt} ~ WN(0702)7 (66)

j=—o0

where Y72 [thj| < co. A stationary time series {X;} ds strictly linear if it has the representation

Xe=p+ 3 0iZig, {2} ~1D(0,0%),

j=—o0

where ¥ ; [th;] < +00.

6.8.1 The Spectral Density

The spectral density of a stationary process is defined as follows:

Definition 6.8 (Spectral Density). Let v be the ACVF for a stationary time series. The function f
defined by

FO) = % S i), —m<A<m, (6.7)
h=—oc0

is the spectral density of v. It is well defined if Y32 _ . |7(h)| < oo.

The ACVF may be recovered from the spectral density:

T . T 1 ad . 1 s T .
[remroyan= [T 3 et man= o= 3 k) [T =y ().
- - Trk:—oo -7

iy ™ 27T k=—o00

The spectral density satisfies (among other things):

TORF=HRIO]
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6.9 MA(q), AR(p) and ARMA (p,q) Processes

The simplest time series model is white noise. A first generalisation of white noise is the moving average

model.
Definition 6.9 (The MA(q) process). The process { Xy, t € Z} is said to be a moving average of order
q if

Xi=Z+01Z1+ ... 40,71, {Zi} ~ WN(O,0?), (6.8)
where 01,...,0, are constants.

Definition 6.10 (The AR(p) process). The process { Xy, t € Z} is said to be an AR(p) autoregressive

process of order p if it is stationary and if

Xi- 01 X1~ —0pXep=Zi, {Zi} ~ WN(O,0?). (6.9)
A process { X} is an AR(p) process with mean p if {X¢—p} is an AR(p) process.

Definition 6.11 (The ARMA(p,q) process). A process {Xy, t € Z} is said to be an ARMA(p,q)

process if it is stationary and
Xt - ¢1Xt—1 — ... ¢pXt—p = Zt + 91Zt_1 +...+ qut—zp (610)

where {Z;} ~ WN(0,0%). A process {X;} is an ARMA(p,q) process with mean u if {X; - u} is an
ARMA(p, q) process.

Clearly, an ARMA(0,q) process is an MA(q) process, while an ARMA(p,0) process is an AR(p)

process.

Generating Polynomials for the ARMA Process An important tool for analysis of ARMA
processes is the so-called generating polynomial. Equations (6.10) can be written as

¢o(B)X:=0(B)Z;, tel,

where

d(z)=1-p1z—...— ¢pp2?,
0(z) =1+61z+...+6427

and B is the backward shift operator. The polynomials ¢(-) and 6(-) are called generating polynomials.
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Causal Models An important property of a time series model is that X; depends only on information

available up to and including time . A linear time series model that satisfies this is said to be causal.

Definition 6.12. An ARMA(p,q) process defined by the equations

$(B)X,=0(B)Z, {Z}~ WN(0,07)

is said to be causal if there exists constants {1;} such that 332, 1;] < oo and

Xe =Y 0%, tel. (6.11)
§=0
Another way to express this is to require that

Cov(Xy, Zp5) =0 for j=1,2,... (6.12)
The following theorem gives conditions under which an ARMA(p,q) process is causal.

Theorem 6.13. Let {X;} be an ARMA(p,q) for which ¢(-) and 6(-) have no common zeros. Then
{X+} is causal if and only if ¢(z) # 0 for all |z| < 1. The coefficients {1);} in Equation (6.11) are

determined by the relation

N 2B
6) =Sl 55 st

Proof Assume that ¢(z) # 0 if 2| < 1. Then ﬁ is analytic within the unit disc and therefore there
exists a (§;)72o such that 3272 [¢;] < +oo such that

1=

L _Serae(e), <t

TERPI

The operator £(B) may be applied to both sides of the equation ¢(B)X; = 6(B)Z; to give:

Xt = f(B)e(B)Ztv
which is well defined since Y. |{; < +00 and 6(z) is a polynomial of degree q.

Now assume that ¢(z) =0 for some |z| <1 and consider the power series expansion ﬁ =2 ¢2’. The

coefficients are not summable, hence X; does not satisfy the definition of a linear time series model. [

If (B)X; = 0(B)Z; and if ¢(z) = 0 for some z with |z| = 1 then there does not exist a stationary
solution. Consider for example Xy = Xy_1 + Zs; ¢(2) = 1 -z so that ¢(1) =0. For Z ~ WN(0,0?) and
X0 =0, then X; = 22:1 Zj so that Var(X;) = ot, which is clearly not stationary.
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Example 6.3 (AR(1) process).

Let {X;} be an AR(1) process:

Xi=Z1+ X1 or @(z)=1-¢z. (6.13)

Since 1 - ¢z =0 gives z = 1/¢ it follows that X is causal if |¢| < 1. For |¢| < 1,

Xe=Zv+6Xo1 = Zo+ ¢(Ziy + 9X12) = Zy+ $ 2y + 9 Xy o = Y. ¢ Zy .
=0

It now follows:

o 2j+h] 2 UQQZW
yx(h) = 3 ¢ Mo® = 2=, (6.14)
370 1-¢
O
If |¢| > 1, Equation (6.13) may be rewritten as:
0 Xe=¢"'Z+ Xpy or Xy=-¢ Zpa + 07 X
It follows that X; has representation
Xe=-), ¢ Zysj.
j=1
If |¢| = 1 there does not exist a stationary solution. O
Definition 6.14. An ARMA(p,q) process defined by the equations
O(B)X, =0(B)Zy, {Zi} ~ WN(0,0%)
is said to be invertible if there erists constants {m;} such that ¥.32|m;| < oo
and
Zy = Z Wth_j, teZ. (615)

=0

Theorem 6.15. Let {X:} be an ARMA(p,q) for which ¢(-) and 6(-) have no common zeros. Then
{X:} is invertible if and only if 0(2) # 0 for all |z| < 1. The coefficients {m;} in Equation (6.15) solve

the equation:

m(z) = ooﬂlzj:¢(z) z
()= 5me =Gy F<
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Proof The proof follows in the same way as the proof of Theorem O
Example 6.4 (MA(1) process).
Let {X;} be an MA(1) process:

Xi=2Z;+0Z1 or 60(z)=1+6z.

Since 1+ 6z =0 gives z = —1/0 it follows that X, is invertible if |#| < 1. In that case
Zy=Xe-0Z1-1 = Xy - 0(Xeo1 - 0Z40) = > (-1 07 X,
=0

The autocovariance function may be computed quite easily; for a linear stationary process with g = 1,
1 =0 and ¢; =0 for j # 0,1, it follows that

(1+6%0? ifh=0,
v(h) = 100> if |n] =1, (6.16)
0 if || > 1.
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6.10 Linear filters

A linear process may be regarded as a linear filter. Let {X;} be a time series. A filter is an operation
on a time series in order to obtain a new time series {Y;}. {X;} is called the input and {Y;} the output.

A linear filter C is the following operation:

C(X):=Ye= Y cpXp. (6.17)

k=—oo

We only consider the situation were £ [Xf] <oo and E [Yf] < oo0.

A linear filter is said to be time-invariant if c; j, = ¢,—, in which case it may be written as:

o0

)/t: Z Cth,j.

=0

A time-invariant linear filter (TLF) is said to by causal if

¢;j =0 for j <0,

When the input { X;} of a time invariant linear filter is stationary, then the output {Y;} is also stationary

provided Y}, [cx| < +o0.
Definition 6.16 (Stable Linear Filter). A TLF of the form (6.17)) is stable if Y22 |ck| < o.

Definition 6.17 (Transfer function, Power function). Consider a stable linear filter and set

0 .
c(z)= ) ¢
j=—o00

The function c(e™™) := Y7t oo cje"N is known as the transfer function, while the function |c(e")[? is

known as the power transfer function.

A filter may be written as ¢(B), in the sense that
Y =c(B)X:
where B as usual denotes the backward shift operator.

A linear process is a linear filter where the input is WN(0, 02).

Impulse Response Function In general, for a stationary process {X; : t € Z}, where the variables

{X}} are functions of impulses {Z; : t € Z}, the impulse response function g(s) is defined as:

gltis) = 2L (6.18)

In the case of a causal linear filter X; = ¥ ¢;Z;j, g(t;5) = g(s) = cs.



6.11. THE ARIMA PROCESS 95

The impulse response function may be extended to vectors; if {X, : ¢ € Z} is an m-vector valued process

which is a function of vector impulses {Z, : t € Z}, then

(6.19)
If {X,} is a linear causal vector valued process satisfying X¢ j = ¥ ss0 Xg Cjkis Zt-s,; then

gij(t,5) = gij () = cijs-

6.11 The ARIMA Process

The ARIMA process is defined as follows:

Definition 6.18 (The ARIMA(p, d, q) process). Let d be a non-negative integer. The process { Xy, t €
7} is said to be an ARIMA(p,d,q) process if V94X, is a causal ARMA(p,q) process.

A causal ARIMA(p,d,q) process {X;} satisfies:

$(B)X: =" (B)(1-B)'Xe=60(B)Z:, {Z} ~WN(0,0%), (6.20)
where ¢*(z) # 0 for all || < 1. The process Y; := VIX; = (I - B)?X; satisfies:

¢"(B)Y; =6(B)Z:.
Example 6.5 (Random Walk).

Consider the simple random walk process:

Xe=Xi1+7Z  {Z)~WN(0,6%)  0<0”<+oo.

+o00 t—>+o0

- . t— . .
This is not a stationary process; Var(X;) = to? — +o0; the central limit theorem gives that Ij(—,g —(d)

N(0,0%). A stationary process may be obtained from X by differencing; let
Vi=VX;=X;-X41=(I-B)X;.

then Y; is a stationary process;
Y; = Zy ~ WN(0,0?).

It follows that the random walk {X;:t € Z,} is an ARIMA(0,1,0) process. O
It is clear that, for d > 1 there are no stationary solutions of Equation (6.20). Furthermore, neither the
mean nor ACVF of {X,} are determined by (6.20]), since any process X; + Y}, where Y; disappears by

differencing d times, satisfies equation (6.20)). For example, if Y is a random variable, then V(X;+Y') =
VX

For |¢| < 1, the process
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X -0 Xi1=2; {Z} ~ WN(0,0?)

is a causal AR(1) process and is stationary, while for ¢ = 1, the process is not stationary, but is an
ARIMA(0,1,0) process.

Recall that a causal AR(1) process has autocorrelation function

p(h) =", o <1.
and hence, for any h,
lim |p(h)| = 1.
tim (1)

Similarly it holds for any ARMA process that its ACVF decreases slowly if some of the roots of
¢(z) = 0 are near the unit circle. From a sample of finite length, it is difficult to distinguish between
an ARIMA(p,1,q) process and an ARMA(p + 1,¢) where ¢(z) has a root near the unit circle. An
estimated ACVF that decreases slowly indicates that differencing may be advisable.

Suppose that {X;} is a causal and invertible ARMA(p, ¢) process:

¢(B)X,=0(B)Z;, {Z;} ~WN(0,07),

where 6(z) # 0 for all |z| <1 and ¢(z) has no roots in the unit circle. Then

¢(B)VXy=¢(B)(1-B)X; =0(B)(1-B)Z;, {Z} ~WN(0,07),

from which it follows that VX is a causal, but non-invertible ARMA(p,q+ 1) process. A unit root in

the moving average polynomial indicates that X; has been overdifferenced.

6.11.1 Testing for Unit Roots

For given time series data, there are tests available to indicate whether or not there are unit roots
present. One common test is the Dickey Fuller test, introduced by Dickey and Fuller (1979), which has
been refined to produce the Augmented Dickey Fuller Test (abbrieviated to ADF). This is a relatively
straightforward test. It assumes that {Z;} ~ IIDN(0,0?) (independent, identically distributed normal
random variables) and works on the principles of linear regression.

The disadvantage of this test is that presence of a unit root is the null hypothesis. In statistics,
a null hypothesis is never accepted; the result of a hypothesis test is either ‘reject the null hypothesis
and accept the alternative hypothesis’, or ‘do not reject the null hypothesis’.

Failure to reject a null hypothesis does not imply that the hypothesis is true; it simply means that
there is not enough evidence to establish the alternative.

There is a test, known as the KPSS test, which states the presence of a unit root as the alternative

hypothesis; rejecting the null hypothesis of no unit root establishes that there is a unit root.
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The Dickey Fuller Test Consider the AR(1) model:

Xi=0X4 1+ 24 {Z,} ~WN(0,5?).

Subtracting X;_; from both sides gives:

VX, = (0-DX41+ Z = VX, = BXe1+ Zy {Z) ~WN(0,02).

The Dickey Fuller test simply takes a linear regression of {VX;} against X; ;1 and estimates the
parameter § in the model, with error bounds. The test may also include a constant, and a deterministic
drift; using linear regression, assuming {Z;} ~ IIDN(0,0?), one tests whether the parameter j is
significant in either

VX =a+pXi 1+ Zy

or

VXt =qqg+ait+ BXt—l + Zt.

While standard multiple linear regression techniques may be used, the approach by Dickey and Fuller
represents a refinement where the estimates are made in a different way and the distribution of the
test statistic DF := ﬁ?ﬁ) turns out not to be exactly ¢ distributed. The distribution is known as the
Dickey—Fuller distribution.

The tests have low statistical power; they cannot distinguish between a true unit-root (8 = 0) and near

unit-root (/3 close to zero). This is called the ‘near observation equivalence’ problem.

The Augmented Dickey Fuller Test The testing procedure for the ADF test is the same as for
the Dickey—Fuller test but it is applied to the model

VX =ap+art+ X1 +01VXyg + -+ 6p1VXypi1 + 2y {Z} ~TIDN(0,0%)

The lag length p is determined when applying the test, using standard model building techniques from
multiple linear regression analysis. The unit root test is then carried out under the null hypothesis

B =0 against the alternative hypothesis § < 0. The test statistic

—

N
sd(B)

is computed it can be compared to the relevant critical value for the Dickey—Fuller test.

T

The KPSS Test The KPSS test was introduced by Kwiatkoski, Phillips, Schmidt and Shin in 1992
(Biometrics vol. 54 pp 159 - 178). It is based on the LM (Lagrange Multiplier) test in regression for
omitted variables.

Assume that a time series {Y;} can be decomposed into a linear trend &¢, a random walk R; and a

stationary error process X;:
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Y; = ft + Rt + Xt
Ri=Ri1+Zy  {Z)}~IIDN(0,0%)
Ry is fixed. The hypothesis that Y; — &t is stationary is equivalent to the hypothesis that o2 = 0.

For the test statistic, it is assumed that {X;} ~ IIDN(O,Jg(). Let (e¢)t>1 denote the residuals from
an OLS regression Y; = By + it + ¢, let G2 the estimate of the error variance from this regression and
S = Zgzl e;. The LM statistic for Y7,...,Yp is:

Under the assumption that o2 = 0, the distribution (or at least the asymptotic distribution) of

.. _ 9 T—>+o00
% Y11 52 may be computed explicitly and 72 AN o%.

Testing for unit roots using R The following gives a demonstration of a unit root test. Consider
the log series of U.S. quarterly GDP from 1947.1 to 2008.1V. The file is found in q-gdp4708.txt in the
course directory. The data is plotted in Figure 6.4
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Figure 6.4: US quarterly GDP 1947 - 2008

The following indicates that the unit root test cannot be rejected. The test used is the KPSS test.

library(urca)

www2 <- "https://www.mimuw.edu.pl/ noble/courses/TimeSeries/data/q-gdp4708.txt"
q.gdp4708 <- read.table(www2, header=T)

a = ur.kpss(q.gdp4708%gdp,type = "tau")

summary (a)

The test statistic is larger than the 1% critical value. We may safely reject the null hypothesis of no
unit root and accept the alternative of unit root. In fact, we can see that the unit root has multiplicity
2:
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> library("forecast")

> auto.arima(q.gdp4708$gdp)
Series: q.gdp4708$gdp
ARIMA(0,2,1)

Coefficients:
mal

-0.6438

s.e. 0.0685

sigma~2 estimated as 1361: log likelihood=-1236.89
ATC=2477.79  AICc=2477.84 BIC=2484.8

6.12 SARIMA Processes

Seasonal series are characterised by a strong serial correlation at the seasonal lag and multiples thereof.

Seasonal ARIMA models allow for randomness in the seasonal pattern from one cycle to the next.

Definition 6.19 (The SARIMA(p,d,q) x (P, D, Q)s Process). A process {X:} is said to be a Seasonal
ARIMA (p,d,q)x(P,D,Q) process with period s if the differenced process

Y, := (1-B)4(1-B)PXx,

15 a causal ARMA process,

¢(B)®(B*)Y; =60(B)O(B*)Z,  {Zi} ~ WN(0,07)
where
d(2)=1-pr1z—...—Ppa’
B(2)=1-®12°—... —®pz®
O(z)=1+61z+...+0427
O(2) =1+012° +...+ 029",

Note that the process {Y;} is causal if and only if both ¢(z) # 0 and ®(z) # 0 for all |z| < 1.

Note The SARMA process is a stationary process; the mean zero SARMA process satisfies E[ X;] =0
for all ¢.

Therefore, the stationary SARMA process is not suitable for the situation where the process has a
deterministic stationary component (so that E[X;] = s;, where s; is a deterministic periodic function).
What is in view here is a process where the autocovariance is seasonal.

The SARMA process is therefore not suitable for modelling, for example, a situation where there

is a ‘January effect’, when trade increases in January due to January sales.
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Chapter 7

Dynamic Bayesian Networks

7.1 Introduction

Dynamic Bayesian networks (DBNs) are an important tool that have proved useful for a large class of
problems. The thesis of Kevin Murphy (2002) provides a comprehensive introduction to the topic.
The first mention of dynamic Bayesian networks seems to be by Dean and Kanazawa (1989).
The DBN framework provides a way to extend Bayesian network machinery to model probability
distributions over collections of random variables (Z,)0. The parameter ¢ € {0,1,2,...} represents
time. Typically, the variables at a time slice ¢t are partitioned into Z, = (U, X,,Y,) representing the
input, hidden and output variables of the model. The term ‘dynamic’ refers to the fact that the system

is dynamic; the basic structure remains the same over time.

Definition 7.1. A k - slice Dynamic Bayesian network is a DAG corresponding to a factorisation of
the probability distribution over the variables {Z,Z,,...} such that for t >k,

k-1 t
P2y....7 = P20 [ [ Pzui 20,20y [ P22 g2
s=1 s=k
where, fort >k,

PZt‘Zt—k—lz--th—l = HPZ{|P(1(Z{)’
J

th 1s the jth node at time t, which could be a component of either X, Yy or Uy and the set Pa(th)

of parents of Zg belongs to the collection
7 A 71 i1
_t—ka"'v_t—la{ toe e L }

The arrows within the same time slice do not represent causality.
The requirement is that the subgraph restricted to {Z,,...,Z,,;_1} s the same for each t >0 and
the conditional probabilities PZjlpa(Zj) are the same for each t > k. Furthermore, for 1 <i < j <k,
t t

and each s > j, the subgraph restricted to {Z
{Zs+i—17 e 7Zs+j}‘

,Zs+j} 15 a subgraph of the subgraph restricted to

s+

101
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The arcs between slices are from left to right and reflecting the causal flow of time. If there is an
arc from Zg_l to Zg, the node Z7 is said to be persistent. The arcs within a slice may have arbitrary
direction, so long as the overall DBN is a DAG. The arcs within a time slice may be undirected, since
they model correlation or constraints rather than causation. The resulting model is then a (dynamic)
chain graph.

The parameters of the conditional probabilities [P ) are time-invariant for ¢ > k, i.e., the

j j
model is time-homogeneous. If parameters can changé,lptah(ez}tl may be added to the state-space and
treated as random variables or alternatively a hidden variable may be added that selects which set of
parameters to use.

Within the engineering community, DBNs have become a popular tool, because they can express
a large number of models and are often computationally tractable.

DBNs have been successfully applied to in the reconstruction of genetic networks, where genes do
not remain static, but rather their expression levels fluctuate constantly. Increased expression level of a
gene will result in increased levels of mRNA from that gene which will in turn influence the expression
levels of other genes. DBNs have proved to be a successful way of analysing genetic expression data.

With a Dynamic Bayesian Network, the n x d data matrix no longer represents n independent
instantiations of a random d-vector. Rather, the rows represent time slices of a process {X(t) : t e N}.

Some assumptions (for example time homogeneity) have to be made in order to learn structure and
parameters.

If the number of instantiations n available is large in comparison to d, then standard multivariate
time series techniques may be used effectively. If n is small compared with d, other techniques (such
as LASSO L! regularisation) should be used.

7.2 Multivariate Time Series

A VARMA ((p,q) model (vector auto regressive moving average, lags p and ¢ for the auto-regressive and

moving average parts respectively) is a model:

p q
X(t)=py+tp + 3 AjX (=) + ) Breyyi,
j=1 k=1

where ¢, ~ N(0,%) are i.i.d. (the distribution is not necessarily normal, but the normality assumption,
if true, leads to sharper estimation).

The MA part often leads to instability for estimation; we therefore only consider VAR (p) processes;
p .
X(t) =P +tp, + ZAjK(t—j)+§t
j=1
The package vars fits a vector auto regressive model:

> install.packages("vars")

> library(vars)
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Within vars, there is a test data-set Canada, which contains 4 macroeconomic indicators; prod (labour
productivity), e (employment), U (unemployment rate) and rw (real wages). A VAR(2) model is fitted

quite simply with the command:

> data(Canada)
> can = VAR(Canada,p=2)

> summary(can)

VAR Estimation Results:

Endogenous variables: e, prod, rw, U

Deterministic variables: const

Sample size: 82

Log Likelihood: -175.819

Roots of the characteristic polynomial:

0.995 0.9081 0.9081 0.7381 0.7381 0.1856 0.1429 0.1429
Call:

VAR(y = Canada, p = 2)

Estimation results for equation e:

e = e.11 + prod.11 + rw.11 + U.11 + .12 + prod.12 + rw.12 + U.12 + const

Estimate Std. Error t value Pr(>|t|)
e.l1 1.638e+00 1.500e-01 10.918 < 2e-16 x**x

prod.11 1.673e-01 6.114e-02 2.736 0.00780 **
rw.l1 -6.312e-02 5.524e-02 -1.143 0.25692
U.11 2.656e-01 2.028e-01 1.310 0.19444
e.12 -4.971e-01 1.596e-01 -3.116 0.00262 *x*
prod.12 -1.017e-01 6.607e-02 -1.539 0.12824
rw.l2 3.844e-03 5.552e-02 0.069 0.94499
U.12 1.327e-01 2.073e-01  0.640 0.52418
const -1.370e+02 5.58b5e+01 -2.453 0.01655 *

Signif. codes: 0 “*x*’ 0.001 ‘**x’ 0.01 ‘%’ 0.05 “.” 0.1 ¢ > 1

Residual standard error: 0.3628 on 73 degrees of freedom
Multiple R-Squared: 0.9985,Adjusted R-squared: 0.9984
F-statistic: 6189 on 8 and 73 DF, p-value: < 2.2e-16
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Estimation results for equation prod:

prod = e.1l1l + prod.ll +

Estimate Std.

e.l1 -0.17277 0
prod.11 1.15043 0
rw.11 0.05130 0
U.11 -0.47850 0
e.12 0.38526 0
prod.12 -0.17241 0
rw.12 -0.11885 0
U.12 1.01592 0

const -166.77552 100.

Signif. codes: 0 ‘**x’
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rw.11 + U.11 + e.12 + prod.12 + rw.12 + U.12 + const

Error t value Pr(>ltl)

.26977
.10995
.09934
.36470
.28688
.11881
.09985
.37285
43388

-0.
10.

0.
-1.

1.
-1.
-1.

2

-1.

640 0.52390
464 3.57e-16
516 0.60710
312 0.19362
343 0.18346
451 0.15104
190 0.23778
.725 0.00805
661 0.10109

* %k %

k%

0.001 “*x> 0.01 ‘x> 0.05 ¢.” 0.1 ¢ * 1

Residual standard error: 0.6525 on 73 degrees of freedom
Multiple R-Squared: 0.9787,Adjusted R-squared: 0.9764
p-value: < 2.2e-16

F-statistic: 419.3 on 8 and 73 DF,

Estimation results for equation rw:

rw = e.11 + prod.11 + rw.11 + U.11 + e.12 + prod.12 + rw.12 + U.12 + const

Estimate Std.

e.l1 -0.268833 0.
prod.11 -0.081065 O
rw.11 0.895478 O
U.11 0.012130 O
e.12 0.367849 O
prod.12 -0.005181 O
rw.12 0.052677 O
U.12 -0.127708 O

const -33.188339 120.

Error t value Pr(>ltl)

322619

.131487
.118800
.436149
.343087
.142093
.119410
.445892

110525

-0.
-0.
7.

833
617
538

0.028

1.
-0.
0.
-0.
-0.

072
036
441
286
276

0.407
0.539
1.04e-10
0.978
0.287
0.971
0.660
0.775
0.783

* %k %
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Signif. codes: 0O “x*x> 0.001 ‘*x’> 0.01 ‘x> 0.05 ¢.” 0.1 ¢ 7 1

Residual standard error: 0.7803 on 73 degrees of freedom
Multiple R-Squared: 0.9989,Adjusted R-squared: 0.9987
F-statistic: 8009 on 8 and 73 DF, p-value: < 2.2e-16

Estimation results for equation U:

U==e.11 + prod.11 + rw.11 + U.11 + e.12 + prod.12 + rw.12 + U.1l2 + const

Estimate Std. Error t value Pr(>|t|)

e.l1 -0.58076 0.11563 -5.023 3.49e-06 **x*
prod.1l1 -0.07812 0.04713 -1.658 0.101682
rw.11 0.01866 0.04258 0.438 0.662463
U.11 0.61893 0.15632  3.959 0.000173 **x*
e.12 0.40982 0.12296  3.333 0.001352 *x*
prod.12  0.05212 0.05093 1.023 0.309513
rw.l2 0.04180 0.04280 0.977 0.331928
U.12 -0.07117 0.15981 -0.445 0.657395
const 149.780566  43.04810 3.479 0.000851 x*x*x*

Signif. codes: 0 “*x*’ 0.001 ‘**x’ 0.01 ‘%’ 0.05 “.” 0.1 ¢ > 1

Residual standard error: 0.2797 on 73 degrees of freedom
Multiple R-Squared: 0.9726,Adjusted R-squared: 0.9696
F-statistic: 324 on 8 and 73 DF, p-value: < 2.2e-16

Covariance matrix of residuals:

e prod v U
e 0.131635 -0.007469 -0.04210 -0.06909
prod -0.007469 0.425711 0.06461 0.01392
rw -0.042099 0.064613 0.60886 0.03422
U -0.069087 0.013923 0.03422 0.07821

Correlation matrix of residuals:
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e prod v U
e 1.00000 -0.03155 -0.1487 -0.6809
prod -0.03155 1.00000 0.1269 0.0763
rw -0.14870 0.12691 1.0000 0.1568
U -0.68090 0.07630 0.1568 1.0000

The default value, which estimates Ky and sets p, =0 is const. To set Ho = 0 and u, =0, type:
> VAR(Canada,p=2,type="none")

To set By = 0 while estimating an unknown trend By type:

> VAR(Canada,p=2,type="trend")

To estimate both an intercept Hy and a trend Ky, type:

> VAR(Canada,p=2,type="both")

The stability function verifies the covariance stationarity of a VAR process, using cumulative

sums of residuals. This may be carried out by:

> var.2c=VAR(Canada,p=2,type="const")
> stab=stability(var.2c,type="0LS-CUSUM")
> plot(stab)

There are several tests for normality which come under normality.test.

> normality.test(var.2c)
$JB

JB-Test (multivariate)

data: Residuals of VAR object var.2c
Chi-squared = 5.094, df = 8, p-value = 0.7475
$Skewness

Skewness only (multivariate)

data: Residuals of VAR object var.2c
Chi-squared = 1.7761, df = 4, p-value = 0.7769
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$Kurtosis
Kurtosis only (multivariate)

data: Residuals of VAR object var.2c
Chi-squared = 3.3179, df = 4, p-value = 0.5061

The function serial.test carries out the Portmanteau (i.e. Ljung-Box) test

> serial.test(var.2c,lags.pt=16,type="PT.adjusted")
Portmanteau Test (adjusted)

data: Residuals of VAR object var.2c
Chi-squared = 231.5907, df = 224, p-value = 0.3497

The VARMA model is standard and is treated in any reasonable text on Time Series.

7.3 Lasso Learning

One of the most prominent applications of DBNs is to gene expression data and locating regulatory
pathways. The main difficulty is that n (the number of instantiations) tends to be small compared
with d (the number of genes under investigation). On the other hand, gene expression networks tend
to be sparse.

One technique that has developed and is quite effective in such situations is L' regularisation, or
LASSO learning.

LASSO and Least Angle Regression Given a set of input measurements (z;1,...,%;q) for j =
1,...,n and outcome measurement y; : j = 1,...,n, taken as observations on independent variables,

the lasso fits a linear model
—_ d —_
7y =Po+ ) B
j=1
The criterion it uses is:
Minimise ¥}, (y; —7;)* subject to Z?;o |5;] < s for a constraint value s.

The bound s is a tuning parameter. When s is sufficiently large, the constraint has no effect and the
solution is simply the usual multiple linear least squares regression of y on x1,..., 4.
For smaller values of s (s > 0), the solutions are shrunken versions of the least squares estimates.

The L' penalisation often forces some of the coefficient estimates B} to be zero.
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The choice of s therefore plays a similar role to choosing the number of predictors in a regression
model.

Cross-validation is the standard tool for estimating the best value for s.

Forward stepwise regression achieves the same objective as regularisation by adding in explanatory

variables one at a time:

e Start with all coefficients 3; equal to zero.

e I'ind the predictor xz; which is most correlated to y and add it into the model. Take residuals

r=y-7.
e Continue, at each stage adding to the model the predictor most correlated with r.

e Until: all predictors are in the model

The Least Angle Regression procedure follows the same general scheme, but does not add a predictor
fully into the model. The coeflicient of that predictor is increased only until that predictor is no longer

the one most correlated with the residual r. Then some other competing predictor is included.

Least Angle Regression algorithm The algorithm proceeds as follows:

e Start with all coefficients 3; equal to zero.

Find the predictor x; most correlated with y.

Increase the coefficient §; in the direction of the sign of its correlation with y. Take residuals

r =y —7. Stop when some other predictor 3, has as much correlation with r as x; has.

Increase (3;, Bx) in their joint least squares direction, until some other predictor z,, has as much

correlation with the residual r.

Continue until: all predictors are in the model

It can be shown that, with one modification, this procedure gives the entire path of lasso solutions,
as s is varied from 0 to infinity. The modification needed is: if a non-zero coefficient hits zero, remove

it from the active set of predictors and recompute the joint direction.

Cross-Validation Cross validation is a model evaluation method where some of the data is removed
before training begins. Then when training is done, the data that was removed can be used to test
the performance of the learned model on “new” data. This is the basic idea for the class of model

evaluation methods called cross validation.

e Holdout The holdout method is the simplest kind of cross validation. The data set is separated

into two sets; the training set and the testing set. The function approximator fits a function using
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7.3.1

the training set only. Then the function approximator is asked to predict the output values for
the data in the testing set (it has never seen these output values before). The errors it makes
are accumulated as before to give the mean absolute test set error, which is used to evaluate the

model.

K-fold Cross Validation K-fold cross validation is one way to improve over the holdout method.
The data set is divided into k subsets, and the holdout method is repeated k times. Each time,
one of the k subsets is used as the test set and the other k-1 subsets are put together to form
a training set. Then the average error across all k trials is computed. The advantage of this
method is that it matters less how the data gets divided. Every data point gets to be in a test set
exactly once, and gets to be in a training set k-1 times. The variance of the resulting estimate is
reduced as k is increased. The disadvantage of this method is that the training algorithm has to
be rerun from scratch k times, which means it takes k times as much computation to make an
evaluation. A variant of this method is to randomly divide the data into a test and training set
k different times. The advantage of doing this is that you can independently choose how large

each test set is and how many trials you average over.

Leave-one-out Leave-one-out cross validation is K-fold cross validation taken to its logical
extreme, with K equal to n, the number of data points in the set. That means that the function
approximator is trained on all the data except for one point n separate times and a prediction
is made for that point. As before the average error is computed and used to evaluate the model.
The evaluation given by leave-one-out cross validation error (LOO-XVE) is good, but at first

pass it seems very expensive to compute.

Implementation

There are several packages available in R for DBN learning. One of the most prominent is the lars

package by Hastie and Efron (2012). Other packages available are: glmnet package by Friedman et.
al. (2010) and penalized by Goeman (2012). For illustration, we use the arth800MTS data set from
the GeneNet package. This describes the expression levels of 800 genes of the Arabidopsis thaliana

during the diurnal cycle. We consider a subset arth12 of 12 of the genes.

vV V V Vv VvV

library(lars)

library(GeneNet)

data(arth800)
subset=c(60,141,260,333,365,424,441,512,521,578,799)
arth12=arth800.expr [, subset]

Now lars is used to estimate a model for a target variable speified by a vector (say y) and a set of

possible parents specified by a matrix of predictors (say x). The arth800 data set consists of two time

series, each of 11 points in length. That is, there are two repeated measurements for each time point.

To estimate a VAR(1) process, firstly remove the two repeated measurements for the first time point
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of y and the two repeated measurements for the last time point of x. They cannot be used for LASSO,

since y(t) needs xz(t - 1).

> x = arth12[1: (nrow(arthi2)-2),]

>y = arth12[-(1:2),"265768_at"]

> lasso.fit = lars(y=y,x=x,type="lasso")
> plot(lasso.fit)

The plot is shown in Figure|[7.1

LASSO
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Figure 7.1: Lasso output

The figure is interpreted as follows: the aim is to predict y(¢) (the expression levels for gene labelled
265768_at) by the expression levels one time unit earlier (given at time index ¢ — 2 because we have
double measurements for each time); x(t—2). The regression is carried out by evaluating the coefficients
B which minimise Zfi(y(t)—zjlil z;(t-2)B;)?, subject to a constraint that Zjlil |B;] < t for t increasing.
For the x-axis, this is presented as |§]/ max|3|, where |3| = Zjl-ll |3;] and max|f] is the value of Z}il 1351
for the unconstrained problem.

The values of the coefficients are denoted by different colours and the plot shows how they change as
the value of t increases. The vertical lines indicate the points at which new coefficients are introduced.

The coefficients may be obtained by
> coef(lasso.fit)

Structure learning (i.e. deciding which directed edges to include in the network) is carried out via

cross-validation. The cv.lars function does this.
> lasso.cv=cv.lars(y=y,x=x,mode="fraction")

The output gives the MSE (mean squared error) as a function of |3|/max|3| (where || denotes the
constraint and max || denotes the value of Zjl-il |3;] for the unconstrained problem) and the output is

shown in Figure The optimal set of arcs is chosen to minimise the mean squared error.
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> frac=lasso.cv$index[which.min(lasso.cv$cv)]

> predict(lasso.fit,s=frac,type="coef" ,mode="fraction")
$s

[1] 0.1919192

$fraction
[1] 0.1919192

$mode

[1] "fraction"

$coefficients
265768_at 263426_at 260676_at 258736_at 257710_at 255764_at
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
255070_at 253425_at 253174_at 251324_at 245319_at 245094_at
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 -0.6420806

The non-zero coefficients indicate the arcs to be included on the gene 265768_at for the optimal value

s=frac computed by cv.lars.

0.2

Cross—Validated MSE
0.6

T
0.0 0.2 0.4 0.6 0.8 1.0

Fraction of final L1 norm

Figure 7.2: Lasso cross validation

The number of steps can be controlled by setting the mode argument of predict to step.

> predict(lasso.fit,s=3,type="coef" ,mode="step")$coefficients
265768_at 263426_at 260676_at 258736_at 257710_at 255764 _at 255070_at 253425_at
-0.02152962 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
253174 _at 251324 _at 245319_at 245094 _at
0.00000000 0.00000000 0.00000000 -0.72966658
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The L' penalty can be specified with mode = *’lambda’

> predict(lasso.fit,s=0.2,type="coef" ,mode="1lambda")$coefficients

265768_at 263426_at 260676_at 268736_at 257710_at 255764_at 255070_at 253425_at
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0©0.0000000 0.0000000 0.0000000
263174_at 251324_at 245319_at 245094_at

0.0000000 0.0000000 0.0000000 -0.6961228

The lars package also fits least angle regression and stepwise regression.

> lar.fit=lars(y=y,x=x,type="lar")
> lar.cv=cv.lars(y=y,x=x,type="1lar")
> step.fit=lars(y=y,x=x,type="stepwise")

> step.cv=cv.lars(y=y,x=x,type="stepwise")

7.4 Inference for Dynamic Bayesian Networks

For a given DBN (where the network structure and the conditional probability potentials have been
specified), the queries of interest are usually those of computing the marginal distribution of X;(t)
conditioned on all nodes other than X;(¢) at times 1,...,7T. In line with standard time series problems,

these problems fall into three categories:
o If T'=1t, the query is called filtering.

e If T >t (node X;(t) is omitted), the query is called smoothing. It returns a smoothed value of

X;(t); the aim of the query is noise reduction.
o If T' < t, the query is called prediction.

Queries which ask for the Most Probable Explanation can be performed for filtering, smoothing
and prediction with the lars package.

To see how it works, consider the arth12 data set:

> library(GenelNet)

> data(arth800)

> subset = c(60, 141, 260, 333, 365, 424, 441, 512,
+ 521, 578, 789, 799)

> arth12 = arth800.expr[, subset]

> library(lars)

> x = arthi12[1: (nrow(arthi12) - 2), ]

>y = arth12[-(1:2), "265768_at"]

y contains the expression levels of gene 265768_at at all times except for time 0 (recall that there are
two measurements at each time). x contains the whole data set for all times except for the last one,
labelled 24.
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> lasso.fit = lars(y = y, x = x, type = "lasso")
> lasso.cv = cv.lars(y =y, x = x, mode = "fraction")

> frac = lasso.cv$index[which.min(lasso.cv$cv)]

frac contains the value of the index that minimises the cross variation. Therefore, this is the value
that is used to build the model. Estimation for the expression levels of 265768_at may be carried out

quite simply by:

> lasso.est = predict(lasso.fit, type = "fit",

+ newx = x, s = frac,

+ mode = "fraction")$fit

> lasso.est
0-1 0-2 1-1 1-2 2-1 2-2 4-1

7.099782 6.894064 7.166249 7.157744 7.592092 7.379432 7.990548
4-2 8-1 8-2 12-1 12-2 13-1 13-2

8.078921 8.353137 8.333108 8.940241 8.780302 8.816387 8.758480
14-1 14-2 16-1 16-2 20-1 20-2

8.542374 8.417818 7.446577 7.329513 6.717392 6.747178

The estimated expression levels at 20-1 and 20-2 are a result of filtering, while the others given
here are a result of smoothing.
The values of 24-1 and 24-2 can be predicted by:

lasso.pred = predict(lasso.fit, type = "fit",
newx = arth12[c("24-1", "24-2"), 1,
s = frac, mode = "fraction")$fit
lasso.pred
24-1 24-2
6.822643 6.882054

The penalized package fits LASSO models which are compatible with bnlearn. Therefore, more
complex conditional probability queries can be carried out using cpquery and cpdist if the model is

first learned in this way.

library(penalized)
lambda = optLl(response = y, penalized = x)$lambda

lasso.t

>

>

> penalized(response = y, penalized = x,
+ lambdal

#

>

lambda)

nonzero coefficients: 2

coef(lasso.t)
(Intercept)  245094_at
14.0402894 -0.7059011
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The only parent of gene 256768_at is 245094_at, which seems to act as an inhibitor.

This suggests that a model with this explanatory variable might be useful. Such a DBN can be created

in the following way:

>dbnl =

+ model2network("[245094_at] [265768_at 245094 _at]l")
>xp.mean = mean(x[, "245094_at"])

>xp.sd = sd(x[, "245094_at"])

>dbnl.fit =

+ custom.fit(dbnl,

+ dist = list("245094_at" = list(coef = xp.mean,
+ sd = xp.sd), "265768_at" = lasso.t))

Since the data is continuous, there are two possibilities: either create a Gaussian network, or discretise
the variables. The network dbn1l is Gaussian. The mean xp.mean and standard deviation xp.sd need
to be specified.

The regression analysis suggests that high expression levels of 245094 _at at time ¢t — 1 lead to low

expression levels of 265768_at at time ¢. The cpquery function can be used:

>cpquery(dbnl.fit, event = (°265768_at‘ > 8),

+ evidence = (245094_at‘ > 8))
[1] 0.2454624

>cpquery(dbnl.fit, event = (‘265768_at¢ > 8),

+ evidence = (245094_at‘ < 8))
[1] 0.9829545

Note With this package, it is not permitted to condition on events of measure 0. Therefore, intervals

must be specified both for event and evidence.

The function cpdist may be used to generate random observations. To compare the conditional

distributions for both pieces of evidence, use:

>dist.low = cpdist(dbnl.fit, node = "265768_at",

+ evidence = (¢245094_at‘ < 8))
>dist.high = cpdist(dbnl.fit, node = "265768_at",
+ evidence = (¢245094_at‘ > 8))

These may be plotted and the densities compared.

Now suppose that the variables at time ¢ are not independent of those at t — 2 given ¢t — 1. It is then a
good idea to construct a DBN which depends on lags 1 and 2. To check whether the introduction of

t — 2 to explain ¢ improves the model:
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y = arth12[-(1:2), "245094_at"]

colnames(x) [12] = "245094_at1"

lambda = optLl(response = y, penalized = x)$lambda

lasso.s = penalized(response = y, penalized = x,
lambdal = lambda)

vV 4+ VvV V VvV V

coef(lasso.s)

(Intercept) 268736_at 257710_at 255070_at 245319_at
-2.659077706 -0.009220815 0.273648262 -0.444106451 -0.134050990
245094 _at1l

1.589716443

The assumption is that the DBN is time homogeneous. These results suggest a network structure

which can be created as follows:

dbn2 = empty.graph(c("265768_at", '"245094_at",
"268736_at", "2567710_at", "2b65070_at",
"245319_at", "245094_atl"))

>
+
+
> dbn2 = set.arc(dbn2, "245094_at", "265768_at")
>
+
>

for (node in names(coef(lasso.s))[-c(1, 6)1)
dbn2 = set.arc(dbn2, node, "245094_at")
dbn2 = set.arc(dbn2, "245094_atl'", "245094_at")

The parameters of dbn2 may be estimated via maximum likelihood. The parameters of 265769_at and
245094 _at may then be substituted with those from the LASSO models lasso.t and lasso.s.



7.5 Exercises

1. Counsider the Canada data set from the vars package. Load the data set, make some exploratory
analysis and estimate a VAR(1) process for this data set. Estimate the auto-regressive matrix A
and the constant matrix B which define the VAR(1) model.

Compare the results with the LASSO matrix when the L penalty is estimated by cross-validation.
What are your conclusions?
2. Consider the arth800 data set from the GeneNet package. Load the data set. The time

series expression of the 800 genes is included in a data set called arth800.expr. Investigate its

properties.

Compute the variances of each of the 800 variables, plot them in decreasing order and create a

data set with those variables whose variance is greater than 2.

Can you fit a VAR process using the var package (unlikely)? Suggest alternative approaches
(such as LASSO) and apply them. Estimate a DBN with each approach and compare the DBNs.
Plot the DBNs using plot from G1DBN.
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Chapter 8

Discriminant Function Analysis

Suppose that we are given a learning set x of multivariate observations, where x € R™P. That is,
n multivariate observations, with p variables. In addition, there is a variable p + 1 which is a class
variable taking values in C = {C1,...,Cy, }. That is, each observation comes from one of m pre-defined
classes. In this set up, there are p classification variables and m groups or classes. Suppose that there
are m; observations from group Cj, for j = 1,...,m. For example, for the Egyptian Skull data, there
are b different periods and 30 skulls from each period. There is one class variable (the period) and

four classification variables. The data may be represented by:

X1
X =
Xm
where m is the number of groups and
T151 N L1jp
X5 =
xn].jl ce xn].jp

and n = }7%; n;. These observations are described as labelled observations. There are two main goals:

e Discrimination Use the information in a learning set of labelled observations to construct a

classifier (or classification rule) that will separate the predefined classes as much as possible.

e Classification Given a set of measurements on a new unlabelled observation, use the classifier

to decide which class the observation belongs to.

There are two basic methods for discriminant analysis; the mazimum likelihood method and Fisher’s
Linear Discriminant Function method. The maximum likelihood method may be used when the
probability distribution of each population is known; the linear discriminant function method is used

when the probability distribution is unknown.

117
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8.1 The Maximum Likelihood Discriminant Rule

The maximum likelihood rule is used when the probability distribution, or at least the parametric
family of probability distributions, is known for each population. Unknown parameters are estimated
by the training data and the estimates plugged in. Then a new observation x is allocated to group j if
fj (z) = maxy, Ly, (), where Ly : k = 1,...,m is the estimated likelihood function (when the parameter
estimates have been plugged in). It is assumed that the situation where there are two groups which

maximise the likelihood will not arise. If it does, a classification cannot be determined.
Example 8.1 (Normal Populations, same covariance structure).

Assume that X, ~ N (Hj’ C) for j=1,...,m. That is, from group j, the observations are independent
identical multivariate normal, with mean vector B and covariance matrix C. The covariance matrix

is assumed to be the same for each group. Then

1 1 b
Lj(z) = Wexp{—§(£—ﬁj) ¢ l(z—gj)},

For an observation z, finding the j that maximises L (x) is equivalent to finding the j that maximises

1 1 _
Li(z):=InL;(z)= —g In(27) — §ln\C\ - §(g—ﬂj)tC 1(2—&).

If the parameters are unknown, they are estimated from the training examples. The expectation vectors
h; are estimated by the sample average T; for group j and the covariance matrix C' is estimated by
S, the pooled covariance matrix from all the observations. When classifying a new observation, the
problem is then to find the j which minimises the Mahalanobis distance from the observation z to the

centre of group j. Recall the definition of the Mahalanobis distance:

2 — \to-1 —
Dj:(i_ij)s (Z‘Ej)‘

New observations are classified as belonging to group j for which D; is smallest.

8.1.1 The Bayes Discriminant Rule

This is almost the same as likelihood, except that there is a prior probability over classes; if X1 is

the class variable, then

P(Xp+1 = CZ) =Ty,

The posterior probability for class C; given X = (Xj....,X,) is then

]P)(Xp+1 = CZ|X = :E) x TFiLi(l’).

The observation is then classified as class Cj;i = argmax;m;L;(x) (these are estimated by plugging in

the appropriate parameter estimates).
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8.2 The Linear Discriminant Function

Suppose we have two classes, 1 and Cy. Suppose we have two normal populations, X; ~ N(Hpc)
and X, ~ N(EQ, (). Let f1 and fy denote the respective densities. Set

L(z) :=In fi(z)

f2(£)
Then
L(z) = —s(z-p)' 0 a-p)+2(z-p)'C Nz p)
z) = —5l@-p Topy) T 5 E— My L=y
_ 1 _ 1 _
= (=1 )C = S Oy + S, C
L1 i
= (= 1)C = S (o + ) Oy — )
= (p,—p)'C N z-m) =bo+ bz
where
1
Hzﬁ(ﬂ1+ﬂz)'

This is a linear function, where

{ Q = C_l(ﬂl _gQ) (81)

__1 t -1 t -1
bo = ~3 {ch =21 _HQC Ez}

The function L is known as the Linear Discriminant Function (LDF). It partitions the space R? into
disjoint classification regions Ry and Ro. If x falls into Ri, then the observation is classified as

belonging to Cy. If it falls into Rg, then it is classified as belonging to Cs.

8.3 Misclassification Probability
Let

U=b'X=C"(p, - p,)X.

This is the part of L(X) that depends on X.
Conditioned on the class, this is a Gaussian random variable. We now compute its mean and variance

for each class. Let C denote the class variable, then

E[U|C € C;] = C‘_l(ﬁ1 _/12)&‘
Define

A% = T H2)tc_1(ﬁl ~ Hy)-
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then

Var(U|C € C;) = b'Cb = A*

for i =1,2. Let M denote the event of misclassification. The misclassification probabilities for individ-

uals from the respective groups is therefore:

[P(M|C = Cl) = P(&E R2|C € 01), P(M|C = 02) = P(&E R1|C € CQ)

where
A
P(X € RaC = C1) = P(L(X) <0C = C1) = & (-5 )
and
A
P(X € Ra[C = Cy) = P(L(X) > 0/C € Cy) = & (—5) .
The details of the computations are left as an exercise. O

A graph of P(M|C = C;) against A shows a downward sloping curve. It has value § when A =0 (the
two populations are identical) and tends to 0 as A increases. In other words, the greater the distance

between the two population means, the less likely one is to misclassify x.

8.4 TFisher’s Discriminant Function

Fisher’s idea was to look for appropriate linear combinations of the variables

p
Z = Z aka
k=1

to maximise the distance between the various groups. Fisher (1936) suggested taking the linear com-
bination that maximises the F' ratio in the ANOVA table. Let n = Y7 n;, z = %2211 Yz
Zk = # Y% 2. The ANOVA is

source d.f. mean square f
SSB=Zjnilnj(§j—§)2 m-—1 MB= fns? %—g
SSE = T T3l (21— %) n-m  Mpg=325

SST =SSB+SSE=%" %7 (z;-7)? n-1

Let T, W and B be the matrices for Total, Within (or error) and Between classes sums of squares
defined by

m 1y
= Z Thja — Ta)(Tijp — Tp),
j=1k=1
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m Ny
Wab = D > (Tkja = Tra) (Thjp — ko),
i=lk=1
m
Bap =), ni(Tja—T.a)(Tjb—T.p),
=1

where zj;, denotes observation k from sample j for variable a, 7, = ﬁ ;”:1 ZZil Tija and Tjq, =
L Y xpie- As described before, T denotes ‘total’; B denotes ‘between groups’ and W as ‘within
n; k=1"kKja ) )

groups’, so W with suitable normalisation is an estimate of the error covariance. Note that
B=T-W.

Then it turns out that (this is one of the tutorial exercises) that Fisher’s rule amounts to choosing a
vector g € RP that maximises the ratio

a'Ba

aWa’

Then the discriminant function is Z = Z§:1 a;X;.

Definition 8.1. The linear function Z satisfying Z(x) = Z?:l a;x; is called Fisher’s linear discriminant

t

function. The linear combination a'x is also called the first canonical variate.

t
Theorem 8.2. The vector a that mazimises qu/% 1s the eigenvector corresponding to the largest

eigenvalue of the p x p matric W'B.

Let Z; denote the mean vector for population (or group) j. Using Fisher’s linear discriminant function,

the rule is to assign a p- variate observation x to the class for which |a’(x — X;)| is lowest.

Consider two populations j and k with mean vectors z; and T, respectively and assume that the

populations have been labelled such that gtzj > Qtzk. Then, for any x € R?,

1
o' (z - z;)| <|a'(z - ;)| = @' (z— 5@ +Zk)) > 0.

This enables the following interpretation of Fisher’s linear discriminant rule. The set
Hjr =1z eRP|a' 1(— Zy) ) =0
jk= LR |2~ o(Z;+2,) ) =

defines a hyperplane perpendicular to the vector a. This hyperplane divides R? into two disjoint half

spaces; the mean Z; lies in one and the mean T, lies in the other.

By considering all pairs of populations (j, k) with 1 < j <m and 1 < k <'m, Fisher’s linear discriminant

function splits R? into m disjoint regions

RP=RiU...UR,,
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by considering all p(p — 1)/2 hyperplanes Hj;,. The region R; corresponds to the region where an
observation x will be classified as belonging to population j. These hyperplanes are all perpendicular

to the vector a.

To find R, drop a line from Z;, perpendicular to the vector g, to the line through the origin containing
the point a. Denote the point of intersection by Y- From the m -1 hyperplanes Hj1,...,Hj,, (there
is no hyperplane Hj;), find the two with smallest distance from Y, on either side of that point. The
region R; is the region bounded by these two hyperplanes.

The following discussion shows the likelihood discrimination rule for multinormal observations, from
which it follows that if there are two populations, each with the same covariance, then the discrimina-

tion rule is the same as for Fisher’s discrimination rule.

8.5 Quadratic Discrimination

When populations are normal, but the covariance matrices are not equal, the maximum likelihood

technique leads to quadratic discriminant functions.

Theorem 8.3. Suppose that X; ~ N(Hj’cj) (that is, a p-variate observation from population j has
multivariate normal distribution with mean vector Iz and covariance matriz C;). Suppose that z; and
S; are the mazimum likelihood estimates of the mean and covariance matriz for population j. Then the
mazimum likelihood discrimination rule, where the estimates are used in place of the true parameter

values, allocates a new observation x to population j if and only if

@—zj)f(s,;l—s;1><z—zj>+<zj—zwt&i(zz—@ﬁzk)wln%>o, ke (8.2)
J

Proof The log likelihood for population j is

1 1 1
(@) = =5 In(2r) = SIn|S)| - S (z - Z;)Sj (2 - Z)).

The result follows from straightforward arithmetic manipulation. O

Corollary 8.4. If m =2 (two populations) and Cy = Co = C and this model is used, with S = ——W,

nip+ng
then the mazimum likelihood method allocates a new observation x to population 1 if and only if

(T, - Z) W (2 - %(Zl +T,)) > 0.

Proof Straightforward exercise. O

8.6 Canonical Discriminant Functions

Fisher’s technique may be extended quite eagily to obtain more discriminant functions, to sharpen up
the clasification. Let s = min(p,m - 1) and let A\; >...> )\, be the first s eigenvalues of W™'B and let

(ai1,---,aip)" denote the eigenvector corresponding to eigenvalue \; and set
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p
Zi(z) = Z Aifg Lk
k=1

Then Z; is known as the ith canonical discriminant function. It turns out (proof omitted) that the ith
eigenvalue is the ratio of the within group sum of squares to the between group sum of squares for

71 is the combination that gives the largest Mp/Myy ratio, subject to the constraint that ) a%k =1.

Zs is the combination that gives the largest Mp/Myy ratio, subject to constraints that Y agk =1 and
ik a1;Sjasr = 0; i.e. Zp is statistically uncorrelated with Z;.

For ¢ > 2, Z; is the linear combination that gives the largest Mp/My, ratio, subject to the constraints
that 37 _, a?k =1,j=1,...,pand ¥, gajaarsSas =0 for all 1 <j <k <.

Where discriminant analysis is useful, the first few functions ought to be sufficient to show the group
differences. Hopefully, sufficiently few will be required so that they can be used to represent the group
differences graphically.

Important Remark The value s = min(p,m — 1) is the maximum number of canonical discriminant
functions available; this is the rank of B as is easily checked and hence, if s < p all remaining eigenvalues
Ast1=...= Ay =0.

Significance Tests The Hotelling 72 test may be used to test for a significant difference between the
mean values for any pair of groups. Other tests, which are variants of this test, may be used to detect

overall significant differences between the means for the m groups.

x? test In addition, let (\; );-1 denote the eigenvalues of the matrix W~1B. Then, approximately,

p+m
¢? — (n_ 1- T)ln(l +)\j) ~ X?)+mf2j'

A large value substantiates the claim that there are significant differences of the mean vectors between

the groups. Alternatively, qb]? +...+¢? may be used, the x? having the d.f. Yi—i(p+m-2k).

Warnings

1. The x? test does not seem to be robust if assumptions X, ~ N(uj,C) are relaxed. This contrasts
with univariate analysis, where the results seem to be robust when assumptions of normality are

relaxed.

2. Even if the data is normal, the statistical values for A\; may appear in the wrong order, if the
variance is large. The test does not take this possibility into account. A large value for an

eigenvalue further down on the list that happens by chance will give a wrong impression of the
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significance of all the eigenvalues; the test has a greater chance of wrongly indicating significance

than the nominal significance level.
Example 8.2 (Egyptian Skulls).

The matrices W, T, B =T — W can be obtained and the matrix W~'B calculated and its eigenvalues
computed. These turn out to be A\; = 0.437, Ao = 0.035, A3 = 0.015, Ay = 0.002. The corresponding

eigenvectors may be calculated, giving (up to scaling) canonical discriminant functions

Z1 =0.127X; - 0.037X2 - 0.145X3 - 0.0083 X4
Z3 =0.039X; +0.210X2 - 0.068X3 - 0.077X4
Z3=0.093X; - 0.025X3 + 0.015X3 - 0.295.X,
Z4=0.149X; - 0.000X2 +0.133X3 + 0.067X4

The eigenvalue A; is much larger than the others; most of the sample differences are described by 7
alone. Large values correspond to skulls which are tall and narrow with long jaws and short nasal
heights.

The means and standard deviations for the discriminant function Z; may be computed for the five

samples. They are

group mean standard deviation
I: Earl predynastic -0.029 0.097
IT: Late predynastic -0.043 0.071
III:  12th and 13th dynasties -0.099 0.075
Iv: Ptolemaic -0.143 0.080
V: Roman -0.167 0.095

This discriminant function shows a clear trend in the mean. It is decreasing over time, indicating on
average shorter broader skulls, with short jaws, but relatively larger nasal heights. But this is very
much an average change; the standard deviation is rather large. When the 150 skulls are classified
according to the group to which they are closest according to the Mahalanobis distance, rather many
are wrongly classified. The following table, known as a confusion table, gives the number of objects
which the classifier places in each class, from each class. The diagonal entries indicate the number that

are correctly classified, the off-diagonals those that are incorrectly classified.

number allocated to each group
source group | I IT TII IV A% total
1 12 8 4 4 2 30
IT 10 8 5 4 3 30 O
IT1 4 15 2 5 30
v 3 7 5 12 30
V 4 4 9 11 30
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Allowing for Additional Information

Suppose, for example, there are two groups and it is known that many more will fall into group 1
than into group 2. In that case, if an individual is allocated to each group, it makes sense to bias the
allocation procedure in favour of group 1. The procedure of allocating an individual to the group with
the smallest Mahalanobis distance is then modified, by taking into account prior probabilities of group

membership.

Stepwise Discriminant Function Analysis

The standard approach to discriminant function analysis is to decide in advance the number of variables
to be used. Alternatively, a stepwise approach may be adopted, when there are a very large number
of variables, adding in the ‘best’ variable at each stage, until it is found that adding in extra variables
does not lead to better discrimination.

The main problem with stepwise discriminant function analysis is that it introduces bias. Given
enough variables, it is likely that some combination of them will produce significant discriminant
functions by chance alone.

To check that the results are valid, it might then be a good idea to (for example, with the Egyptian
skull data) allocate the 150 skulls to the groups LILIILIV,V purely at random and see if the procedure
is able to detect a pattern. If it can detect a pattern with the randomised data, then there is clearly a

problem.

Jackknife Classification

A particular individual will necessarily affect the statistical average of the ‘correct’ group for that
individual. To check that the classification procedure works, it is therefore probably better to remove
that individual from the computations of sample means and sample covariance matrix, and then
allocate the individual based on the analysis from which that individual has been removed. When the

data set is reasonably large, this does not make much difference in practise.

8.7 LDA using Multiple Regression Techniques

The results on LDA can also be obtained using linear regression techniques. This may prove to be
useful when we have a large number of variables and we would like to choose a subset of them for
clagsification purposes. We may then employ LASSO to construct the classifier.

To use regression for LDA, create a variable Y which indicates which class the observations belong
to, Then regress the feature variables X on Y.

Consider two classes, ny resp. ng in each class, items 1,...,n; belong to class 1 and items ny +

1,...,n1 +ng belong to class 2. let Y; =y fori=1,...,ny and ys for i =ny +1,...,no.

X
Let X = ( Xl where X; and Xy are respectively the n; x p and ng x p matrices containing the
2

values of (Xi,...,X,) for the observations for populations 1 and 2 respectively.
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When classification is in view, we may use centred variables. Let

1
H=1,--1,1}
n

be the centring matrix and let

X=H,X Y¢=H,Y

so that the columns of X€ have mean zero and Y°¢ has mean 0. Therefore

T=X“X¢,

Regressing gives the OLS estimator

I’g _ (XCtXC)_IXCtYC.
Set

1 1
d=—Xi,, - —Xi1,,,
n1 n2
The vector d is a p-vector where the entries are the differences of the sample means of the two popu-

lations for each variable.

A straightforward computation gives:

B=""24
n
Let
Sxx = XiH,, X1 + X;H,, X5
Here

ni

n
Sxxiab= Y. (Thta = T.1a) (Tr1o = Tap) + 2, (k20 = T.20) (Thzo — o)
k=1 k=1

For two classes, the matrix Sxx is the matrix W from earlier. Set

ninz
k =

n

Then

XX = Sxx + kdd'

This is the identity T'= B+ W.
XY = k(y1 - ya)d

YUY = k(yr - y2)”
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It follows that

B = k(y1 - y2)(Sxx + kdd") 7 d = k(y1 — y2) Sxx (I, + kdd' Sy ) 'd.

Recall the matrix result:

~ (A~ ') (vt A7Y)

ty-1 _ 4-1
(A+u)™ =4 1+0vtA-ly

Set A=1,, u=Fkd, v= S)_(IXd, then

kdd'Syy I,
L+kdSyvd 1+ kd S d

(I, + kdd'S) ™t =1,

from which

where EXX = ﬁSXX and

ninz

is the Hotelling T? statistic for testing p1 = po.

Recall the formulae for linear discriminant analysis (8.1)) Note that D? = dtiggxd is proportional to
the estimate of A and

BOC /X\:;{lx(yl —72) =’b\.

Variable Selection High dimensional data contains highly correlated variables. The equivalence
between LDA and linear regression means that exactly the same techniques may be employed for
making a selection; stepwise regression or other techniques that have not yet been encountered, such
as LARS (least angle regression) and LASSO.

8.7.1 Logistic Discrimination

Consider two classes. Starting from

where
b= Sxx (11— p2)
1 _ _
bo = —§(Mt12X1X/L1 + 5 Sy p2)
and using P(C1|z) o< Li(z), P(Calz) o< La(x) so that P(Colx) = 1 -P(Cy|z), it follows that



128 CHAPTER 8. DISCRIMINANT FUNCTION ANALYSIS

logit(p(Cylz) = b + b’z

which is of the form of a logistic regression model. The logistic approach to discrimination assumes this
linear model, estimates the parameters by logistic regression and assigns the observation to whichever

category has the higher estimated likelihood.

8.8 Implementation in R

Implementation in R is straightforward, using (for example) the MASS library. This is illustrated using
the skulls.dat data set.

>www<-"https://www.mimuw.edu.pl/ noble/courses/QPEDataScience/data/
skulls.dat"

> skulls <- read.table(www,header=T)

> View(skulls)

> library("MASS")

> fit <- lda(Year ~ MB + BH + BL + NH, data=skulls, na.action="na.omit",
CV=TRUE)

‘1da’ stands for ‘linear discriminant analysis’. The variable ‘Year’ is to be explained in terms of MB,
BH, BL and NH. The ‘na.action’ refers to how R should treat a value that is not a number. The
command ‘CV = TRUE’ generates the predictions. These are jacknifed (i.e. ‘leave one out’). The

.$class item gives the classes assigned to the skulls.

> head(fit$class)
[1] -1850 -4000 -3300 -4000 -1850 -200
Levels: -4000 -3300 -1850 -200 150

From the first 11 skulls, it is clear that they are not perfectly classified. To assess the accuracy of

prediction, the following may help:

> ¢t <- table(skulls$Year, fit$class)

> ct
-4000 -3300 -1850 -200 150
-4000 9 10 5 4 2
-3300 11 7 5 4 3
-1850 6 4 12 2 6
-200 3 3 7 5 12
150 2 4 4 10 10

> diag(prop.table(ct, 1))
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-4000 -3300 -1850 -200 150
0.3000000 0.2333333 0.4000000 0.1666667 0.3333333
> sum(diag(prop.table(ct)))

[1] 0.2866667

Note that ‘leave one out’ is a more reliable method and this has substantially affected the accuracy of
the prediction. The last item gives the total percentage correct.
Quadratic discriminant analysis may be carried out by substituting the 1da command for gda.

Quadratic discriminant analysis in this example does not give as good classification.

> fit <- gda(Year ™ MB + BH + BL + NH, data=na.omit(skulls), CV = TRUE,
prior=c(1,1,1,1,1)/5)
> ¢t <- table(skulls$Year, fit$class)

> ct
-4000 -3300 -1850 -200 150
-4000 8 12 4 4 2
-3300 11 5 4 6 4
-1850 4 5 6 11 4
-200 2 3 2 14 9
150 3 4 5 11 7

> sum(diag(prop.table(ct)))
[1] 0.2666667

If one wants to obtain Fisher’s canonical discriminant functions, this is not possible with the ‘jacknifed’

method; one needs to define a training data set. In this case, it is the whole data set. try

> fit2 <- 1da(Year™MB + BH + BL + NH, data = skulls,CV=FALSE)
> fit2

Call:

lda(Year ~ MB + BH + BL + NH, data = skulls, CV = FALSE)

Prior probabilities of groups:
-4000 -3300 -1850 -200 150
0.2 0.2 0.2 0.2 0.2

Group means:

MB BH BL NH
-4000 131.3667 133.6000 99.16667 50.53333
-3300 132.3667 132.7000 99.06667 50.23333
-1850 134.4667 133.8000 96.03333 50.56667
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-200 135.5000 132.3000 94.53333 51.96667
1560 136.1667 130.3333 93.50000 51.36667

Coefficients of linear discriminants:

LD1 LD2 LD3 LD4
MB 0.12667629 0.03873784 0.09276835 0.1488398644
BH -0.03703209 0.21009773 -0.02456846 -0.0004200843
BL -0.14512512 -0.06811443 0.01474860 0.1325007670
NH 0.08285128 -0.07729281 -0.29458931 0.0668588797

Proportion of trace:
LD1 LD2 LD3 LD4
0.8823 0.0809 0.0326 0.0042

These coeflicients give the discriminant functions listed above. Discriminant analysis requires training
data, which is used to construct the classifier, followed by data to be classified. Once the classifier has

been constructed, classification is made using:

> pred <- predict(fit2,skulls[,1:4])

The classes to which the objects are assigned are found in pred$class.

> ct2 <- table(skulls$Year,pred$class)

> ct2
-4000 -3300 -1850 -200 150
-4000 12 8 4 4 2
-3300 10 8 5 4 3
-1850 4 4 15 2 b5
-200 3 5 12
150 4 9 11

8.9 Worked Example: Diabetes

Consider the diabetes data in diabetes.txt. Ignore the first 4 columns; they do not contain useful
information. The three primary variables are glucose area (measure of glucose intolerance), insulin
area (measure of insulin response to oral glucose), SSPG (steady state plasma glucose - a measure of

insulin resistance). In addition, relative weight and fasting plasma glucose were measured. The
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three clinical classifications (the target variable) are: overt diabetic (Class 1, 33 individuals), chemical
diabetic (Class 2, 36) and normal (Class 3, 76).

Draw a scatterplot matrix of all 5 variables with different colours or symbols representing the
three classes of diabetes. Do these pairwise plots suggest multivariate Gaussian distributions for each
class with equal covariance matrices? Carry out an LDA and draw a 2D scatterplot of the first two
discriminating functions. Using the leave-one-out cross validation procedure, find the confusion table
(how many from each class have been classified according to each class) and identify those observations

which have been wrongly classified according to the LDA rule. Do the same for QDA.

Hint You’ll find the package GGAIlly useful for the scatterplot matrix. For adding colours, the
package seems to like factors, so apply as.factor() to the column that represents the different colours
(different classes of diabetes).

You'll see clearly how using two discriminant functions helps with the classification in this example.

Solution Firstly, we need to get the data.

> www <-
"https://www.mimuw.edu.pl/ noble/courses/QPEDataScience/data/diabetes.
txt"

> diabetes <-read.table(www,header=F)

This data doesn’t have column headers, so let’s add them:

>
colnames(diabetes)<-c("one","two","three","four","glucArea","InsArea",
"SSPG","relweight","FPG","type")

Later, we’ll discover that ggplot2 and GGally need the class variable to be a factor and not a

numerical variable. We can see the type of each variable as follows:

> sapply(diabetes,class)

one two three four glucArea  InsArea SSPG
relweight FPG
"integer" "integer" "integer" '"integer'" "numeric" "integer" "integer"
"integer" "integer"

type
"integer"

To use GGally, we need the class variable to be a factor and we can do this as follows:
> diabetes$type <-as.factor(diabetes$type)

Now activate the libraries with the appropriate graph packages;
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> library(GGally, lib.loc = "/usr/lib/R/site-library")
Loading required package: ggplot2
Registered 53 method overwritten by ’GGally’:

method from

+.gg  ggplot2
> library(ggplot2, lib.loc = "/usr/lib/R/site-library")

Now we would like to visually examine pairs of variables to see if there are good pairs that will help
with classification. Scatterplots are useful here. For example, Glucose area versus Insulin area

where the points are coloured according to type of diabetes is done as follows:
> ggplot(diabetes,aes(x=glucArea,y=InsArea,color=type))+geom_point ()

Look at the plot. We can see that even with these two variables, we can make a reasonable job of
classification; type 3 diabetes can be determined by the InsArea variable, although the difference
between types 1 and 2 is not so obvious from this pair of variables.

From GGally, we can get scatter plots of all pairs of variables, coloured by type as follows:
> ggpairs(data=diabetes,columns=5:9,aes(colour=type))
To do LDA, we need the package MASS

> library(MASS)

> discrim <-
lda(type~glucAreatInsArea+SSPG+relweight+FPG,data=diabetes,na.action=
"na.omit",CV=FALSE)

> discrim

Call:

lda(type ~ glucArea + InsArea + SSPG + relweight + FPG, data =
diabetes,

CV = FALSE, na.action = "na.omit")

Prior probabilities of groups:
1 2 3
0.2275862 0.2482759 0.5241379

Group means:

glucArea  InsArea SSPG relweight FPG
1 0.9839394 217.66667 1043.7576 106.0000 318.8788
2 1.0568333 99.30556 493.9444 288.0000 208.9722
3 0.9372368 91.18421 349.9737 172.6447 114.0000



8.9. WORKED EXAMPLE: DIABETES 133

Coefficients of linear discriminants:

LD1 LD2
glucArea -1.3624356881 -3.784142444
InsArea 0.0336487883 0.036633317

SSPG -0.0125763942 -0.007092017
relweight 0.0001022245 -0.006173424
FPG -0.0042431866 0.001134070

Proportion of trace:
LD1 LD2
0.8812 0.1188

Note that if we do not assign prior probabilities, it simply takes the proportion of each class in the

training set.

Here we see that there are two discriminant functions and we make a scatterplot as follows:
> discrim.lda <-predict(discrim,diabetes[,5:9])

This applies the discriminant classifier to the data. This is (of course) unsound, because we’ve used
the same data to construct the classifier as we are using to do the classification!
The loadings for the discriminant functions for this data set are found under $z. We add the two

discriminant function loadings to the data frame:

> diabetes$ldal <- discrim.lda$x[,1]
> diabetes$lda2<-discrim.lda$x[,2]
> ggplot(diabetes,aes(x=1dal,y=1da2,color=type))+geom_point ()

This puts the scores of the discriminant functions as additional columns of the data frame. We can
clearly see that, using both discriminant functions, we can determine, with good precision, the type of

diabetes from these variables.

To see how well the classifier is doing (hoping that using the same data to learn and to test doesn’t

make too much difference):

> pred<-predict(discrim,diabetes[,5:9])
> tab <- table(diabetes$type,pred$class)

> tab
1 2 3
127 5 1
2 031 5

3 0 373
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Of course, to get a more accurate idea of the performance, use CV = TRUE to ensure that, for each

observation, the observation is not used in the construction of the classifier.
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8.10 Recursive Partitioning and Tree-Based Methods

Recursive partitioning is the process for constructing a decision tree, where for each node we decide
to split into two child nodes, or not to split. It is the key to the nonparametric statistical method of
classification and regression trees (CART) introduced by Breiman, Friedman, Olshen and Stone, 1984.

The algorithm asks a series of hierarchical Boolean questions. For a continuous variable X;, whether
or not X <#; for some threshold value ¢;. For a categorical variable X}, with state space {01,...,0k},
whether or not Xy, € S, where S is a strict subset of {01,...,0x}.

Let Y be the variable to be predicted and X, ..., X, the collection of predictors. The output (V)
is a class variable; Y e C = {C,...,Cp}. If Xy,...,X, are continous variables, then the input space is
R" and, following the answers to successive questions, the input space is partitioned into a number of
non-overlapping hyper-rectangles. To each hyper-rectangle is associated a class from C, which may be

the maximum likelihood estimator of Y based on the answers to the questions.

8.10.1 Classification Trees

A classification tree is the result of asking an ordered sequence of questions, where the next question
in the sequence depends on the answers to the previous questions of the sequence. The sequence
terminates in a prediction of the class.

The starting point is the root node and consists of the entire learning set £. A node is a subset
of the variables, which can be terminal or non-terminal. A non-terminal node is a node which splits
into two child nodes. The binary split is determined by a Boolean condition on the value of a single
variable, where the condition is either satisfied (“yes”) or not satisfies (“no”) by the observed value of
the variable. A terminal node is a node that does not split.

All observations in £ that have reached a particular (parent) node and satisfy the condition drop
down to one of the two child nodes; the remaining observations drop down to the other child node.

In this way, each observation in £ drops down to one of the terminal nodes.

There may be more than one terminal node with the same class label. A single-split tree with only
two terminal nodes is called a stump. The set of all terminal nodes is a partition of the data; each

datum will belong to exactly one terminal node.

Example Suppose we have two input variables X; and Xs.
e Q(root): Xy <67 yes/no
e Q(yes): X1 <627 yes/no
e Q(no): Xo <057 yes/no
e Q(no)(yes): Xy <047 yes/no

DRAW PICTURE OF THE TREE - IT HAS 5 TERMINAL NODES.
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The space is split into 5 regions: Assume (X7, X5) € [0,1]? and 6; € [0,1] for i = 1,2,3,4, then the 5
rectangles are R1 = [0,92] X [0,(91], RQ = [91,1] X [0,91], Rg = [0,94] X [91,93], R4 = [94,1] X [01,92],
Ry = [0,1] x [65,1].

DRAW A PICTURE OF [0,1] x [0,1] PARTITIONED INTO RECTANGLES.

It is clear that categorical variables and ordinal variables can also be included; ordinal variables (which
take values in a set 1,..., N which represent an ordering are included in exactly the same way; the
questions are of the form X < 6 for some value of §. For categorical variables, if a variable has M
distinct categories represented in the data at the node, labelled Iy, ..., Iy, the set S of splits is simply
the number of ways of partitioning into two non-empty subsets. There are 2M~1 — 1 ways of doing
this. For example, if M = 4, there are 23 — 1 = 7 possible splits: ({1}, {l2,13,14}), ({l2},{l1,13,14}),
({ls}, {l1, 12, la}), ({lad {la, 12, 131), ({0, Lot {ls, la}), ({Tn, 03}, {l2, 1a}), ({l1,la}, {l2,13}).

Cleveland Heart Disease Data The data file cleveland.data from the UCI repository
www.ics.uci.edu/mlearn/databases/heart-disease

contains data obtained from a heart disease study conducted by the Cleveland Clinic Foundation. The
response variable is diag (diagnosis of heart disease: buff = healthy, sick = heart disease). There
were 303 patients in the study. There are 13 input variables: age (in years), gender (male / female),
cp (chest pain type: angina = typical angina, abnang = atypical angina, notang = non-anginal pain,

asympt = asymptomatic), trestbps (resting blood pressure), etc .......

Choosing the Quesions Each question splits the population of the node in two. When we are
learning a classification tree (i.e. a list of questions), we choose the question which gives the greatest
Kullback Leibler information.

So, if we have two classes, C = {Cy, C1}, where the class index is the value of Y, p the proportion
for which Y =1 and 1-p the proportion for which Y =0, let p;; be the proportion of those who answer
‘ves’ and Y =1, p1o those who answer ‘yes’ and Y = 0, and pg; those who answer ‘no’ and Y =1, pgg

those who answer ‘no’ and Y = 0. The Shannon Information Gain is:

L Dij
> > pijlog —~

i=0 j=0 Di+D+j
where p;y = pio + pi1 and py; = poj + p1j. The question which gives the greatest Shannon Information
Gain for each node is asked, until no question will give an appreciable increase in SIG. There are other

possible criteria for choosing the question; SIG has good properties, which we’ll discuss next.

8.11 Shannon Entropy and Information

We now to show how the negative of Shannon entropy gives a convincing approach to the amount of

information given by the answer to a question if we know the probability distribution and why, when
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assessing the amount of information gained, the Kullback-Leibler divergence is a useful quantity.

In the following, we consider the parameter space © =C = {C4,...,CL}, the set of possible classes.

Definition 8.5 (Shannon Entropy). For a distribution with density m over a parameter space ©, the

negative of the Shannon entropy s defined as:

E(rm) = —Lﬂ(&)logﬂ(Q)dG.
We follow Lindley by taking the negative of this quantity, which we call the information in the distri-

bution:

I(Tr):—g(w):[@w(e)logw(e)de.
The negative sign in Shannon’s definition is due to the fact that he is considering the opposite of

information; Shannon’s entropy is a measure of disorder.

Shannon gives reasons why this is a good measure and we follow Lindley’s description of Shannon’s

motivational arguments.

In the discussion here, © is finite and mg is a probability mass function. In the absence of any prior
information about classes, we can take w(6) = % (uniform distribution) for each 6 € {1,..., L} (the class
labels). A priori, Z(p) = Yo 7(0)logm(0)), then the amount of information, say I, can be measured
by the amount of additional information required before the value of 6 is known.

This information could be provided in two stages:
Stage 1 Let ©; c © be a non-empty, strict subset of © where Y 4.0, mTe(#) # 0 or 1. Suppose the
experimenter is told whether 6 € ©; or § € ©\©;. The prior distribution over (01,0\01) is (II,1-1I),
where II = Y40, mo(0).

In the second stage, suppose the experimenter is told the value of 8; the information provided is I
if 6 € ©1, or I3 if § € ©\O;. The distributions over ©1 and ©\O; are ﬂ@Tm and Wﬁ—%” respectively.

Shannon requires that the information provided in the first stage and that the average amount in

the second stage add up to the total information; that is:

IZIl +HIQ+ (1 —H)Ig.

This requirement is the fundamental postulate of Shannon.

Shannon proves that (apart from arbitrary multiplicative constant) I(7) = Y.9.o mo(0) logme(6) is the
only function satisfying this property (together with a mild continuity property).

We can see that I, thus defined, has this property;

I) =MlogIl + (1 -1I) log(1 - II)
Iy = 76(0) 15g Te(0) _ L log 7(6) - log I
2= 20e0, T 08— i (29691( ogm(0) - log )

7o (0)

I3 = Yeorn, 20 10g 7@ - 150 o 76 () (logme(6) — log(1 - IT))
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and the identity I = I; + IIls + (1 — IT) I3 follows directly. Shannon also shows that this is the only
function of mg for which this is satisfied for arbitrary mg and ©; c ©.

After the experiment has been performed, a result x observed and the distribution over © updated to

7o x (:|z), the information is:

T(repx (o)) = [ mopx(0le) log ey (Ol)do

and the information gain is:

K(z) = L(me)x (]z)) - I(me).
We assume that, given a true parameter value 6, the outcome x of an experiment is governed by a

probability distribution pxg(.|0).

The information difference depends on the observation x. If we are choosing between different ex-
periments (in this case questions to be asked), then clearly we do not know the outcome before we
carry out the experiment! We therefore average the information difference over all outcomes for an

experiment to get a suitable measure:

[ K@px@dy = [ px(@) [ (repx(Of) log ey (0)) - mo(6) log o (6))doda

( To(D)pxe(zl0)  mox(0lz)px ()
[ f px(x) log

px(x) px(x)
To|x (02)px ()

J [ mo@pxealyios > S

(Here mopx|e is the joint distribution over parameter space / state space).

-7e(0)log 7'(‘@(0)) dfdzx

dfdx = Dg 1 (me|xpx|Tepx). (8.3)

This is the Kullback-Leibler divergence between the joint distribution Tepx|e over © x X' and the prod-
uct distribution mgpx over © x X' (if the parameter and observation were independent, the Kullback-

Leibler divergence would be zero; the experiment would provide no information).

The Kullback-Leibler divergence has several important properties, which indicate that it is useful
for measuring the gain of information from an experiment. Firstly, if f and g are two probability
distributions over a state space X, then Dg 1 (f|lg) > 0, where the inequality is strict if f and g differ
on a set of positive f probability. This follows from Jensen’s inequality; if ¢ is a convex function
and X a random variable with well defined expected value, then E[¢(X)] > ¢(E[X]). The function
¢(z) = —log x is convex. Applying this to Kullback Leibler, this gives:

f(=)

g

J s o
g(z) . _ _
—log[ f(x)md:z = —log[ f(z)dz =-log1=0.

Drr(flg)

dx = - f f(z)log %dw



8.11. SHANNON ENTROPY AND INFORMATION 139

Another property is the additive property, which was Shannon’s basic reason for introducing the entropy
functional. Let £ denote an experiment which takes place in two parts, & = (€1,&2), where & is
performed after £. Let Kg, denote the average information provided by the whole experiment, K¢,
the information provided by the first part and K¢, ¢, the additional information provided by the second,
then

ICg = Kgl + K:52‘51'

This follows quite easily; Kg, g, is defined as the average information gain from the second part. Now,
using X = (X1, X2) to denote answers to two successive questions (or more generally two parts of an

experiment) and x = (1, x2) to denote the two outcomes:

Pxo)0,x, (72]0, 21) 7o) x, (0]71)

d&dxgdxl
To|X, (0] )pX2|X1 (walz1)

Kee, = [, pxi@) [ [ pxuo (ealf.an)mepx, (Olr:) log

pxjo(@lf)Te (O)px, (1)
Je Jopretalrmo@)tog > B ErGT o S dsda,

The last line comes from taking pxje = Px, x./0 = Px,|x,,0Px; |0 and Tg|x, = W@;%'@. From this:
1
7o (0)pxie (z]0)px, (71) 7o (0)px,je(x1]0)
Ke, + K :ffweep (6 (log d0dz = Kg.
e = Jy JomeOPxe i lo8 TG ElBox @) T e @, (1)

We now consider the concept of independent experiments; two experiments £ and &, whose outcomes
are observations of random variables X; and X9, where both distributions have the same parameter
space O, are said to be independent if px, x,jo = Px,|ePx,je- That is, for any given parameter value
0, X1 and Xy are conditionally independent conditioned on the value of the parameter. Suppose
E =(&1,&) where & is performed first and & is then performed. Let & (x1) indicate the experiment
&o, given that & gave outcome z1; independence means that E(z1) = &, which does not depend on
1.

If £ and & are independent, then Kg, ¢, < Keg,, with equality if and only if X; L X» (i.e. they are
marginally independent; px, x, = px,px,). This is seen by a simple computation:

Ke,-Keye, = [ [ 7o(@)pxioal) (log ”jf?j;;ﬁﬁjj'f) : ”if;(i'f;iif)'jgjjz"i’;;”)dmde
- [, Jme@mxeta 10 POt g ;j;igf;f;;jjiﬁjj;;)dm
[ We(G)PX|@(x!9)long”@(iigz(j;g?(m'e)le(Z();i)Q(m)da:dH
- /pr(x)log le(§S;:£2(x2)dm20.

The expression in the last line is a Kullback-Leibler divergence, which is 0 if and only if px, x, = px,Dx,-
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This tells us (among other things) that if Experiment 2 is an independent repeat of Experiment 1,

then the repetition is less informative, on average, than the original experiment.

Indeed, if we consider &£, &, .. . a sequence of independent identical experiments and £ = (&1,...,&,),

let K, := Kgny, then K, is a concave increasing function of n.

8.11.1 Tree-Growing Procedure

Some basic questions have to be answered:

1. How do we choose the Boolean conditions for splitting at each node? The choice of SIG is
motivated by the fact that the sum of information gains from a sequence of questions is the same
as the information gain if the multiple question were posed. This is a versatile choice, but not

the only one.

2. Choice of criterion for when to split a parent node into two child nodes or when to decide if it is

a terminal node.

3. Assigning a class to a node.

Node Impurity Functions Ideally, we would like all elements of a terminal node to belong to the
same class, but this is not to be expected. Impurity is a measure of the amount of mixing in terminal
nodes. Suppose that Y takes values in {1,..., K} (there are K possible classes). For node 7, we define

the node impurity function as:

i(r) = ¢(p(|7), ..., p(K]7))

where p(i|T) is the proportion of class i observations in node 7. This is an estimate of P(X e II;|7),
probability that the observation is in class ¢ given that the questions thus far place the observation at

node 7.

The Shannon Information Gain is obtained by using

K
i(1) = —k;p(le) log p(k|r)

There are other possibilities; for example,

ic(r) =Y p(klr)p(k'|r) = 1= (p(k|r))*.

k#k' k

i is the so-called Gini index. If classification is binary, then the entropy is

i(7) = -plogp - (1 -p)log(1-p)

and the Gini index is:
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ic(7) =2p(1-p).

8.12 Assigning classes to nodes: Estimating the Misclassification Rate

Suppose we have reached a node 7. The misclassification rate is:

R(t)=1- m]?xp(kh').

For two classes, this is:

R(7)=1-max(p,1-p)=min(p,1-p).

For a tree, the mis-classification is based on the terminal nodes. If 7 denotes the set of terminal nodes,

then the true misclassification rate for the tree T is:

R(T) = )] R(T)P(7)

T
where P(7) is the probability that an observation is placed in (terminal) node 7. We use estimates
(based on the learning set where classifications are known) to estimate P(7) and R(7) for each terminal

node 7.

8.13 Pruning the Tree

The tree is grown according to a greedy algorithm; for each node, choose the question which gives the
greatest increase in score for that node. This can lead to a tree that is too large. For tree pruning,
we use a regularisation approach, starting at the terminal nodes and removing them if they do not
represent, sufficient gain over the parents. For a node 7, which is terminal in the current tree, we

consider:

Ry(T)=R(7)+«

where R(7) denotes the estimated mis-specification. Then

Ro(T) = R(T) +o|T1.

The term |7 is a penalty on the tree size. For each a, we choose the subtree T which minimises

R.(T). This gives T (). The tree T («) is not necessarily unique.

The chosen value of a determines the tree size. Although « € [0, +00), the number of possible sub-trees
of T is finite. We can consider a; the lowest value of o such that 7 («) # 7 and let 71 = T («), a2 the
next lowest yielding 73 = 7 (a2) and so on. This gives a finite sequence of trees T o Ty o To .. ..
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Suppose a node 7 in an optimal tree 7 has two terminal child nodes 77, and 75, then R(7) > R(7) +
R(7Rr) (we're using R to denote the estimates used to generate the tree). Now let 7y, Ta, ... denote the
trees obtained by reducing T as « is increased. Let (71, 72) denote the terminal nodes of 7 which are
not in 77 (in case of ambiguity, we take a specific sequence of trees) and let 7 € 71 denote the terminal
node in 77 which is a non-terminal node in 7. For a node 7 in a tree T, we denote by T, the subtree
with root 7, going down to the terminal nodes of T.

As long as Ry (7) > Ra(T7), the subtree 7 has lower cost than terminating the tree at 7 and hence
it is retained.

Therefore, when

G
-1
we retain 7. We can set
R(T) B R(ﬂj)

T 1 T#T (1)
1,7 —

g1(7) =

where Tq - = T; and g1(7) gives the critical value for a; when g;(7) > oy for each 7, we do not prune

the terminal nodes.

The weakest link node 71 is the node in 77 that satisfies

g(71) = ming(7).
T€T1

As « increases, 77 is the first node for which Ry (7) = Ro(77), so as = g1(71). Recursively,

R(T) - R(T2,+

|"7: | 1 TET(@Q), T¢;7v-(042)
27|~

g3(7) =

and so on.

8.13.1 Choosing the best pruned subtree

Choosing the subtree requires good estimates of the misclassification rate. There are two approaches:
for large data sets, using an independent test set is straightforward and computationally efficient. For
small data sets, cross validation is recommended. Randomly assign the data into two sets of equal size,
the learning set and the test set. Construct the tree using the learning set; estimate the misclassification
rate using the test set.

At each stage, dropping down a level, let the chance of misclassification be p*. We can consider
each observation dropped down as a Bernoulli trial, from which we can compute the estimate of

misclassification, together with a standard error.

Cross Validation Divide the data into V sets of approximately equal size, call them Dq,..., Dy.
Create V learning sets £, = D\D,. Use L, to learn the classification tree 7. Fix the value of the
complexity parameter « and let 7”(«) be the best pruned subtree of 7%, v = 1,...,V. Drop each
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observation of the vth test set down the tree 7"(«) and let n;; denote the number of observations

class j that are classified as being of class i from test set v. Then ni;(a) =¥V, ng;(a). Set

1K K

REVIV(T(a)) = = Z > ni(a)

4= 1j=1;5#%



Examples

The R commands for the examples are found in the script 23CART.R on the course page.

Example: Iris Data

For the Iris data, construct a decision tree to predict the species of iris based on petal and sepal length
and width. You’ll find the code in the accompanying R-script. The package rpart is useful.

Find the different classification rules that the tree produces.

Predict the class of a new observation with sepal length, sepal width, petal length, petal width
equal to (6.5,3.0,5.2,2.0).

Example 2: Diabetes Data

We’ll use the PimaIndiansDiabetes2 data set in the mlbench package for predicting the probability
of being diabetes positive based on multiple clinical variables.

Firstly, randomly split the data into a training set (80% for building a predictive model) and test
set (20% for evaluating the model). Make sure to set seed so that the results can be reproduced.

Now create a fully grown tree showing all predictor variables in the data set.

Now use the test set to make predictions and evaluate accuracy of the model.

Now prune the tree. Check whether the pruning has made the model substantially worse for

prediction and accuracy.

Example 3: Boston Housing

Refer to the R script which accompanies the tutorial.

We first load the libraries which contain good scripts for constructing trees.

The data is found in the MASS package. The variable of interest is medv (median value of owner-
occupied homes in $1000’s.

Carry out the diagnostics suggested in the script to get an idea of correlations between the variables
and which explanatory variables may be useful.

Now randomly split the data into training and testing (described in the script).

Run a regression. How well does the fitted model predict new data?

Regression Tree (CART method) The rpart package has good routines for this. The data are
recursively split into terminal nodes or leaves of the tree. To obtain a prediction for a new sample, we
would follow the if-then statements defined by the tree using values of the new sample’s predictors until
reaching a terminal node. The model formula in the terminal node would then be used to generate
the prediction. In simple (traditional) trees, the model is a simple numeric value (yes/no, or a given
numeric value). In other cases, the terminal node may be defined by a more complex function of the
predictors (terminal nodes have models within them).

Basic implementation is done by Growing, Examining, Pruning.
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Grow a Tree To grow a traditional tree, we can use the rpart () function in the rpart package.

tree.fit <- rpart(formula, data=, method=,control=)

where +formula is in the format outcome predictorl+predictor2+predictor3+-etc. +data= speci-
fies the data frame +method= “class” for a classification tree; “anova” for a regression tree 4control—=
optional parameters for controlling tree growth. For example, control=rpart.control(minsplit=30,cp=0.001)
requires that the minimum number of observations in a node be 30 before attempting a split and that
a split must decrease the overall lack of fit by a factor of 0.001 (cost complexity factor) before being
attempted.

Examine the Tree A collection of functions helps us evaluate and examine the model.

++printep(tree.fit) displays table of fits across cp (complexity parameter) values -+rsq.rpart(tree.fit)
plots approximate R-squared and relative error for different splits (2 plots). Labels are only ap-
propriate for the “anova” method. +plotcp(tree.fit) plots the cross-validation results across cp values
+print(tree.fit) print results +summary(tree.fit) detailed results including surrogate splits +plot(tree.fit)
plot decision tree +text(tree.fit) label the decision tree plot +post(tree.fit, file=) create postscript plot
of decision tree (there may be better ways to get good looking tree plots)

First we look at what the error looks like across the range of complexity parameters (depth of tree).

The command is:

printcp(rtree.fit) # display the results

(as used in the script).

A detailed summary of the tree is obtained by

summary (rtree.fit)

which gives a lot of information. We can also look at the predictors used in the tree and their relative
importance in the prediction. We see specifically that rm (average number of rooms per dwelling) and
1stat (lower status of the population, percent) are driving much of the prediction.

This particular tree methodology can also handle missing data. When building the tree, missing
data are ignored. For each split, a variety of alternatives (called surrogate splits) are evaluated. A
surrogate split is one whose results are similar to the original split actually used in the tree. If a
surrogate split approximates the original split well, it can be used when the predictor data associated
with the original split are not available. In practice, several surrogate splits may be saved for any
particular split in the tree.

Plotting the tree may be done as follows:

plot(rtree.fit, uniform=TRUE,

main="Regression Tree for Median Home Value")
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Prune the Tree Prune back the tree to avoid overfitting the data. Hastie et al. (2008) suggest
selecting the tree size associated with the numerically smallest error. That is, the size of the tree is
selected by examining the error using cross-validation, specifically the minimum of the xerror column
(cross-validation error) printed by printcp( ).

Pruning is easily done using the function prune(fit, cp= ) by examining the cross-validated error
results from printep(), selecting the complexity parameter associated with minimum error, and placing

it into the prune( ) function. Alternatively, this can be automated using
tree.fit$cptable [which.min(tree.fit\$cptablel[, ¢ ‘xerror’’]),“‘CP’’].

In this case the pruned tree is not that much smaller than the original tree.

There are, of course other approaches for pruning. Breiman et al. (1984) suggest using the cross-
validation approach and applying a one-standard-error rule on the optimization criteria for identifying
the simplest tree. That is, find the smallest tree that is within one standard error of the tree with
smallest absolute error, which is the leftmost cp value for which the mean lies below the horizontal line

placed 1 SE above the minmum of the curve by the minline in the plotep() function.

Test of Prediction Finally, for comparison with the regression model, we examine the R2 of the
original and pruned trees.

We see here the tradeoff between “overfit” to training data and potential generalisability to new
data. More formal evlauations would be done using cross-validation. But the smaller pruned tree is

still doing pretty well (almost as well as the multiple regression).

Example 4: Boston Housing: Regression Tree

Randomly split the data into training set (80% for building a predictive model) and test set (20% for
evaluating the model). Make sure to set seed for reproducibility.

Create the regression tree. Here, the best cp value is the one that minimises the prediction error
RMSE (root mean squared error).

The prediction error is measured by the RMSE, which corresponds to the average difference between
the observed known values of the outcome and the predicted value by the model. RMSE is computed as
RMSE = mean((observeds — predicteds)?) % > % sqrt (). The lower the RMSE, the better the model.

Plot the final tree model.

Example 5: Conditionnal inference tree

The conditional inference tree (ctree) uses significance test methods to select and split recursively the
most related predictor variables to the outcome. This can limit overfitting compared to the classical
rpart algorithm.

At each splitting step, the algorithm stops if there is no dependence between predictor variables
and the outcome variable. Otherwise the variable that is the most associated to the outcome is selected

for splitting.
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The conditional tree can be easily computed using the caret workflow, which will invoke the function
ctree() available in the party package.

Use the data PimaIndiansDiabetes2. First split the data into training (80%) and test set (20%)

Build conditional trees using the tuning parameters maxdepth and mincriterion for controlling the
tree size. caret package selects automatically the optimal tuning values for your data, but here we’ll
specify maxdepth and mincriterion.

Now make predictions using the test data.
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Chapter 9

Choice experiments

9.1 Designing Experiments and Modelling Data

In this section, we describe the random utility model and its variants for describing data from DCEs

(Discrete Choice Experiments).

9.1.1 How are choice sets constructed and data analysed

The distinctive feature of choice experiments, compared to typical experiments in economics, namely
that we manipulate several dimensions at the same time, also has important consequences for statistical
inference. Our objective is to identify the impact of different attributes, how the fact that an option
is characterised by a specific level of a specific attribute affects the probability that it is selected.
Because different choice sets differ in terms of several attributes, we cannot look at the simple summary
statistics, which would be informative if there were only one change. Consider the simplest possible
scenario of binary choices between a policy and the status quo. If Policy A, characterised by some
combination of levels of various attributes, is preferred over the status quo 40% of the time, and Policy
A’, which differs from Policy A on only one attribute, is chosen over the status quo 70% of the time,
we could conclude that the change from A to A’ made the policy more attractive. Because there is
only one difference between the two, it is this attribute that has made the difference. Such direct
inference is generally not possible in choice experiments, because several attributes are manipulated
simultaneously (and, typically, their levels change in more than one option). To estimate the effect of
each attribute, parametric assumptions must thus be made.

Below, we describe the mized logit model, which is the workhorse for analysing DCE data. This
approach requires the researcher to be a bit more econometrics-savvy. Various useful software packages
make the analysis manageable. We recommend the mlogit package for R, which is versatile and
user-friendly for the random parameter model and which has proved useful for analysing discrete
choice experiment data. Naturally, experimenters often team with an expert when modelling choice-
experimental data.

It is fair to say that many experimental economists have a natural dislike of parametric methods.

One reason is that they are aware of artefacts of arbitrary modelling choices aimed at obtaining attrac-
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tive publishable results. The practice of pre-registration of the methods of analysis and presentation of
several specifications may, to some extent, alleviate these concerns. One seemingly positive aspect of
the parametric approach is that the researcher explicitly models noise and this consideration informs

design.

9.2 Utility Models

We now describe the random wtility model and some of its variants. In particular, the random param-
eters model has shown itself to be a powerful tool in experimental economics. We begin by presenting
the standard (deterministic) utility model, building up to the random utility model and then dealing
with the random parameter model and other variations.

Data for utility models concern some individuals who make one choice, or a sequence of choices,
each choice being from a set of mutually exclusive and exhaustive alternatives; exactly one of these
alternatives is chosen. These choices are influenced by known covariates, where the dependence can be

either
e both on the alternative and the choice situation, or
e only on the alternative or
e only on the choice situation.
Consider a family choosing a destination for their vaccation.
e Examples of choice situation specific variables would be: the length of vaccation and the season.
e Examples of individual specific variables would be: family income and family size.
e Examples of alternative specific variables would be: distance to destination, cost of vaccation.

The unit of observation is therefore the choice situation; it is also the individual if only one choice
situation per individual is observed. The structure of such data can therefore be characterised by three
indices: the alternative, the choice situation, and the individual. If we use a two-parameter notation,

we include the individual-specific variables in the choice situation.

9.2.1 Non-Random Utility Model

For the standard (non-random) utility model, one has to consider three sets of covariates at most:

e Covariates, denoted z;; specific to the choice situation / alternative combination (7,7), with

generic coefficients 8 and covariates t; specific to the alternative j with a generic coefficient v.
e Choice situation specific covariates z; with alternative specific coefficients ;.

e Alternative and choice situation specific covariates w;; with alternative specific coefficients d;.
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These covariates enter the (non-random) utility as follows: for choice situation 4, alternative j it is

written as:

‘/ij =Qy + B:Bij + I/t]’ + Yj%i + 5jwij. (91)

Since comparisons are in view, the absolute value of the utility is irrelevant; only utility differences are

useful for modelling the choice of alternative. For two alternatives j and k,

Vij = Vi = (0 — o) + B(wij — wig) + (v = V) zi + (G5wij — Spwir) + v(L; = ty).

Clearly, the only relevant coefficients of choice situation specific covariates are alternative specific,
otherwise they would disappear when differences are taken. Since only differences are of interest, we

can choose one parameter value as base-line (say 1) and set 1 = 0.

9.2.2 Random Utility Models

For the random utility model, a fourth consideration needs to be included, the random component,
which we denote by €. In a random utility model, the utility for subject n, choice situation i, denoted

Unij may be written as

Uni' :Vni""eni'
J J J

where V,,;; is a function of observable covariates and unknown parameters, which are to be estimated,
taking the form of (9.1). The quantity €p;; is a random deviation which is a function of all the

unobserved or latent variables that determine the utility together with the observed covariates.
Alternative j, in choice situation j is optimal for individual n if U,,;; < Up,; for all [ # j, which means that

€nil < (Vinij = Viit) + €nij VIl # j. Suppressing the notation (by omitting the n,i denoting individual
n in choice situation 7), the probability of choosing alternative j is therefore P (Uz:cj {a<V; -V + ej}).

6]‘:2)

namely, P;(z) is the conditional probability of choosing j given that €; = z. Let F_; denote the joint

Let us denote:

Pj(Z)ZP(U{61<Vj—Vl+Z}

1#]

cumulative density of all the €’s except €;. Then, if there are J alternatives labelled 1,...,J,

Pj(z)ZF_j(Vj—V1+Z,...,Vj—VJ+Z)

where the V;-V;+z term is omitted). Let us denote the marginal density of €; by f;. The unconditional
iTVi J J

probability of choosing alternative j is therefore:

Py= [ Fy(Vy=Vitz.. V= Vi+ 2)f5(2)d
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9.2.3 Distribution of the Error Terms

The multinomial logit model was developed by McFadden. The errors for each different individual,
choice situation, and alternative combination are taken to be independent, so that (suppressing the

notation for individual and choice situation and assuming J alternatives):

Pi(2) =TT Fi(V; = Vi+2) Pl=/lHFl(Vj—Vi+Z)fj(Z)dZ-
*J #J

Several distributions have been considered for the error. For models considered here, the errors follow
the cumulative distribution function of a Gumbel distribution, which turns out to be computationally
convenient and flexible for modelling. The mean of this distribution is not zero, but this does not
matter; the errors are i.i.d. and it is differences that are in view.

The c.d.f. of a Gumbel is:

F(2)=P(X<z)= exp{—exp {‘%}}

and the density is:

fz) = %eXp{‘xéu}eXp{‘eXp{‘x;M}}

where p is the location parameter and 6 the scale parameter. The expectation is E[ X ] = pu + 67, where
Fuit i

7 is the EBuler-Mascheroni constant and Var(X) = %5~.

Because the errors are not mean zero, we may consider the Vj;’s (from Equation (9.1)) to have an

intercept term c¢;, so that

‘/z'j =C; + Q; + ﬁxij + I/tj + iz + (5jwij.

which (of course) disappears when the difference between two alternatives V;; -V is considered. When
the model contains such a parameter, the mean of ¢;; is not identified and, without the loss of generality,
we can take p;; =0forall j=1,...,J; (where choice situation i has J; alternatives). A natural choice
for normalisation is to impose that one of the values of 0;; for j e {1,...,J;} is equal to 1. With the
hypothesis that the errors are identically distributed, we therefore take 6;; =1 for all 7=1,...,J; and

all choice situations i. With these choices (and suppressing the individual / choice situation indices):

Pj(2) = [Texp {-exp{~(V; - Vi + 2)}} P; = [w [Texp{-exp{-(V; -V, + z)} e e dz.

15 © I#5

From this, the simple and elegant closed form may be computed which corresponds to the logit trans-

form of the deterministic part of the utility:
Vi

=7 v
i1 eVl

Clearly, the ratio of two probabilities P; and P,, is given by:

P;
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Py
L= exp (Vi - Vin}
Py,
and depends only on the properties of the two alternatives. This is known as the IIA property;

independence of irrelevant alternatives.

Marginal Effects Now let us return to the two-parameter notation, (i,7) denotes individual i
(presented with a choice situation) and alternative j within the choice situation. The marginal effects
are the derivatives of the probabilities with respect to the covariates. These can be choice situation

specific (z;) or alternative specific (x;;). Straightforward computation gives:

%Pij = BPi;(1 - Pi;)
%PU = —BP;;Pix k+j
a%ipij = (7 - Z}Jil YPi)Pij

These can be written as:

% log P;; = B(1 - Piy)
% loglP;j ==pPy,  k#j
2 logPyj = (v; - Ly nPa).-

9.3 Logit models: relaxing the i.i.d. hypothesis

Thus far, we assumed that the error terms are i.i.d. (identically and independently distributed), which
implies that they are uncorrelated and homoscedastic. Extensions of the basic multinomial logit model
have been proposed the idea behind which is to relax one of these two hypothesis while maintaining

the hypothesis of a Gumbel distribution.

9.3.1 Heteroscedastic logit model

The heteroskedastic logit model was proposed by Bhat (1995). The probability that U; > Uj, condi-

tioned on ¢ is:
V-V
iDl(Z) = P(Gj <Vi- VJ + Z|€l = Z) = exp{—exp{le—w}} 7
J
from which the following conditional and unconditional probabilities follow:

ViZVi+z
9.

{ P(z) = [T eXp{—eXP{ ;
oo Vi-Vj+t 1 t t

Pr= /% Hymexp {-ep {5 exp {5 foxp {-exp {5, |} at

There is no closed form for this integral, but it is one-dimensional and can be computed efficiently by

the Gauss-Laguerre quadrature method (the method used by the mlogit package for R).
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9.3.2 The nested logit model

The nested logit model was first proposed by McFadden in 1978. Tt is a generalisation of the multinomial
logit model that is based on the idea that some alternatives may be joined in several groups (called
nests). The error terms may then present some correlation in the same nest, whereas error terms of
different nests are still uncorrelated.

Denoting the nests by m = 1,..., M and B,, the set of alternatives belonging to nest m, the

cumulative distribution of the errors is:

M Am

expi— Y. | D e~6ilAm
m=1 \ jeBn,

The marginal distributions of the €’s are still univariate extreme value (Gumbel), but there is now

some correlation within nests. 1-\,, is a measure of the correlation, i.e. A\,, = 1 implies no correlation.

In the special case where A,, = 1 for all m, the errors are i.i.d. Gumbel errors and the nested logit

model reduces to the multinomial logit model. It can then be shown that the probability of choosing

alternative j that belongs to nest 1 is:

eVil ( er/)\l))\l_l

ZkEBl
M A
Zm:l (ZkeBm er/)\m) "

This model is a random utility model if A; € (0,1) for each j.

j =
Let us now write the deterministic part of the utility of alternative j as the sum of two terms: the
first one (Z;) being specific to the alternative and the second one (W) to the nest it belongs to:
‘/j = Zj + Wl-

We can then rewrite the probabilities as:

ep{(Z+ WM (Sken exp {(Ze+ W)/M))™
ZkeBleXp{(Zk"'I/Vl)/)\l} Z%:l(ZkeBmeXp{(Zk"'Wm))‘m}))\m

P, =

Let I; := log ¥ g exp{Zir/\i}, where log (as throughout) denotes natural logarithm. This is often
called the log-sum, the inclusive value or the inclusive utility. The probability of choosing alternative

j may then be written as:

P. = eXp{Zj//\l} o eXp{VVl+>\lIl}
! ZkeBl eXp{Zk/)‘l} Z%:l €xp {Wm + AmIm}

The first term P;; is the conditional probability of choosing alternative j if nest [ is chosen, which is

= P]” X Pl.

often referred to as the lower model. The second term P} is the marginal probability of choosing nest [
and is referred as the upper model. W;+ A\jI; can be interpreted as the expected utility of choosing the
best alternative in [, W being the expected utility of choosing an alternative in this nest (whatever this

alternative is) and A\;I; the expected eztra utility gained by being able to choose the best alternative in
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the nest. The inclusive values link the two models. It is then straightforward to show that ITA applies
within nests, but not for two alternatives in different nests.
Maximising directly the likelihood function of the nested model leads to an efficient estimator; other

methods (for example estimating the two components separately) are less efficient.

9.3.3 The random parameters (or mixed) logit model

As we shall see in the case studies and examples, the random utility model is often not sufficiently
flexible for the analysis of discrete choice data; the additional flexibility required is given by the Random
Parameter Logistic Model, introduced by Train (abbreviated RPL).

Derivation of the model A mixed logit model or random parameters logit model is a logit model
for which the parameters are assumed to vary from one individual to another; the parameter choices
Bi,..., B, for n individuals are a random sample of size n from a distribution with density fg(3).
Here {fy : 0 € O} is a suitable parametric family. The value of # is chosen by the user, to satisfy
standard model fitting criteria. This model therefore, to some extent, can take the heterogeneity of

the population into account.

The probabilities For the standard logit model, the probability that individual i chooses alternative

1 is:

exp {8z}
>jexp{fxij}

where [ is the parameter vector (assumed to be the same for each individual). Suppose now that these

Py =

coefficients are individual-specific. The probabilities are then:

exp{ Bz} .
¥ exp { Blwij }

One idea could be to estimate the parameters for every individual. These parameters can only be

Py =

identified and estimated with any degree of accuracy if a large number of choice situations per individual
is available, which does not occur very often in practice.

The random parameter model takes the (;’s to be random draws from a distribution fy(3) where
{fo: 0 € ©} is a suitable parametric family. The probability that individual i will choose alternative 1,

for a given value of ; is:

exp{Blzi} '
% exp { B |

To get the unconditional probability, we have to integrate out this conditional probability, using the

Piyp, = (9.2)

density function of 8. Suppose (for example) that V;; = a+S;x; i.e., there is only one individual-specific
coefficient and that the density of §; is fy(3), 6 being the vector of the parameters of the distribution
of 8. The unconditional probability is then:
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exp{8'wi }
> exp{f'w;}
As before, for the one-dimensional integral, the mlogit package uses standard numerical integration
methods.
If Vi = f'x; where f; is a vector of length K and fy(3) is the joint density of the K individual-

specific coefficients, the unconditional probability is:

Py = Eg [Pyjs] = _/Bpuwfe(ﬂ)dﬂ - fo(B)dp. 9.3)

Py = Bg [Pyjs] = fﬁ fﬁK Pusfo(B)dB: .. dBx.

This K-dimension integral cannot, in general, be estimated easily using standard quadrature methods
and the only practical method available to date is to use simulations. More precisely, R draws of
the parameters are taken from the distribution of 3, the probability, conditioned on choice of S,
is computed for every draw and the unconditional probability, which is the expected value of the

conditional probabilities is estimated by the average of these R conditional probabilities.

Individual parameters The expected value of a random coefficient E[S] is simply estimated by
the mean of the R draws on its distribution: 3 = Zﬁzl Br. Individual parameters are obtained by first

computing the probabilities of the observed choice of i for every value of 5,:

X yigelit

Pir Z] eﬁil’i]‘

where y;; is a dummy equal to one if i has chosen alternative j. The expected value of the parameter

for an individual is then estimated by using these probabilities to weight the R values of j:

o Zr Pi’rﬂr
B’L B Zr Pir ‘

Panel data If there are repeated observations for the same individuals, the longitudinal dimension
of the data can be taken into account in the mixed logit model, assuming that the random parameters
of individual i are the same for all his choice situations. Denoting y;;; a dummy equal to 1 if i choose

alternative | for the tth choice situation, the probability of the observed choice is:

B, - ] Zotue ™
=1 ¥, eBiTit;

J

The joint probability for the T observations of individual ¢ is then:

Z] yltj eﬁz itg

Pi = HH 5, P

and the log-likelihood is simply Y, log P;.
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9.3.4 Latent Class Model

The latent class model (LCM) for discrete choice analysis is an alternative method to the RPL model.
The LCM for discrete choice analysis assumes that there are a finite number of categories, for each
category there is a ‘true’ parameter vector 8 and each individual belongs to one of these categories.
This makes it less flexible than the RPL, where each individual can have different parameters, but
is clearly more useful when it is important to locate the sources of the heterogeneity for individual
preferences.

The LCM groups respondents in a finite number of classes (the number of classes may be chosen
by analysing with different numbers of classes and then using one of the standard selection criteria,
such as AIC or BIC), Membership of a specific class is based on the subject’s answers to the DCE
questions posed and also other characteristics (e.g. socio-demographic factors). The LCM assumes
that the preferences of respondents are homogeneous within each class; they may be heterogeneous
across classes. Grouping respondents with homogeneous preferences in a finite number of classes is
relevant for decision-makers because it helps them to understand the sources of heterogeneity between

individuals.

The LCM works as follows: We place a prior probability of Hj,, that individual 7 is from class ¢,
where ¢ € {1,...,Q} and there are @ classes. The probability that individual 7 in choice set t chooses
option j given that the individual is from class q is Py ,(j) where j € {1,...J} (choice set has J

alternatives). Here

exp{i; ;Pq}
J
Lj=1exp{ai, ;8q}

The log-likelihood function for all the respondents is:

Pzt\q(]) =

i=1

N Q T
log L = Zlog{z_;ﬂ}q (H qu(j))}

A convenient and standard choice of prior H is a multinomial logit:

exp{zi6,}
Hiqu—’q, qg=1,...Q, 06p=0.
Y o1 exp{z{0p}
Here, z; denotes a set of observable characteristics (e.g., socio-demographics such as age, income and

sex) that enter the model for class membership.

The parameters to be estimated are now the 3, parameters and also the 6, parameters. Once these
have been estimated, the Bayes rule may be used to obtain respondent-specific (posterior) estimates

of the class probability ﬁqﬁ, conditioned on their estimated choice probabilities:

—_

_ P, H;
Hq\i = %-
szl IEDi|]oI{iP
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These respondent-specific (posterior) estimates of the class probability may then used in a beta regres-
ston analysis to profile the members of each class. To determine the number of classes, the Consistent

Akaike Information Criterion (CAIC), and the Bayesian Information Criterion (BIC) may be used.

After deciding on the number of classes and classifying respondents, each class may be characterised
using, among other things, information on the attitudes and socio-demographic characteristics of re-
spondents. Those variables may then be regressed against respondent-specific (posterior) estimates of
the class probability FIqh. Since the dependent variable is in form of probability, a Beta regression

model for each segment may be used.

9.3.5 Estimating Willingness to Pay

The parameters 5 do not give directly willingness-to-pay values, since they do not have the correct
scaling, although WTP can be computed when the price coefficient is known. W'TP for an attribute is

commonly expressed as the negative ratio of the (non-price) attribute coefficient to the price coefficient:

B Bnon—price attribute

WTP (non-price attribute) = (9.4)

ﬁprice

This value represents the marginal WTP of the respondents. For the attributes coded as continuous,
the calculated value represents, for a respondent with parameter vector 3, the amount of increase in
the attribute for which the respondent is willing to pay one unit of money (e.g. $1). In the case of
categorical attributes, the calculated value represents the respondent’s willingness to pay WTP for the
level of interest of the attribute with respect to the baseline level.

After deciding on the number of classes and classifying respondents, each class may be characterised
using, among other things, information on the attitudes and socio-demographic characteristics of re-
spondents. Those variables may then be regressed against respondent-specific (posterior) estimates of
the class probability FIQH' Since the dependent variable is in form of probability, a Beta regression

model for each segment may be used.

9.4 Optimal design
When considering the question of design, we simplify the utility to:

Uij = :L'ijﬁ + 5@]

where 7 indexes individual / choice situation and j indexes alternative within the choice situation and
the €;;’s are i.i.d. extreme-value (Gumbel) error terms.. Also, we consider k covariates, so that we take

each x;; as a k-vector and

k
268 = Y Tiji Bk
i=1
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so that § is a k-vector of parameters. Let X denote a stacked choice design matriz. By this we mean

a matrix whose elements are

(37)i=1,...554=1,..7

where each x5 is a k x 1 vector with the attribute levels of alternative j in choice set i.

With these notations, the multinomial logit probability that alternative j in choice set ¢ is chosen is:

exp{XF zij18}
> exp{XF, zisi 01}

The information matrix can be computed quite easily; the parameters § are the canonical parameters

ij =

of an exponential family, hence (suppressing the notation for choice situation and using y to denote

alternative)

I;i;(B) = 3@35] logZexp{Z xylﬁl} = %:Pyxijyk - (Zy: xyij) (Zy: :Eyk;IP’y)

Y

so that, for a single individual/choice situation,

I(B) = 2'Pz - 2'PP'x

where P is the diagonal matrix P = diag(P(1),...,P(J)), P is the vector P = (P(1),...,P(J))" of
probabilities for each alternative within the choice situation. x is the matrix with elements x,; denoting

the value of covariate j in the alternative y.

Hence, if we have n respondents (without any individual-specific covariates) and S choice situations,

the total information from an experiment with stacked design matrix X and parameter vector 3 is:

S
=1

where each x; is a J x k matrix: x;;,; is the value of covariate [ for alternative j within choice situation

1.

9.5 Implementation of Random Utility using mlogit

Format of Data For choice experiments, data can be given in two formats, the wide format or the
long format. The data set Train from mlogit is an example of a data set in wide format; we give the
first three rows of it to give an idea.

> data("Train",package="mlogit")
> Train$choiceid <- 1:nrow(Train)
> head(Train,3)
id choiceid choice price_A time_A change_A comfort_A price_B time_B change_ B comfort_B
1 1 1 A 2400 150 0 1 4000 150 0 1
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1 2 A 2400 150 0 1 3200 130
1 3 A 2400 115 0 1 4000 115 0 0

The id column gives the identity of the individual, choiceid the label of the experimental run for that
individual, choice the choice that was made, followed by a list of attributes for the two alternatives
(Alternative A and Alternative B) where for a train ride, the price, the time taken, the number of

changes and the level of comfort are given.

The data set is from a stated preference survey in the Netherlands.

The data set ModeCanada from mlogit is an example of a data set in long format;
> data("ModeCanada",package = "mlogit")

> head(ModeCanada)

case alt choice dist cost ivt ovt freq income urban noalt

1 1 train 0 83 28.25 50 66 4 45 0 2
2 1 car 1 83 15.77 61 O 0 45 0 2
3 2 train 0 83 28.25 50 66 4 25 0 2
4 2 car 1 83 15.77 61 O 0 25 0 2
5 3 train 0 83 28.25 50 66 4 70 0 2
6 3 car 1 83 15.77 61 O 0 70 0 2

In this data set, there are four modes of transport (air, train, bus, car). The variables are distance
(dist), monetary cost (cost), in-vehicle-time (ivt - amount of time spent inside the vehicle), out-
of-vehicle time (ovt - how much of the total time was not in the vehicle), frequency (freq), income
(income), whether or not the trip has a large city at the origin (urban) and number of alternatives
available (noalt). The alternative specific variables are cost, ivt, ovt and freq, while the choice

situation specific variables are dist, income, urban and noalt.

The package mlogit uses objects of class Formula from the package Formula (by Zeileis and Crois-

sant). For example, if we want to explain the choice by:

e cost, an alternative specific variable with a generic coefficient,
e income and urban, choice specific variables,

e ivt, an alternative specific variable where we require alternative specific coefficients
the formula is:

> library("Formula")

> f <- Formula(choice ~ cost | income + urban | ivt)
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Now suppose we're interested in a subset of the data, where noalt (number of alternatives available)
takes the value 4; i.e. all four forms of transport are available. This is done using the dfidx command,

forcing the data into an appropriate data frame, as follows:

MC = dfidx(ModeCanada, subset = noalt == 4, alt.levels = c¢("train","air","bus","car"))

and, the first 10 entries of the data frame MC are:

> head(MC)

first 10 observations out of 11116

choice dist cost ivt ovt freq income urban noalt idx
1 0 377 58.25 215 74 4 45 0 4 109:rain
2 1 377 142.80 56 85 9 45 0 4 109:air
3 0 377 27.52 301 63 8 45 0 4 109:bus
4 0 377 71.63 262 0 0 45 0 4 109:car
5 0 377 58.25 215 74 4 70 0 4 110:rain
6 1 377 142.80 56 85 9 70 0 4 110:air
7 0 377 27.52 301 63 8 70 0 4 110:bus
8 0 377 71.63 262 0 0 70 0 4 110:car
9 0 377 58.25 215 74 4 35 0 4 111:rain
10 1 377 142.80 56 85 9 35 0 4 1ii:air

indexes
case alt

1 109 train
2 109 air
3 109 bus
4 109 car
5 110 train
6 110  air
7 110  bus
8 110 car
9 111 train
10 111 air

indexes: 1, 2

We may want to counsider the fotal time, which is the sum of ivt and ovt. We can do this as follows:
> MC$time = with(MC,ivt+ovt)

Fitting the model is now very easy; we give an example here.

> m1.MC1 = mlogit(choice”cost+freqtovt|income|ivt,MC)

> summary (ml.MC1)

Call:
mlogit (formula = choice ~ cost + freq + ovt | income | ivt, data = MC,

method = "nr")

Frequencies of alternatives:choice
train air bus car
0.1666067 0.3738755 0.0035984 0.4559194

nr method
9 iterations, Oh:0m:0s
g’ (-H)~-1g = 0.00014

successive function values within tolerance limits
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Coefficients :

Estimate Std. Error =z-value Pr(>|zl)

(Intercept) :air -3.2741952 0.6244152 -5.2436 1.575e-07 ***
(Intercept) :bus -2.5758571 1.0845227 -2.3751 0.0175439 *
(Intercept) :car -1.4300823 0.3013764 -4.7452 2.083e-06 ***
cost -0.0333389 0.0070955 -4.6986 2.620e-06 ***
freq 0.0925297 0.0050976 18.1517 < 2.2e-16 **x
ovt -0.0430036 0.0032247 -13.3356 < 2.2e-16 **x
income:air 0.0381466 0.0040831  9.3426 < 2.2e-16 **x*
income:bus -0.0509401 0.0181702 -2.8035 0.0050553 x*x
income:car 0.0101536 0.0031648  3.2083 0.0013353 *x*
ivt:train -0.0014504 0.0011875 -1.2214 0.2219430
ivt:air 0.0595097 0.0100727 5.9080 3.463e-09 ***
ivt:bus -0.0067835 0.0044334 -1.5301 0.1259938
ivt:car -0.0064603 0.0018985 -3.4029 0.0006668 x*x**
Signif. codes: 0 ‘**x”> 0.001 ‘*%> 0.01 ‘x> 0.05 ¢.” 0.1 ¢ * 1

Log-Likelihood: -1874.3
McFadden R~2: 0.35443
Likelihood ratio test : chisq = 2058.1 (p.value = < 2.22e-16)

9.5.1 The Random Parameters Model

We return to the Train data set. This is given in wide format and has to be coerced into a suitable
data frame in long format. The id variable with the individual index nests the choice situation variable

choiceid. We’ll use dfidx to put the data into an appropriate format, which we call Tr.

Tr = dfidx(Train,shape="wide",choice="choice",varying=4:11,sep = "_",
idx = list(c("choiceid","id")),idnames=c("chid","alt"),

opposite = c("price","comfort","time","change"))
Next, price (in guilders) is converted to euros and time (in minutes) is converted to hours.

> Tr$price = Tr$price/100 * 2.20371
> Tr$time = Tr$time / 60
> head(Tr,3)

choice price time change comfort idx
1 TRUE -52.88904 -2.5 0 -1 1:A
2 FALSE -88.14840 -2.5 0 -1 1:B
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3 TRUE -52.88904 -2.5 0 -1 2:A

indexes

chid id alt
1 1 1 A
2 1 1 B
3 2 1 A

indexes: 1, 1, 2

Firstly, we estimate the multinomial model:

> Train.ml = mlogit(choice~price+time+change+comfort|-1,Tr)
> summary(Train.ml)

Call:
mlogit(formula = choice ~ price + time + change + comfort | -1,

data = Tr, method = "nr")

Frequencies of alternatives:choice
A B
0.50324 0.49676

nr method
5 iterations, Oh:Om:0s
g’ (-H)~-1g = 0.00014
successive function values within tolerance limits
Coefficients :

Estimate Std. Error z-value Pr(>|zl)
price  0.0673580 0.0033933 19.8506 < 2.2e-16 *x*x
time 1.7205514 0.1603517 10.7299 < 2.2e-16 *xx*
change 0.3263409 0.0594892 5.4857 4.118e-08 *xx
comfort 0.9457256 0.0649455 14.5618 < 2.2e-16 **x

Signif. codes: 0 “*xxx’ 0.001 ‘xx> 0.01 ‘%’ 0.05 ¢.” 0.1 ¢ 7 1

Log-Likelihood: -1724.2

Dividing coefficients by the price coefficient gives estimated monetary values that the customers put

on the various features.

> coef(Train.ml) [-1]/coef (Train.ml) [1]
time change comfort
25.54337 4.84487 14.04028

so that the values are 26 euros per hour of travelling, 5 euros for a change and 14 euros to travel in a

more comfortable class.

Let us now consider a random parameters model, with three random parameters, time, change and

comfort. The uncorrelated mixed logit model is estimated by:

> Train.mxlu = mlogit(choice”price+time+change+comfort|-1,Tr,

+ panel=TRUE,rpar=c(time="n",change="n",comfort="n"),

+ R=100,correlation=FALSE,halton=NA,method="bhhh")

> names(coef (Train.mx1u))

[1] "price" "time" "change" "comfort" "sd.time" "sd.change"

"sd.comfort"
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There are three additional parameters, the standard deviations of the distribution of the three random

parameters.

We can introduce correlation by setting correlation = TRUE;

> Train.mxlc = mlogit(choice™price+time+change+comfort|-1,Tr,
+ panel=TRUE,rpar=c(time="n",change="n",comfort="n"),
+ R=100,correlation=TRUE,halton=NA,method="bhhh")
> names (coef (Train.mx1c))
[1] "price" "time" "change" "comfort"
"chol.time:time"
[6] "chol.time:change" "chol.change:change" "chol.time:comfort"

"chol.change:comfort" '"chol.comfort:comfort"

where the additional parameters come from the Choleski decomposition of the covariance matrix of

the three random parameters;

C11 0 0
C = C12 C22 0
C13 (€23 (33

where C'C' is the covariance matrix.

The random parameters are obtained using rpar. For example, the marginal for the time parameter

may be summarised as follows:

> marg.ut.time = rpar(Train.mxlc,"time")

> summary (marg.ut.time)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-Inf 1.283749 4.893752 4.893752 8.503756 Inf

These parameters are in the preference space, but parameters in the WTP (willingness to pay) space

are easier to interpret. Divide the marginal utility by the price covariate, taken as a random parameter:

> wtp.time = rpar(Train.mxlc,"time",norm="price")

> summary (wtp.time)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-Inf 8.753119 33.367588 33.367588 57.982056 Inf

The standard errors of the parameters of the covariance matrix may be computed using vcov:

> vcov(Train.mxlc,what="rpar")

time change comfort
time 28.6460389 -0.2787999 5.557933
change -0.2787999 3.1047367 1.232467
comfort 5.5579334 1.2324667 7.895535



Chapter 10

Bayesian Nonparametric Models

10.1 Introduction
Let us consider two problems that have arisen so far:

e How many classes should I choose for a clustering problem?

e How many factors should I use in a factor analysis?

The answer, so far, was of the style: ‘for an agglomerative clustering (e.g. using the Ward algo-
rithm), look at the dendrogram; there is often a clear distance where the procedure stabilises and this
gives a reasonable clustering.’

Similarly with factor analysis; we construct the factors and then we consider their properties; how
much of the observation is explained by the factors and how much is ‘noise’. In many situations it
should be clear by inspection which of the factors that we constructed using PCA are important.

For Partition Around Medians (or Partition Around Means) it is advisable to run the algorithm

for k clusters for several different choices of k.

Bayesian Nonparametric (BNP) models provide one approach to the problem. Rather than
comparing different models with varying complexity, the BNP approach is to fit a single model that
can adapt its complexity to the data.

BNP models allow the complexity to grow as more data is observed.

Example: Clustering A model where the data naturally fits into k different clusters can be thought
of as a mixture model, where we have a mixture of k different underlying populations. For pam (for
example), we need to specify the number of clusters in advance. The BNP model estimates the
number of clusters needed to model the observed data and allows future data to exhibit previously

unseen clusters.

A BNP model expresses a generative process of the data that includes hidden variables.The model

specifies the joint probability distribution of the hidden and observed variables.

165
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Given a data set, data analysis is performed by posterior inference, computing the conditional distri-
bution of the hidden variables given the observed data. We (in some sense) ‘reverse’ the generative
process; we find the distribution of the hidden variables that is likely to have generated the given data.
Its complezity, i.e. the number of mixture components, or number of factors, is part of the posterior
distribution. We do not need to specify these in advance; they are determined as part of the data
analysis.

We’ll look at two Bayesian nonparametric models. In this lecture, we’ll consider the Chinese
Restaurant Process which is used for cluster assignment and in the next we’ll consider the Indian

Buffet Process, which is used for Latent Factor models.

10.2 Mixture Models and Clustering

In a mizture model, each data point is assumed to belong to a cluster. In posterior inference, we infer
a grouping (or clustering) of the data. This amounts to inferring both the identities of the clusters and

the assignments of data to them.

Example: Cognitive Response Times Several cognitive processes contribute to producing be-
havioural responses. The question is how to decompose observed R1’s into their underlying compo-

nents.

10.2.1 Finite Mixture Model

Assume there are K clusters, each associated with a parameter 6; : k=1,... K. For example, a datum
from cluster k is an observation from a N(6,X) population. Each observation y; is assumed to be
generated by first choosing a cluster ¢; with probability P(¢;) and then choosing y; from the distribution

parametrised by 0, .

Bayesian mixture models have a prior over the clusters P(¢;) and a prior over cluster parameters; the
parameters for different clusters are chosen independently of each other and 6 ~ G for a distribution
Gp.

The generative process defines a joint distribution;

K N
P(y,c,0) = ]Bl Go(0k) ltI1 F(yn|0e, )P(cn).

Observations y = (y1, . ..,yn), cluster assignments ¢ = (c1,...,cn), cluster parameters 0 = (61,...,0k).

Given a data set, we are usually interested in the cluster assignments, to be inferred from the obser-

vations y and we can get this by Bayes rule:
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P(AB) = %
which gives:
) = 5 B lore

The likelihood is obtained by marginalising over the settings of 8

N K
o) - ) (T1#ni0e) [T 6o a2

We would like to be able to calculate this explicitly. If Gy is conjugate to F', then we can do this.
For example, we could take Gg as a Gaussian distribution; when new clusters are established, their
cluster means are drawn independently from a Gaussian distribution. If F'(.|0) (the distribution of the
observation given the cluster parameters 6) is also Gaussian, the expression may be computed.

The denominator cannot be computed, since this involves summing over every single partition of the
data into K groups. Approximate methods (such as Markov chain Monte Carlo) are therefore used to

establish properties of the posterior distribution and hence discover good clusterings.

10.2.2 The Chinese Restaurant Process

The Chinese Restaurant Process is a method for generating clusters and cluster memberships. The
term is attributable to Jim Pitman from Berkeley. He always found in San Fransisco that (a) no matter
how busy it was, his favourite Chinese Restaurant could always accommodate new customers and that
(b) tables could always be expanded to accommodate new customers who wanted to sit at a table
which contained their friends and colleagues who were already in the restaurant.

Let ¢, denote the table assignment of customer n and let ¢q1.,-1 = (¢1,...,¢p-1). Suppose that K,

denotes the number of tables occupied after the nth customer has arrived. Then

Th k< K-
IP)(Cn = k‘clzn—l) = n-lra s o
@ k=Ky

n—-1l+a

where myj, denotes the number of customers sitting at table & when there are n — 1 customers.

Now,

p(ci,...,en) =pler)p(ealer) ... plenler, ... en-1)

so that

oSN T (my v = 1))
Hf:le(oz -1+n)

where m; n denotes the total number of customers at table j after N arrivals.

p(ci,...,en) =
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If we only observe different tables and we do not examine the order in which tables were occupied, this

distribution is exchangeable.

The RT Example The CRP allows us to place a prior distribution over partitions of RTs into the
hypothetical cognitive processes that generated them, without committing in advance to the number
of such processes.

Each process k is associated with a set of parameters 0, specifying the distribution over the RTs

obtained from the posterior, which may be obtained by Gibbs sampling.

Data Analysis using CRP When we analyse data with a CRP, we form an approximation of the
joint posterior over the (hidden) class variables and the distributional parameters for each cluster. In

practise, there are two uses for this posterior.

1. Examine the likely partitioning of the data. This gives us a sense of how the data are grouped

and how many groups the CRP model chooses.

2. Form predictions with the posterior predictive distribution. With the CRP, the posterior predic-

tive distribution is:
P(yn+1|y17"'7yn) = 2 P(yn+1|cn+1>9)]P)(Cn+1|Cla""CTL)P(CD"‘aCn,Q|y1>"'ayn)dQ'
Cl,--+,Cn+1
10.3 Implementation in R
There is a package dirichletprocess which is useful.

>install.packages("dirichletprocess",dependencies=TRUE)

>library(dirichletprocess)
and now let us try it out.

We’ll consider the data set faithful, which is contained in the basic R installation. There are 272
bi-variate observations. The variables are the time between eruptions and the length of the eruption
for the geyser ‘Old Faithful’.

Making a plot of the waiting times might suggest that there are two clusters and that each cluster may

be Gaussian, so the data could arise as a mixture of two Gaussians. We’'ll see how this is recovered.
?faithful

On the right you will see a description of the data.
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its <- 500

faithfulTransformed <- scale(faithful$waiting)

dp <- DirichletProcessGaussian(faithfulTransformed)
dp <- Fit(dp, its)

plot(dp)

On the right hand side, you see the plot. Clearly, it has estimated two clusters from the data. The
density is therefore estimated as the composition of two Gaussians. It has estimated the cluster sizes
and has assigned data to two clusters. From this, it has computed the sample mean and sample variance
of each cluster, the Gaussian density for each cluster and has fitted the corresponding population

density.

Now let us try a multivariate example; let us use both variables in the faithful data set.

faithfulTrans <- scale(faithful)

dp <- DirichletProcessMvnormal (faithfulTrans)
dp <- Fit(dp, 1000)

plot(dp)

The Fit command may take a long time to execute.

The plot shows the clustering that the CRP Gauss model has assigned; points from one cluster in red
and the other in blue.

10.4 Binomial Clusters: different ‘success’ probabilities

We now consider data that is either ‘success’ or ‘failure’. A Bernoulli trial Be(f) is a random variable
X which takes the value 1 (‘success’) or 0 (‘failure’) and P(X =1) =60, P(X =0)=1-6.
Suppose we have n independent identically distributed Be(€) variables and Y = X1 +...+ X, is the

total number of ‘success’, then

P(Y = k) = (Z)e’“u )"k k=0,1,...,n.

We now consider a situation where the ‘success’ probability 6 is unknown. One way of modelling
the uncertainty is to place a prior distribution over § and one of the most convenient families of
distributions is the Beta distribution. A random variable © has Beta(a, ) distribution if its density

18

fol6) - %ea*u —0)* 10, (6).
Here
E[O] = —2 Var(©) = ab
a+pf’ (a+B)2(a+pB+1)
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so that prior information can be modelled. The parameters o and § are chosen such that the ‘guess’

for 4 is aO‘TB and the more certainty the user has concerning this guess, the larger the choice of o + 3.

The Update If we have a prior distribution Beta(a, 8) over the parameter § and we observe y from

Binomial(n, @), the posterior distribution over 6 is given by Beta(y + a,n —y + 3).

Y+
n+a+3’

We can envisage situations where the data comes from several different populations, each with its own

Note that its expected value is:

‘success’ probability. Suppose that Y; ~ Binomial(n;,0;) fori=1,..., N.
A model could be

01,...,0N ~i.i.d.Beta(a, )
}/1|01 ~ Binomial(ni, 92)

In the example below, the 6;s do not seem to be i.i.d. beta(«, 3). They would appear to come from a
bimodal distribution, which is not the pattern of a Beta. The Beta is either unimodal, or else takes its

maxima at the end points of 1 and / or 0.
A Dirichlet Process model could be:

F ~DP(a, Go)
i, i~ F
0; ~ Beta(a, B;)

y; ~ Binomial(n;, 6;)

where there are K different (o, 3;) values, each corresponding to a cluster; the clusters generated by
the Chinese Restaurant Process with parameter o and the distribution from which the (o, 8;) values

for each cluster are chosen is F', determined by sampling parameters from Gy.

Example: Tumour risk in rats The data set rats is contained in the package dirichletprocess
and the data is from Gelman, Carlin, Stern, and Rubin (2014). In this example, there are 71 different
experiments, and during each experiment a number of rats are inspected for tumours, with the number
of rats which have tumours in each experiment being the observed data. The first column is the
number of rats which have tumours in each experiment, and the second is the number of rats. A naive
approach would model each experiment as a Binomial draw with unknown 6; (the ‘success’ probability)
and known N;. A Beta distribution is the conjugate prior for the Binomial distribution and would be

used as the prior on 6:

yzwz; Nz ~ BanHllal(NZ, 9@)
0; ~ Beta(a, ).

The empirical distribution of However, Figure 4a shows the empirical distribution of 0; = % would

suggest otherwise; the empirical distribution suggests bi-modality, something that a single Beta distri-

bution cannot capture. Hence this choice of prior over 6; is dubious. An alternative procedure is to
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instead use a nonparametric prior, which is a mizture of Beta distributions. Since these parameters
are constrained to lie between 0 and 1, a Dirichlet process mixture of Beta distributions might be

reasonable. This leads to the following model:

y1|91, Nz ~ BanHlla](Nl, 92),
01‘ ~ Beta(ai, ,81)

Oéi,/Bi ~ F7

F ~ DP(a,Gy)

for some parameters a and Gp. These can follow the default implementations in the package dirich-
letprocess; for reasonable choices, the results should not depend heavily on these. This can be

implemented as follows:

> library(dirichletprocess)
> numSamples = 200
> thetaDirichlet <- matrix(nrow=numSamples, ncol=nrow(rats))
> dpobj <- DirichletProcessBeta(rats$y/rats$N,max¥=1,g0Priors = c(2,
150) ,mhStep=c(0.25, 0.25) ,hyperPriorParameters = c(1, 1/150))
> dpobj <- Fit(dpobj, 10)
> clusters <- dpobj$clusterParameters
a <- clusters[[1]] * clusters[[2]]
b <- (1 - clusters[[1]]) * clusters[[2]]
for(i in seq_len(numSamples)){
posteriorA <- al[dpobj$clusterLabels] + rats$y
posteriorB <- b[dpobj$clusterLabels] + rats$N - rats$y

dpobj <- ChangeObservations(dpobj, thetaDirichlet[i, ])
dpobj <- Fit(dpobj, 5)

clusters <- dpobj$clusterParameters

a <- clusters[[1]] * clusters[[2]]

b <- (1 - clusters[[1]]) #* clusters[[2]]

}

>
>
>
+
+
+ thetaDirichlet[i, ] <- rbeta(nrow(rats), posteriorA, posteriorB)
+
"
+
+
+
"

Note the reason why the observations are changing is because the DP mixture model is applied to the

0; parameters, which are resampled (and hence have different values) during each MCMC iteration.

> library(ggplot2)

> ggplot(rats, aes(x=y/N)) +

+ geom_density(fill="black") #Plot the emperical distribution
> ggplot(rats, aes(x=y/N)) +

+ geom_density(fill="black") #Plot the emperical distribution
> posteriorFrame <- PosteriorFrame(dpobj, ppoints(1000))
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> ggplot() +

+ geom_ribbon(data=posteriorFrame,aes(x=x,
ymin=X5.,ymax=X95.) ,alpha=0.2) +

+ geom_line(data=posteriorFrame, aes(x=x, y=Mean)) +

+ x1im(c(0, 0.35)) #Plot the resulting prior distribution

Plotting the resulting estimation reveals that the DP is a more suitable prior than the Beta distri-

bution. This confirms what we saw from the empirical distribution that the data is bi-modal.

Inconsistency The CRP method for clustering has its uses and, as we have seen can give greater
accuracy in modelling. There are, though, problems with it. Miller and Harrison (JMLR volume
15 (2014) pp 3333 - 3370) point to inconsistency; let N(n) denote the number of clusters chosen to

maximise the posterior, then this does not necessarily converge to the true value.

10.5 Latent Factor Models and Dimensionality Reduction

Mixture models assume that each observation is assigned to one of K components. Latent factor
models weaken this assumption; each observation is influenced by each of K components in a different
way.

Latent factor models provide dimensionality reduction; the number of components is usually smaller
than the dimension of the data. Each observation is associated with a vector of component activations
(latent factors) that describe how much the each component contributes to it.

The most popular of these models, Factor Analysis (FA), Principal Component Analysis (PCA)
and Independent Component Analysis (ICA) all assume that the number of factors (K) is known. The
Bayesian Nonparametric approach described here allows the number of factors to grow as more data
is added.

As with the BNP mixture model, the posterior distribution provides both the properties of the
latent factors and how many are exhibited in the data.

In classical factor analysis, the data matrix x is an N x M matrix; N M-variate observations.

Observation y, is expressed as

Yn = Gz, + €y

where v, is the observed M-vector for observation n, x, is an M x K factor loading matrix expressing
how the latent factor k influences observation dimension m, x, is a K-dimensional vector expressing

the activity of each latent factor and €, is a vector of independent Gaussian noise terms.

The factor loadings can be decomposed as G, = ZmkWmi Where z,, is a binary ‘magk’ variable, equal

to 1 if factor k is ‘on” and equal to 0 if factor k is ‘off’. w,,x is a continuous weight variable.

Now let us consider the Bayesian approach to inferring the latent factors, mask variables and weights.

We place priors over them and use Bayes rule to compute the posterior P(X, Z, W1Y").
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Just as the CPR, the infinite-capacity distribution over Z has been furnished with a similarly colourful
culinary metaphor, the Indian Buffet Process.

A customer (a dimension) enters a buffet which has an infinite number of dishes to choose from,
arranged in a line. The probability that customer m samples dish k (i.e. z,,, = 1) is proportional to its
popularity hj (the number of previous customers who have sampled dish k). When the customer has
considered all previous sampled dishes, he chooses an additional Poisson(«/N) dishes that have never
been sampled before. When all M customers have navigated the buffet, the resulting binary matrix Z
is a draw from the IBP.

The IBP plays the same role for latent factor models as the CRP plays for mixture models; it functions
as an infinite capacity prior over the space of latent variables allowing an unbounded number of latent

factors.

We then proceed with

P(X, W, Z|Y) = P(Y|X, W, Z)P(X)P(W)P(Z).

Exact inference is (of course) impossible; Markov chain Monte Carlo methods have to be used.
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