
Data Science for Quantitative Psychology and Economics

John M. Noble,

Mathematical Statistics,

Institute of Applied Mathematics and Mechanics,

Faculty of Mathematics, Informatics and Mechanics,

University of Warsaw,

ul. Banacha 2,

02-097 Warszawa, Poland

ii

Contents

1 Geometrical Representation and Distances 1

1.1 The Data Matrix . 1

1.2 One Way Representations of Data Matrices: Andrews Curves 1

1.3 Subspace Projections . 3

1.4 Distances and Proximity Matrices . 4

1.5 Measuring and Testing Multivariate Distances . 6

1.6 Penrose and Mahalanobis Distance . 7

1.7 The Mantel Randomisation Test . 9

2 Principal Component and Factor Analysis 13

2.1 Introduction . 13

2.2 Principal Component Analysis . 13

2.3 How to do a Principal Component Analysis . 17

2.4 Con�dence Intervals for PCA Eigenvalues and Eigenvectors 19

2.5 Implementation in R . 20

2.5.1 Sparrow Data . 20

2.5.2 Bootstrap for Con�dence Intervals . 22

2.5.3 Using the Principal Components . 22

2.6 Weighted Projection Methods . 23

2.7 Factor Analysis . 24

2.8 Example: Country Employment Pro�les . 26

3 Cluster Analysis 33

3.1 Introduction . 33

3.2 Distance and Dissimilarity Measures . 34

3.3 Clustering Techniques . 35

3.4 Hierarchic Methods . 36

3.5 Divisive Analysis (diana) . 38

3.6 Non-hierarchical Clustering Methods . 39

3.6.1 K-means method . 39

3.6.2 K-medoids . 40

iii

3.6.3 Partitioning Around Medoids (pam) . 40

3.6.4 Silhouette Plot . 40

3.7 Self Organising Maps (SOM) . 41

3.7.1 On-Line Version . 41

3.8 Implementation in R . 42

4 Conditional Independence and Graphical Models 47

4.1 Conditional Independence and Factorisation . 48

4.2 De�nition of a Bayesian Network . 48

4.3 Connections in a Directed Acyclic Graph and Conditional Independence 50

4.4 Separation within a DAG . 53

4.4.1 Bayes Ball . 54

4.5 D-Separation and Conditional Independence . 55

4.6 Queries . 56

4.7 Bayesian Networks in R . 56

4.8 Introduction . 56

4.9 Graphs in R . 57

4.10 Example: `Asia' by Lauritzen . 57

4.10.1 Building the Network . 58

4.10.2 Compilation . 59

4.10.3 Absorbing Evidence and Answering Queries . 59

5 Intervention Calculus 63

5.1 Causal Models and Bayesian Networks . 63

5.2 Conditioning by Observation and by Intervention . 64

5.3 The Intervention Calculus for a Bayesian Network . 64

5.4 Causal Models . 67

5.4.1 Establishing a Causal Model via a Controlled Experiment 68

5.5 Confounding, The `Sure Thing' Principle and Simpson's Paradox 69

5.5.1 Confounding . 69

5.5.2 Simpson's Paradox . 70

5.5.3 The Sure Thing Principle . 71

5.6 Identi�ability: Back-Door and Front-Door Criteria . 72

5.6.1 Back Door Criterion . 74

5.6.2 Front Door Criterion . 75

5.6.3 Non-Indenti�ability . 76

6 Time Series 77

6.1 Introduction . 77

6.2 Stationarity . 78

6.3 Trends and Seasonal Components . 80

iv

6.3.1 No Seasonal Component . 80

6.3.2 Trend and Seasonality . 82

6.4 Autocovariance and Spectral Density of a stationary time series 84

6.5 Extracting Trend, Seasonal and Noise in R . 84

6.6 Holt Winters Filtering . 85

6.6.1 Illustration . 87

6.7 Linear Time Series Models . 89

6.8 De�nitions and �rst properties . 89

6.8.1 The Spectral Density . 89

6.9 MA(q), AR(p) and ARMA(p,q) Processes . 90

6.10 Linear �lters . 94

6.11 The ARIMA Process . 95

6.11.1 Testing for Unit Roots . 96

6.12 SARIMA Processes . 99

7 Dynamic Bayesian Networks 101

7.1 Introduction . 101

7.2 Multivariate Time Series . 102

7.3 Lasso Learning . 107

7.3.1 Implementation . 109

7.4 Inference for Dynamic Bayesian Networks . 112

7.5 Exercises . 116

8 Discriminant Function Analysis 117

8.1 The Maximum Likelihood Discriminant Rule . 118

8.1.1 The Bayes Discriminant Rule . 118

8.2 The Linear Discriminant Function . 119

8.3 Misclassi�cation Probability . 119

8.4 Fisher's Discriminant Function . 120

8.5 Quadratic Discrimination . 122

8.6 Canonical Discriminant Functions . 122

8.7 LDA using Multiple Regression Techniques . 125

8.7.1 Logistic Discrimination . 127

8.8 Implementation in R . 128

8.9 Worked Example: Diabetes . 130

8.10 Recursive Partitioning and Tree-Based Methods . 135

8.10.1 Classi�cation Trees . 135

8.11 Shannon Entropy and Information . 136

8.11.1 Tree-Growing Procedure . 140

8.12 Assigning classes to nodes: Estimating the Misclassi�cation Rate 141

8.13 Pruning the Tree . 141

v

8.13.1 Choosing the best pruned subtree . 142

9 Choice experiments 149

9.1 Designing Experiments and Modelling Data . 149

9.1.1 How are choice sets constructed and data analysed 149

9.2 Utility Models . 150

9.2.1 Non-Random Utility Model . 150

9.2.2 Random Utility Models . 151

9.2.3 Distribution of the Error Terms . 152

9.3 Logit models: relaxing the i.i.d. hypothesis . 153

9.3.1 Heteroscedastic logit model . 153

9.3.2 The nested logit model . 154

9.3.3 The random parameters (or mixed) logit model . 155

9.3.4 Latent Class Model . 157

9.3.5 Estimating Willingness to Pay . 158

9.4 Optimal design . 158

9.5 Implementation of Random Utility using mlogit . 159

9.5.1 The Random Parameters Model . 162

10 Bayesian Nonparametric Models 165

10.1 Introduction . 165

10.2 Mixture Models and Clustering . 166

10.2.1 Finite Mixture Model . 166

10.2.2 The Chinese Restaurant Process . 167

10.3 Implementation in R . 168

10.4 Binomial Clusters: di�erent `success' probabilities . 169

10.5 Latent Factor Models and Dimensionality Reduction . 172

vi

Chapter 1

Geometrical Representation and Distances

1.1 The Data Matrix

Consider p variables, and a random sample x1, . . . , xn, where xj = (xj1, xj2, . . . , xjp)′. Each observation

is a p vector, and there are n observations. A random sample means that x1, . . . , xn is an observation

of X1, . . . ,Xn, where the (Xj)nj=1 are independent, identically distributed random p-vectors.

Notation A random p-vector, where each component corresponds to a di�erent variable, is usually

taken as a column vector, but when presented in a data matrix of n independent observations, the

transpose is taken and each p-variate observation is taken as a row.

Sampling If the observations were selected from a total population of N p-vectors, then a random

sample would mean that any subset of n vectors from N was chosen with probability 1

⎛
⎜
⎜
⎝

n

N

⎞
⎟
⎟
⎠

and each

ordering of the n vectors occurred with probability 1
n! . In general, a random sample is a sample that

has the properties of such a sample for N >> n.

The most widely used standard is to store the data in an n × p matrix, denoted x, where

x =
⎛
⎜⎜
⎝

x11 . . . x1p

⋮ ⋮
xn1 . . . xnp

⎞
⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

xt1
xt2
⋮
xtn

⎞
⎟⎟⎟⎟⎟
⎠

. (1.1)

1.2 One Way Representations of Data Matrices: Andrews Curves

When considering a one way representation of a two dimensional data matrix, one can represent either

the n units, or the p variables. Each variable, may be represented by an appropriate curve or solid

pattern that highlights the similarities or disssimilarities between the constructions.

1

2 CHAPTER 1. GEOMETRICAL REPRESENTATION AND DISTANCES

One example is the method of Andrews Curves. For each unit (or p-variate observation) i of the

data matrix, set

fi(t) =
1√
2
xi1 +

[p/2]

∑
j=1

xi,2j sin(jt) +
[p/2]

∑
j=1

xi,2j+1 cos(jt) t ∈ [−π,π].

Properties The Andrews curve satis�es the following properties:

1. Let f = 1
n ∑

n
i=1 fi(t), then

f(t) = 1√
2
x.1 +

[p/2]

∑
j=1

x.2j sin(jt) +
[p/2]

∑
j=1

x.,2j+1 cos(jt) t ∈ [−π,π].

2. This function representation preserves the Euclidean distance between the variables. That is, if

d2ij =
n

∑
k=1

(xik − xjk)2

then
1

π
∫

π

−π
(fi(t) − fj(t))2dt = d2ij .

3. Suppose (X1, . . . ,Xp) are independent variables, each with variance σ2, then for each i,

Var(fi(t)) =
⎧⎪⎪⎨⎪⎪⎩

σ2

2 p p odd
σ2

2 (p − 1) + σ
2 cos2(pt) p even.

The following features should be noted:

� An outlier appears as single Andrews' curves that looks di�erent from the rest.

� A subgroup of data is characterised by a set of simular curves.

� The order of the variables plays an important role for interpretation.

� For more than 20 observations we may obtain a bad �signal-to-ink-ratio�, i.e., too many curves

are overlaid in one picture.

Implementation There is a package in R named pracma, which may be installed by:

> install.packages("pracma")

if it isn't already installed and activated by:

> library(pracma)

The following illustrates the Andrews curve for the Iris data set, which is a data set contained in R.

1.3. SUBSPACE PROJECTIONS 3

data(iris)

A = as.matrix(iris[,-5])

f=as.integer(iris[,5])

andrewsplot(A,f,style="pol",npts=200)

andrewsplot(A,f,style="cart",npts=200)

The plot for datum 1 is:

f1(t) =
5.1√
2
+ 3.5 sin(t) + 1.4 cos(t) + 0.2 sin(2t).

1.3 Subspace Projections

The data matrix x described by Equation (1.1) of p quantitative measurements on n units may be

described either in the object space or the variable space, as de�ned below.

De�nition 1.1 (Object Space). Let x = 1
n ∑

n
j=1 xj denote the sample mean vector. The object space

is the p dimensional space with origin at x.

Multivariate analysis studies how the variables relate to each other; their covariance and correlation.

Centralising around the sample average helps to keep this in view. When studying object space, n

points in Rp are considered, labelled (y)nj=1, where yj = xj − x.

De�nition 1.2 (Variable Space). Let x.k = 1
n ∑

n
j=1 xjk, the sample average for variable k. Consider the

vectors zk = xk − x.k1 ∈ Rn, k = 1, . . . , p, where 1 = (1, . . . ,1)t ∈ Rn. These vectors are all perpendicular

to 1. The variable space is de�ned as the space spanned by these vectors. The variable space is

therefore a space of dimension less than or equal to p, embedded in the n − 1 dimensional subspace of

Rn perpendicular to the vector 1.

In the variable space, the scalar product ckl between zk and zl is given by

ckl =
n

∑
i=1

zikzil.

The quantity skl = 1
n−1ckl is de�ned as the sample covariance between variate k and variate l. This is

an unbiased estimator of the population covariance. The sample correlation between these variables is

de�ned as

cos(αkl) = rkl ∶=
ckl√
ckkcll

,

where αkl is the angle between vector zk and zl.

Note: It should be clear that the projection of the vector zk onto the one dimensional subspace of Rn

spanned by the vector zl is simply the linear regression of zk onto zl;

rkl

√
ckk
cll
zl.

4 CHAPTER 1. GEOMETRICAL REPRESENTATION AND DISTANCES

De�nition 1.3. Set Skl = 1
n−1ckl. The matrix S is the sample covariance matrix of the data matrix

X. The matrix R with entries rkl is the sample correlation matrix.

Remark When the n observations are considered in object space, their respective distances from

each other may be represented by the n × n matrix (dij)1≤i≤n,1≤j≤n. Considered in variable space, the

observations lead to the p × p correlation and covariance matrices and the p × p matrix of angles αkl,

all representing the similarity between the variables.

Lemma 1.4. The matrices S and R are non-negative de�nite.

Proof Consider any p vector a. Then

atSa = 1

n − 1

n

∑
i=1
∑
kl

akalzikzil =
1

n − 1

n

∑
i=1

(∑
k

akzik)
2

≥ 0.

atRa =
n

∑
i=1

akal
zik√
ckk

zil√
cll
=

n

∑
i=1

(
p

∑
k=1

zikak√
ckk
)
2

≥ 0.

1.4 Distances and Proximity Matrices

When the p variables are numerical and observations of continuous random variables, the distance

between unit i and j in object space may be given by the Euclidean distance;

dij =

¿
ÁÁÀ

p

∑
k=1

(yik − yjk)2.

Data sets often also give information in the form of categorical variables and it is useful to be able

to incorporate both numerical and categorical variables. Also, there is a common problem of missing

data; for an observation i, the datum xik may be missing for some, but not all, values of k.

The following measure of distance between observations is known as Gower's dissimilarity, which

deals with missing data and also with categorical data.

Let

δijk =
⎧⎪⎪⎨⎪⎪⎩

1 xik, xjk can be compared

0 otherwise

sijk = 0 if δijk = 0.

If either xik or xjk are missing, then both δijk = 0 and sijk = 0. For δijk = 1, if variable k is a numerical

(quantitative) variable, let

sijk = 1 −
∣xik − xjk∣

maxa,b ∣xak − xbk∣
.

If variable k is a categorical variable, let

1.4. DISTANCES AND PROXIMITY MATRICES 5

sijk =
⎧⎪⎪⎨⎪⎪⎩

1 xik = xjk
0 otherwise

Gower then constructs a distance by:

dij = ∑
k

(1 − sijk)δijk
∑k δijk

.

If greater weight is attached to some of the variables, this can be modi�ed using weights;

dij = ∑
k

wk(1 − sijk)δijk
∑kwkδijk

.

Constructing a `Virtual' data set from distances There are situations where the data matrix

x is not given, but instead the distance matrix (dij) is given. The following discussion describes how

to construct a virtual data matrix x, which preserves the correct distances.

Let x be an n× p data matrix with entries xij and let Hn = In − 1
n11

t where 1 denotes an n-vector

where each entry is 1. Then it is an easy computation to see that

(Hnx)ij = xij − x.j .

Set

Q = (Hnx)(Hnx)t,

then it is clear that

Qij =
p

∑
k=1

(xik − x.k)(xjk − x.k).

Set yij = xij − x.j . If the distance dij is the Euclidean distance, then

d2ij = ∑
k

(yik − yjk)2

= ∑
k

y2ik +∑
k

y2jk − 2∑
k

yikyjk

= Qii +Qjj − 2Qij .

Note that Qij = Qji and that ∑n
i=1Qij = 0 for each j. Summing both sides over both i and j gives:

2n∑
i

Qii = ∑
i,j

d2ij .

Summing over j and using ∑jQjj = 1
2n ∑i,j d

2
i,j gives:

Qii =
1

n
∑
k

d2ik −
1

2n2
∑
i,j

d2ij

Therefore:

Qij = −
1

2

⎛
⎝
d2ij −

1

n

n

∑
k=1

d2kj −
1

n

n

∑
k=1

d2ik +
1

n2
∑
ij

d2ij
⎞
⎠
. (1.2)

6 CHAPTER 1. GEOMETRICAL REPRESENTATION AND DISTANCES

If the data matrix is not given, but instead the distances (dij)(i,j)∈{1,...,n}, then a matrix Q may be

constructed using the formula given by Equation (1.2). The matrix constructed in this way is clearly

symmetric and can be diagonalised as

Q = PΛP t,

where P is orthonormal and Λ is diagonal. If the matrix (dij)(i,j)∈{1,...,n}2 is a distance, in the sense

that it is symmetric, the entries are non negative and dij ≤ dim + dmj for all (i, j,m) ∈ {1, . . . , n}3,
then Λ = diag(λ1, . . . , λn), λ1 ≥ . . . ≥ λn ≥ 0. Let

√
λj denote the positive square root of λj and let

Λ1/2 = diag(
√
λ1 . . . ,

√
λn).

De�nition 1.5 (Data Matrix obtained by Metric Scaling). Let

x = PΛ1/2,

then x is the data matrix corresponding to (dij) obtained by metric scaling.

Recall that the situation considered here is where the original data is not given; rather, the analyst

has been presented with a matrix of distances between the original data points. The `data matrix'

obtained in this manner will preserve the distances between the original data.

Remarks

1. Metric scaling only works if the matrix Q is non negative de�nite (i.e. positive semi de�nite).

This holds if and only if the input matrix (dij) satis�es the triangle inequality;

dij ≤ dim + dmj ∀(i, j, k) ∈ {1, . . . , n}3.

2. By construction, the data matrix x obtained in this way is already centred; x =Hx.

3. Since x =Hx, it follows that rank(Q) ≤ n − 1, at least one eigenvalue is zero. If

λ1 + . . . + λm
λ1 + . . . + λn−1

is su�ciently large for some m < n−1, then an approximate data matrix can be constructed from

the �rst m columns of P by taking x as the n×m matrix with entries xij = Pij

√
dj i ∈ {1, . . . , n},

j ∈ {1, . . . ,m}.

1.5 Measuring and Testing Multivariate Distances

Often in multivariate analysis, the n observations are not an observed random sample from a single

population, but rather come from m di�erent populations. Often, the aim is classi�cation; to decide,

based on the p-variate observation, which population the observation belongs to.

Consider m populations (for example, 7 di�erent types of dog), where p features (variables) are

measured (for example, p di�erent bones within the body may be considered and the length of each

1.6. PENROSE AND MAHALANOBIS DISTANCE 7

measured for each animal). Suppose that n = n1 + . . . + nm, where nb denotes the number of di�er-

ent animals from population b, for each population b = 1, . . . ,m. Let xabc denote the observation:

observation a, population b, variable c. Suppose you are given an observation, but you are not told

which population the observation comes from. As a �rst step for making a guess, it is useful to have

a measure of distance between the various populations.

1.6 Penrose and Mahalanobis Distance

Penrose Distance Let n = ∑m
b=1 nb denote the total number of observations and let

s2c =
∑m

b=1(nb − 1)s2bc
n −m

.

The observed Penrose distance between two populations α and β is de�ned as

pα,β =
1

p

p

∑
k=1

(x̄.,α,k − x̄.,β,k)2

s2k
.

Formal tests, of whether or not an observed Penrose distance is signi�cantly di�erent from zero, may

be carried out under distributional assumtions. If it is assumed that the the observations xabc are from

independent random variables Xabc, where

Xabc ∼ N(µbc, σ2c)

(that is, the variables are normal and for variate c, the population variance is the same for each

population b = 1, . . . ,m), then the distribution of

Pα,β =
1

p

p

∑
k=1

(X .,α,k −X .,β,k)2

S2
k

under the null hypothesis that µ
α,.
= µ

β,.
may be computed.

The Mahalanobis Distance The Penrose distance does not take into account correlations between

the variables. The Mahalanobis distance is a modi�cation of the Penrose distance that takes into

account possible correlations. If the independence assumption holds, then the Penrose distance is

better, because there are fewer parameters involved. Let Xa denote a random vector that models

population a, with E[Xa] = µa and C(Xa) = C (the notation C is used to denote a covariance matrix),

where C is the same for each population a = 1, . . . ,m. Let x̄aj denote the jth component of the vector

x̄a, the sample average from population a. Let S denote the pooled estimate of the covariance matrix

and let V = S−1. The Mahalanobis distance between two populations α and β is de�ned as

Dαβ =
p

∑
r=1

p

∑
s=1

(x̄.,α,r − x̄.,β,r)Vrs(x̄.,α,s − x̄.,sβ) = (x̄α − x̄β)
tV (x̄α − x̄β).

To test whether the sample Mahalanobis distance, computed from the sample means and sample covari-

ance matrix is statistically signi�cant, one uses Hotelling's T 2 distribution; under the null hypothesis

(of no di�erence),

8 CHAPTER 1. GEOMETRICAL REPRESENTATION AND DISTANCES

na + nb − p − 1
(na + nb − 2)p

nanb
na + nb

Dab ∼ Fp,na+nb−p−1.

Note that there are p(p + 1)/2 terms to be estimated in the covariance matrix for the Mahalanobis

distance, while there are only p variances to be estimated for the Penrose distance. Therefore, if there

is reason to believe that an independence assumption gives an accurate model, the Penrose distance is

a better measure of distance; rather many observations are required to obtain the whole matrix S−1

with accuracy.

Example 1.1 (Egyptian Skull Data).

The data set on Egyptian skulls, found in skulls.dat on the course home page gives the measurements

X1 = maximum breadth, X2 = basibregmatic height, X3 = basialveolar length and X4 = nasal height.
The data is for a total of 150 skulls, 30 from each of 5 groupings; −4000 Early Predynastic, −3300 Late
Predynastic, −1850 12th and 13th Dynasties, −200 Ptolemaic Period, 150 Roman Period.

Firstly, the sample mean vector for (X1,X2,X3,X4)t is computed for each period, and the pooled

covariance matrix. That is, �rstly Sa, the sample covariance matrix for period a is computed for each

of the 5 periods and then

S = ∑
5
a=1 29Sa
145

.

Here S is a 4 × 4 covariance matrix, with the sample variances along the diagonal.

The Penrose distances may now be computed directly; to compute the Mahalanobis distances, the

inverse S−1 is required. These distances turn out to be:

Penrose
I II III IV V

I −
II 0.023 −
III 0.216 0.163 −
IV 0.493 0.404 0.108 −
V 0.736 0.583 0.244 0.066 −

Mahalanobis
I II III IV V

I −
II 0.091 −
III 0.903 0.729 −
IV 1.881 1.594 0.443 −
V 2.697 2.176 0.911 0.219 −

Due to the change of scale (the Penrose is divided by a 1/p) it does not make sense to compare the

absolute values of these distances, but the ratios should be comparable, giving the change between one

group and another. The ratio of the I → II and I → V distance is 0.736/0.023 = 32.0 for the Penrose

and 2.697/0.091 = 29.6 for the Mahalanobis measure; the results are similar.

1.7. THE MANTEL RANDOMISATION TEST 9

Implementation The computation may be implemented in R as follows: the data is found on the

course home page under skulls.dat and is loaded as follows:

www2 = "https://www.mimuw.edu.pl/~noble/courses/MultivariateStatistics/data/skulls.dat"

skulls = read.table(www2,header=T)

To get the means for each variable by category, try

> x2 <- by(skulls[,-5],skulls[,5],colMeans)

> y<-simplify2array(x2)

and for the covariance matrices by category, try

> S <- by(skulls[,-5],skulls[,5],cov)

> Sarray<-simplify2array(S)

To obtain the pooled covariance,

> Spooled <-

29*(Sarray[,,1]+Sarray[,,2]+Sarray[,,3]+Sarray[,,4]+Sarray[,,5])/145

> Spooled

MB BH BL NH

MB 21.11080460 0.03678161 0.07908046 2.008966

BH 0.03678161 23.48459770 5.20000000 2.845057

BL 0.07908046 5.20000000 24.17908046 1.133333

NH 2.00896552 2.84505747 1.13333333 10.152644

To obtain the Mahalanobis distance,

> mahalanobis(y[,1],y[,2],Spooled,inverted=FALSE)

[1] 0.09103424

I have not found an existing R script that gives the whole array of Mahalanobis distances presented in

a single matrix, but this is a relatively easy exercise.

1.7 The Mantel Randomisation Test

The Mantel test (1967) was introduced to detect space / time clustering of diseases. Suppose that n

objects are being studied and suppose that there are observations on two sets of observations. Let M

be the n × n matrix where Mij is the distance between object i and object j based on the �rst set of

variables and let E be a matrix of distances between the objects based on the second set of variables.

Mantel's test assesses whether or not the elements in M and E show some signi�cant correlation. Let

Z =
n

∑
j=2

j−1

∑
k=1

MjkEjk.

10 CHAPTER 1. GEOMETRICAL REPRESENTATION AND DISTANCES

This is compared with observations

Zσ =
n

∑
j=2

j−1

∑
k=1

Mσ(j)σ(k)Ejk,

where σ is a randomly chosen permutation of (1, . . . , n). The values zσ are computed for each of the n!

permutations σ and then it is seen if Z is a `typical' observation of this distribution (i.e. does it land

between the α
2 ×100 and 1− α

2 ×100 percentiles of this empirical distribution, where α is the signi�cance

level?)

For the Egyptian skulls data, the n objects are the n di�erent skulls. To perform a Mantel ran-

domisation test, the two sets of variables are: Set 1 (on which M is based) are the measurements of

the skulls and Set 2 (on which E is based) is the single variable, the period from which the skull comes.

Example 1.2 (Ozone data).

To perform a Mantel test, the ade4 package may be used:

> install.packages("ade4")

> library("ade4")

Load the ozone.csv data set.

> ozone <- read.csv("~/ozone.csv")

> View(ozone)

> head(ozone)

Station Av8top Lat Lon

1 60 7.225806 34.13583 -117.9236

2 69 5.899194 34.17611 -118.3153

3 72 4.052885 33.82361 -118.1875

4 74 7.181452 34.19944 -118.5347

5 75 6.076613 34.06694 -117.7514

6 84 3.157258 33.92917 -118.2097

This contains ozone measurements from thirty-two locations in the Los Angeles area aggregated over

one month. The dataset includes the station number (Station), the latitude and longitude of the

station (Lat and Lon), and the average of the highest eight hour daily averages (Av8top). We want

to test whether the di�erences in ozone measurements are smaller for stations that are closer together

than for stations that are far apart.

To run a Mantel test, generate two distance matrices, one containing spatial distances and one

containing distances between measured outcomes at the given points. In the spatial distance matrix,

entries for pairs of points that are close together are lower than for pairs of points that are far apart.

In the measured outcome matrix, entries for pairs of locations with similar outcomes are lower than

for pairs of points with dissimilar outcomes. This may be done using the dist function. The Mantel

test function requires objects of this `distance' class.

1.7. THE MANTEL RANDOMISATION TEST 11

> station.dists <- dist(cbind(ozone$Lon, ozone$Lat))

> ozone.dists <- dist(ozone$Av8top)

> as.matrix(station.dists)[1:5, 1:5]

1 2 3 4 5

1 0.0000000 0.3937326 0.4088031 0.6144127 0.1854888

2 0.3937326 0.0000000 0.3749446 0.2206810 0.5743590

3 0.4088031 0.3749446 0.0000000 0.5116772 0.4994034

4 0.6144127 0.2206810 0.5116772 0.0000000 0.7944601

5 0.1854888 0.5743590 0.4994034 0.7944601 0.0000000

> as.matrix(ozone.dists)[1:5, 1:5]

1 2 3 4 5

1 0.000000 1.326612 3.172921 0.044354 1.149193

2 1.326612 0.000000 1.846309 1.282258 0.177419

3 3.172921 1.846309 0.000000 3.128567 2.023728

4 0.044354 1.282258 3.128567 0.000000 1.104839

5 1.149193 0.177419 2.023728 1.104839 0.000000

These are the two matrices which the function will test for a correlation. The test consists of calculating

the correlation of the entries in the matrices, then permuting the matrices and calculating the same

test statistic under each permutation and comparing the original test statistic to the distribution

of test statistics from the permutations to generate a p-value. The number of permutations de�nes

the precision with which the p-value can be calculated. The function to perform the Mantel test is

mantel.rtest and the required arguments are the two distance matrices. The number of permutations

can also be speci�ed by the user; the default value is 99.

> mantel.rtest(station.dists, ozone.dists, nrepet = 9999)

Monte-Carlo test

Observation: 0.1636308

Call: mantel.rtest(m1 = station.dists, m2 = ozone.dists, nrepet = 9999)

Based on 9999 replicates

Simulated p-value: 0.0293

Based on these results, we can reject the null hypothesis that these two matrices, spatial distance and

ozone distance, are unrelated with α = .05. The observed correlation, r = 0.1636308, suggests that the
matrix entries are positively associated. So smaller di�erences in ozone are generally seen among pairs

of stations that are close to each other than far from each other. Note that since this test is based on

random permutations, the same code will always arrive at the same observed correlation but rarely

the same estimate of the p-value.

12 CHAPTER 1. GEOMETRICAL REPRESENTATION AND DISTANCES

Lecture 1: Exercises

1. Consider the data matrix iris, which is available as one of the datasets in R. Type

> iris

to see the names of the variables, their recorded values and the numbers of observations. Typing

>?iris

will give a brief description in the help window (bottom right).

Plot the Andrews curves corresponding to the �rst ten individuals of each of the three groups

into one diagram using x1 as sepal length, x2 as sepal width, x3 as petal length, x4 as petal

width. Try to spot clusters and outliers.

Now plot the corresponding Andrews curves with x1 as petal length, x2 as petal width, x3 as

sepal length, x4 as sepal width.

The pattern has changed signi�cantly, indicating that with Andrews curves, some permutations

of the variables can be more informative than others.

2. Consider the data for ozone measurements from thirty two locations in the Los Angeles area,

found in the �le ozone.csv in the course data directory. Perform a Mantel test to see whether

the di�erences between ozone measurements are smaller for stations that are closer together.

Chapter 2

Principal Component and Factor Analysis

2.1 Introduction

Let x denote an n × p data matrix of n p-variate observations. Principal Component Analysis is a

technique applied when some of the variables are highly correlated. The aim is to �nd m linear com-

binations of the variables, where m < p, which describe the sample covariance or correlation structure

of the data set.

PCA may be carried out on either S, the sample covariance matrix, or R, the sample correlation

matrix. The sample correlation matrix is preferable if the p variables in the data set have widely

varying scales.

The aim is

� data reduction (reducing p variables to m,p linear combinations of the variables)

� interpretation (we examine which variables in�uence the principal components and, from this,

try to determine hidden factors; the principal components are factors).

2.2 Principal Component Analysis

Since PCA is concerned with the covariance / correlation structure of the variables, the data matrix

is �rst centred, so that the columns are all mean zero. Let

H = In −
1

n
1n1

t
n (2.1)

where In denotes the n × n identity matrix and 1n denotes the n-vector with each entry 1. Let

z =Hx,

then the entries of the n × p matrix z are

zij = xij − x.j .

13

14 CHAPTER 2. PRINCIPAL COMPONENT AND FACTOR ANALYSIS

The sample covariance matrix S of x is given by:

S = 1

n − 1

n

∑
k=1

(xki − x.i)(xkj − x.j) =
1

n − 1
ztz. (2.2)

A principal component analysis simply �nds the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λp of the sample covariance

matrix S and the corresponding eigenvectors P.j ∶ j = 1, . . . , p. The principal components are the

uncorrelated linear combinations; y = zP , where y.1 has the largest possible statistical variance among

orthonormal transformations of z and y.q has the largest statistical variance under the constraint that

it is uncorrelated with (y.1, . . . ,y.,q−1).

Lemma 2.1. Let S be the sample covariance matrix de�ned by Equation (2.2) and let λ1 be the largest

eigenvalue of S and let γ denote the corresponding normalised eigenvector; namely,

Sγ = λ1γ,
p

∑
j=1

γ2j = 1.

Let zij = xij − x̄.j. Then, for any p- vector a, with ∑p
j=1 a

2
j = 1,

n

∑
i=1

⎛
⎝

p

∑
j=1

ajzij
⎞
⎠

2

≤
n

∑
i=1

⎛
⎝

p

∑
j=1

γjzij
⎞
⎠

2

.

Proof

n

∑
i=1

⎛
⎝

p

∑
j=1

ajzij
⎞
⎠

2

=
n

∑
i=1

p

∑
jk=1

ajakzijzik

= (n − 1)∑
jk

ajakSjk = (n − 1)atSa = (n − 1)atP tDPa = (n − 1)btDb,

where b = Pa. Note that btb = atP tPa = ata = 1, so b is a unit vector. Since D = diag(λ1, . . . , λp) where
λ1 ≥ . . . ≥ λp, it follows that the expression is maximised if b = (1,0, . . . ,0), so

n

∑
i=1

⎛
⎝

p

∑
j=1

ajzij
⎞
⎠

2

≤ (n − 1)λ1.

Meanwhile, since γ is a unit eigenvector of S with eigenvalue λ1, it follows that

n

∑
i=1

⎛
⎝

p

∑
j=1

γjzij
⎞
⎠

2

= (n − 1)γtSγ = (n − 1)λ1γtγ = (n − 1)λ1

and the result follows.

2.2. PRINCIPAL COMPONENT ANALYSIS 15

Notation λk will be used to denote the kth largest eigenvalue.

De�nition 2.2 (Principal Component, Loading Vector). Let x denote the n× p data matrix, n multi-

variate observations on p variables. Let P denote the orthonormal matrix and D the diagonal matrix

with elements arranged in decreasing order such that S = PDP t. Let H be the n × n matrix de�ned by

Equation (2.1). The columns of the matrix

y =HxP (2.3)

are called the sample principal components. The ith element of the kth column represents the score of

the kth principal component for the ith observation. The kth column of the orthonormal matrix P is

the loading vector for the kth principal component.

The following theorem is stated without proof; it is left as an exercise.

Theorem 2.3. Let x be an n×p data matrix; n p-variate observations. Let P denote the orthonormal

matrix and D the diagonal matrix with elements from highest to lowest such that S = PDP t, where S

is the unbiased sample covariance matrix. Let

y =HxP

where

H = In −
1

n
11t.

Let

S(y) = 1

n − 1
yty.

Then

1.

S(y) =D

2. Let zk = (z1,k, . . . , zn,k)t where zjk = xjk − 1
n ∑

n
i=1 xik. Then the linear combinations

P1mz1 + . . . + Ppmzp, m = 1, . . . , q ≤ p

span the parallelepiped with the largest volume among all parallelepipeds spanned by standardised

linear combinations of x in variable space.

3. Let c
(Y)
kl = ∑

n
i=1 yikyil. The largest volume is given by

√
det ((c(Y)kl)(k,l)∈{1,...,q}2) = (n − 1)

q/2
√
d11 . . . dmm.

4.

tr(S(x)) = tr(S(y)) = λ1 + . . . + λp.

16 CHAPTER 2. PRINCIPAL COMPONENT AND FACTOR ANALYSIS

Recall For a symmetric p × p matrix, the sum of the trace is equal to the sum of the eigenvalues. It

follows that tr(S) = ∑p
j=1 λj = tr(D).

Interpretation

� Plotting y.,1, . . . ,y.,q for q < p in object space gives the `best' q dimensional summary of x if one

is looking for the parallelepiped of largest volume spanned by standardised linear combinations

of x in variable space (recall that the point xt ∶= (x.,1, . . . , x.,p) is the origin in variable space.

� It often turns out that all the loadings for the �rst principal component are positive. If this is the

case, then it can be interpreted as a measurement of size. If this is the case, then it necessarily

follows that all the other principal components have both positive and negative loadings and are

therefore interpreted in terms of shape. Since the general idea is to reduce the data and to only

use m principal components where m < p, they will not cover all possibilities for shape.

� The sum of the unbiased sample variances, that is tr(S) is also called the total sample variation

of x. If only m principal components are used, then

λ1 + . . . + λm
λ1 + . . . + λp

represents the proportion of the variance explained by the �rst m sample principal components.

There are two usual criteria for deciding how many to use:

1. The m sample prinicipal components explain 90% of the variation.

2. (Kaiser's criterion) The variances of the sample principal components beyond the mth prin-

cipal components account for less than the average 1
ptr(S).

When p ≤ 20, the second of these tends to include too few components.

� After deciding on the number of principal components m to include, the data is represented only

using the �rst m principal components: using

y =HxP = zP,

it follows that

x = 1nxt + yP t

the components m + 1, . . . , p are estimated by 0, giving x̂, the estimate of x as:

x̂ = 1x̄t + (y.,1∣ . . . ∣y.,m)
⎛
⎜⎜
⎝

P11 . . . Pp1

⋮ ⋱ ⋮
P1m . . . Ppm

⎞
⎟⎟
⎠
.

Recall that the vector (P1k, . . . , Pp,k)t is the kth loading vector.

2.3. HOW TO DO A PRINCIPAL COMPONENT ANALYSIS 17

� Sometimes it is better to use standardised variables. This occurs if variables on a smaller scale

give signi�cant information, which can be lost if the raw data is used. The solution is to start

by standardising the data (namely, for each column, removing the sample mean and dividing

through by the sample standard deviation) and applying a principal component analysis to the

standardised data. This is equivalent to carrying out a PCA on the correlation matrix rather

than the covariance matrix.

The analysis is not scale invariant; the relative importance of the eigenvalues may change, the

loadings will change and their interpretation may change. Whether the data or the standardised

data is to be used depends on the situation.

� It may be possible to decide that some of the p variables are redundant, based on the PCA analysis

on the correlation matrix. This is done by considering the last sample principal component and

discarding the variable assigned to the loading with largest absolute value. Then continue with

the loadings of the second last principal component, and so on. Stop discarding if certain criteria

are satis�ed: for example,

1. the eigenvalue corresponding to the loadings is greater than 0.7 (this seems to work in

practice)

2. the sample principal components corresponding to the loadings you have not yet considered

explain less than 80% of the variation.

Using either criterion, at least four variables should always be retained.

The columns of the matrix P are often called the coe�cients.

Prinipal component analysis is only useful as a tool if some of the eigenvalues of the statistical corre-

lation matrix are very small. Absolutely nothing is achieved by a principal component analysis if all

the eigenvalues of the correlation matrix are signi�cant.

2.3 How to do a Principal Component Analysis

Throughout this discussion, variance refers to statistical variance, covariance to statistical covariance

and correlation to statistical correlation. Firstly, suppose that the PCA is being carried out on the co-

variance. The procedure is as follows: suppose there are n independent observations from (X1, . . . ,Xp).
Firstly, the data is centralised:

z =Hx

and the statistical covariance is computed;

S = 1

n − 1
ztz.

The �rst principal component is

18 CHAPTER 2. PRINCIPAL COMPONENT AND FACTOR ANALYSIS

y.1 = P11z.1 + . . . + Pp1z.p,

where P11, . . . , Pp1 are chosen to maximise Var(y.1) subject to the constraint that ∑p
k=1 P

2
k1 = 1. That

is, to maximise

P t
.1SP.1

where P.1 is taken as a column vector, subject to the constraint. Once the �rst component has been

established, the second component

y.2 = P12z.1 + . . . + Pp2z.p

is established by �nding (P12, . . . , Pp2) that maximises Var(y.2) subject to the constraints

p

∑
k=1

P 2
k2 = 1,

P t
.2SP.2 = 0.

That is, P.2 is chosen to ensure that the statistical correlation is zero. Inductively, once P.j have been

established for j = 1, . . . , k − 1, P.k are established by maximising the estimate of Var(yk),

P t
.kSP.k

subject to the constraints that
p

∑
l=1

P 2
lk = 1

and the statistical covariances Cov(y.,j ,y.,k) are zero for j = 1, . . . , k − 1. That is

P t
.jSP.k = 0, j = 1, . . . , k − 1.

Note that the statistical variances of the principal components are the eigenvalues of the sample

covariance matrix and that the columns P.k are the eigenvectors.

Recall that, for a symmetric m ×m matrix C, with eigenvalue λ1, . . . , λm,

tr(C) =
m

∑
j=1

λj .

Let λj denote the estimates of Var(Zj). It follows that

p

∑
j=1

Sjj =
p

∑
j=1

λj .

Since principal component analysis considers dependence and independence, it is usual to code the

variables x.1, . . . ,x.p so that they each have mean 0 and variance 1 at the beginning of the analysis.

The procedure with this modi�cation is therefore as follows:

2.4. CONFIDENCE INTERVALS FOR PCA EIGENVALUES AND EIGENVECTORS 19

1. Compute x̄.k for k = 1, . . . , p and Skl = 1
n−1 ∑

n
j=1(xjk−x̄.k)(xjl−x̄.l), the sample means and sample

covariance matrix.

2. Compute the coded variables, yjk =
xjk−x̄.k
√
Skk

.

3. Compute the correlation matrix

Rkl =
Skl√
SkkSll

.

This is the covariance matrix for the coded variables.

4. Find the eigenvalues λ1, . . . , λp and the corresponding eigenvectors P.1, . . . , P.p in the way de-

scribed above.

5. Discard any principal components that do not account for a signi�cant variation in the data.

This means that y.k, . . . ,y.p are discarded for k such that ∑p
j=k+1 λj ≤ α ≤ ∑

p
j=k λj where α is the

level of the variation that is to be ignored. Usually, this is roughly 20% or, when the data is

standardised, components corresponding to eigenvalues less than 1 are ignored.

2.4 Con�dence Intervals for PCA Eigenvalues and Eigenvectors

There exists some results in the literature. The proofs of these are long and technical. Much more

seriously, they all rely on the assumption that the data comes from i.i.d. p-variate Gaussian variables

and that n is large.

Theorem 2.4 (Lawley (1956)). If λi is a distinct eigenvalue of the covariance (correlation) matrix,

then

E[λ̂i] = λi +
λi
n
∑
j≠i

λj

λi − λj
+O(n−2)

so that the estimate is asymptotically unbiased and:

V(λ̂i) =
2λ2i
n

⎛
⎝
1 + 1

n
∑
j≠i

(λi
λi − λj

)
2⎞
⎠
+O(n−3).

Also, let ĥi denote the estimate of the ith eigenvector hi with λi the ith eigenvalue, then

1.
√
n(λ̂ − λ) Ð→(d) Np(0,2Λ2)

where Λ = diag(λ1, . . . , λp)

2.
√
n(ĥi − hi) Ð→(d) Np(0,Ei)

where

Ei = λi∑
k≠i

λk
(λi − λk)2

hkh
t
k.

20 CHAPTER 2. PRINCIPAL COMPONENT AND FACTOR ANALYSIS

3. For each i = 1, . . . , p, λ̂i ⊥ ĥi.

Since the `normality' assumption for these results is not usually satis�ed and size of the data set is often

insu�cient for a `central limit theorem e�ect', these results are of limited value. To �nd con�dence

intervals for eigenvalues, bootstrap methods may be used.

If we have an n×p data matrix, a bootstrap method takes randomly chosen subsets of size m, were

m ≤ n and performs the PCA on the subset of size m. By taking M such randomly chosen subsets, an

empirical distribution for the estimate of the eigenvalue λi may be constructed.

2.5 Implementation in R

2.5.1 Sparrow Data

The implementation in R is shown by application to the Bumpus Sparrow data set.

Example 2.1 (Bumpus Sparrow Data).

In 1898, H.C. Bumpus collected data from 49 female sparrows, which he picked up after a severe storm.

Birds 1 to 21 survived; birds 22 to 49 died. The variables measured were X1 total length, X2 alar

extent X3 length of beak and head, X4 length of humerus, X5 length of keel of sternum, X6 returns a

1 if the bird survived and a 0 otherwise. This data set is found in sparrow.dat on the course home

page.

www<-"https://www.mimuw.edu.pl/~noble/courses/QPEDataScience/data/spar

row.dat"

sparrow <- read.table(www,header=T,quote="\"")

View(sparrow)

A principal component analysis can be carried out quite simply using the command prcomp.

pca <- prcomp(sparrow[,-6],scale=TRUE)

print(pca)

Standard deviations:

[1] 1.8834858 0.7399002 0.6203523 0.5756578 0.4345230

Rotation:

PC1 PC2 PC3 PC4 PC5

LENGTH 0.4528873 -0.08190723 0.6184031 0.5613384 -0.3010998

ALAR 0.4481098 0.40195407 0.4199159 -0.5570644 0.3885620

HEADBK 0.4559146 0.26939394 -0.5192954 0.4895259 0.4585472

HUMERUS 0.4749343 0.16267408 -0.4015361 -0.2960348 -0.7064748

STERNUM 0.4008366 -0.85597207 -0.1017315 -0.2174999 0.2213285

The correlation matrix may be obtained in the following way:

2.5. IMPLEMENTATION IN R 21

> cormat <- cor(sparrow[,-6])

> cormat

LENGTH ALAR HEADBK HUMERUS STERNUM

LENGTH 1.0000000 0.6761409 0.6618119 0.6452841 0.6051247

ALAR 0.6761409 1.0000000 0.6433941 0.7287194 0.4887925

HEADBK 0.6618119 0.6433941 1.0000000 0.7631899 0.5262701

HUMERUS 0.6452841 0.7287194 0.7631899 1.0000000 0.6066493

STERNUM 0.6051247 0.4887925 0.5262701 0.6066493 1.0000000

The eigenvalues and eigenvectors from the correlation matrix can be obtained in the following way:

> ev <- eigen(cor(sparrow[,-6]))

> ev

$values

[1] 3.5475186 0.5474524 0.3848369 0.3313819 0.1888102

$vectors

[,1] [,2] [,3] [,4] [,5]

[1,] -0.4528873 -0.08190723 0.6184031 0.5613384 -0.3010998

[2,] -0.4481098 0.40195407 0.4199159 -0.5570644 0.3885620

[3,] -0.4559146 0.26939394 -0.5192954 0.4895259 0.4585472

[4,] -0.4749343 0.16267408 -0.4015361 -0.2960348 -0.7064748

[5,] -0.4008366 -0.85597207 -0.1017315 -0.2174999 0.2213285

Note that λ1 + λ2 + λ3 + λ4 + λ5 = 5, the sum of the trace.

The �rst component accounts for 3.5475
5 × 100 = 70.95% of the total variance. The other principal

components account for 10.95%, 7.70%, 6.63% and 3.77% respectively of the total variance.

Another way of looking at it is as follows: after standardisation, all the original variables have

variance 1. Therefore, the �rst principal component has a variance 3.616 times as much as one of the

original variables, while the second only accounts for half as much as any of the original variables. The

�rst principal component is clearly by far the most important.

The �rst principal component, in terms of the standardised variables, is

Y1 = 0.4529Z1 + 0.4481Z2 + 0.4559Z3 + 0.4749Z4 + 0.4008Z5.

The coe�cients are all nearly equal, so Y1 is an index of the size of the sparrows. Therefore, about

72.3% of the variation in the data is due to di�erences in the size of the sparrows.

The second principal component is

Y2 = −0.0819Z1 + 0.4020Z2 + 0.2694Z3 + 0.1627Z4 − 0.8560Z5.

This contrasts Z2, Z3 and Z4 on the one hand, with the length of the keel of the sternum Z5 on the

other. Here Y2 represents a shape di�erence between the sparrows.

22 CHAPTER 2. PRINCIPAL COMPONENT AND FACTOR ANALYSIS

2.5.2 Bootstrap for Con�dence Intervals

Consider the Fisher Iris data. Suppose we want a 95% con�dence interval for the loading of the �rst

principal component with respect to Sepal length.

library(boot)

getPrcStat <- function (samdf,vname,pcnum){

prcs <- prcomp(samdf[1:4]) # returns matrix

return(prcs$rotation[vname,pcnum]) # pick out the thing we need

}

bootEst <- function(df,d){

sampledDf <- df[d,] # resample dataframe

return(getPrcStat(sampledDf,"Sepal.Length",1))

}

bootOut <- boot(iris,bootEst,R=10000)

boot.ci(bootOut,type=c("basic"))

This gives the output:

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 10000 bootstrap replicates

CALL :

boot.ci(boot.out = bootOut, type = c("basic"))

Intervals :

Level Basic

95% (0.3364, 1.1086)

Calculations and Intervals on Original Scale

2.5.3 Using the Principal Components

In the `Sparrow' data set, we see that by far the most of the variation is accounted for by the �rst

two principal components, so these two components should be useful for most analysis of the data; the

other three components should not add much.

The question we now consider is whether the 5 quantitative variables can be used to show di�erences

between the two groups, those that survived the storm and those that did not.

A scree plot gives the proportion of the variance attributable to each component; this is found in

Figure 2.1.

2.6. WEIGHTED PROJECTION METHODS 23

> screeplot(pca)

pca

Var
ian

ces

0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

Figure 2.1: Scree plot for Sparrow principal components

Now let us make a scatter plot of the �rst two principal components. A nice package for plots and

visualisation is ggplot2. Firstly, we add the �rst two principal components to the `sparrow' data frame

as follows:

spa <- sparrow

spa$pc1 <- pca$x[,1]

spa$pc2 <- pca$x[,2]

Using the plotting command from ggplot2:

qplot(pc2,pc1,colour=SURVIVE,data=spa)

gives the scatterplot in Figure 2.2. This illustrates that the population of birds that did not survive

has more `extreme' values than the population that did survive.

2.6 Weighted Projection Methods

Let x be the n × p data matrix, corresponding to n p-variate observations x1, . . . , xn. Let y
1
, . . . , y

n

denote the corresponding n points obtained by projecting onto a q dimensional subspace of the object

space. The following properties characterise the q dimensional subspace found by PCA.

1. The points x1, . . . , xn are projected perpendicularly onto y
1
, . . . , y

n
.

2. The data points y
1
, . . . , y

n
have the greatest variance among standardised q dimensional subspace

projections.

24 CHAPTER 2. PRINCIPAL COMPONENT AND FACTOR ANALYSIS

−2.5

0.0

2.5

−2 −1 0 1
pc2

pc1

SURVIVE

FALSE

TRUE

Figure 2.2: Scatter plot for �rst two Sparrow principal components

The points are those in the q dimensional space that minimise:

n

∑
i=1

n

∑
j=1

(dij − d̂ij)2

where

dij =

¿
ÁÁÀ

p

∑
k=1

(xik − xjk)2, d̂ij =

¿
ÁÁÀ

p

∑
k=1

(yik − yjk)2.

A disadvantage of the constraint that y
1
, . . . , y

n
have the largest possible variation is that observations

close to the centre in the projected space may be far from the centre in the higher dimensional space.

A better quantity to minimise is
n

∑
i=1

n

∑
j=1

ωij(dij − d̂ij)2

where ωij controls the accuracy of the comparisons. For example, take ωij = dij if accurate repre-

sentation of large distances is required and ωij = 1
dij

if accurate representation of small distances is

required.

2.7 Factor Analysis

As usual with descriptive statistics, `Var' represents a statistical variance and `Cov' represents statistical

covariance; the terms refer to the statistics computed from the data and not to any features of the

population distribution.

Factor analysis may be seen as an extension of Principal Component Analysis. Given p variables

X1, . . . ,Xp, it is hoped that they can be expressed, or mostly expressed, by a reduced number of factors,

which are linear combinations of the variables. Based on the original variables, it is hoped that these

factors may have an interpretation.

2.7. FACTOR ANALYSIS 25

Suppose there are n observations, (xj1, . . . , xjp)nj=1 of the p variables. One starts by applying

a principal component analysis on the correlation (that is, on the standardised data). A suitable

value of m is chosen and principal components after level m are neglected. Let Y1, . . . , Yp denote the

principal components, with corresponding eigenvalues λ1 ≥ . . . ≥ λp. Suppose that the data has been

standardised. Then Y = P tX. In co-ordinates,

Yk = P1kX1 + . . . + PpkXp, k = 1, . . . , p.

These linear combinations of the variables, as discussed earlier, are statistically uncorrelated. Now,

choose m, the number of factors in the model. As discussed earlier, there are two usual methods;

either let m equal the number of eigenvalues greater than or equal to 1 (Kaiser's method) or else let

m denote the lowest number of eigenvalues that account for more than 80% of the variation.

Recall that P is orthonormal and hence P −1 = P t. It follows that X = PY . In co-ordinates,

Xj = Pj1Y1 + . . . PjpYp, j = 1, . . . , p.

Set Fj =
Yj
√
λj

for j = 1, . . . ,m, then the (Fj)mj=1 are uncorrelated and Var(Fj) = 1 for each j = 1, . . . ,m.

Let

Ajk =
√
λkPjk j = 1, . . . , p, k = 1, . . .m.

Let ϵa = ∑p
k=m+1AakYk. Then, for j = 1, . . . , p,

Xj = Aj1F1 + . . . +AjmFm + ϵj , j = 1, . . . , p.

The F1, . . . , Fm are uncorrelated factors with Var(Fj) = 1 for all j = 1, . . . ,m.

De�nition 2.5 (Speci�city). The quantity Var(ϵa) is known as the speci�city of Xa, the part of the

variance that is unrelated to the common factors.

The elements Aa1, . . . ,Aam are known as the provisional factor loadings for variable a.

De�nition 2.6 (Factor Loadings). Once the errors ϵ1, . . . , ϵp have been determined, along with the

factors F1, . . . , Fm to be used, the factor loadings for the factor a are the coe�cients Aa1, . . . ,Aam such

that

Xa =
m

∑
j=1

AajFj + ϵa.

De�nition 2.7 (Communality). The communality of a variable Xj in a factor analysis is de�ned as

∑m
k=1A

2
jk, where m is the number of factors. It gives the correlation between Xj and the part of Xj

explained by the factors.

An orthonormal transformation of uncorrelated variables yields uncorrelated variables. Therefore, any

orthonormal transformation D yielding factors F ∗ given by

26 CHAPTER 2. PRINCIPAL COMPONENT AND FACTOR ANALYSIS

F∗ =DF

will produce a suitable decomposition of X into uncorrelated factors. The second stage of the analysis

is to �nd a rotation matrix D that produces rotated factors that are most convenient.

The last stage is to calculate the factor scores (F ∗j1, . . . , F ∗jm) for each observation j = 1, . . . , n.

Note that the factors produced by a principal component analysis are orthogonal (i.e. uncorrelated).

In the second stage, an orthonormal transformation will preserve this feature. If other transformations

are used, the factors will not be independent.

The Varimax Rotation This is the transformation taken from the orthogonal transforms that

maximises the variance of the squared loadings; that is, choose D to maximise

V ∶= 1

p

k

∑
l=1

⎛
⎜
⎝

p

∑
j=1

A4
jl −
⎛
⎝
1

p

p

∑
j=1

A2
jl

⎞
⎠

2⎞
⎟
⎠
.

The logic behind this is that if this is large, then each values of Ajk is close to either 0 or 1, so that

the variable is explained as much as possible by a single factor.

Note that, by standardisation, Var(Fj) = 1 for all j and Cov(Fj , Fk) = 0 for j ≠ k. If ϵ is small (as

it should be if the variables are properly explained by m factors), then the correlation structure of X

(where the variables have been standardised) is given by

Cov(Xj ,Xk) = Cov(
m

∑
a=1

AjaFa,
m

∑
b=1

AkbFb) =
m

∑
a=1

AjaAka.

The Value of Factor Analysis

Factor analysis is often useful for gaining qualitative insight into the structure of multivariate data,

but it should be regarded purely as a piece of descriptive statistics; it has no value whatsoever for

formal inferential statistics. It is not appropriate if it is carried out on a single small sample that

cannot be replicated and then assuming that the factors obtained must represent underlying variables.

Simulations have shown that even if a postulated factor model is correct, the chance of recovering it

using the available methods is not very high.

2.8 Example: Country Employment Pro�les

This example considers the percentages of people employed in nine industry sectos in various Euro-

pean countries in the years from 1989 to 1995. 30 countries are considered and 9 di�erent industry

sectors (X1 = AGR: agriculture forestry and �shing, X2 = MIN: mining and quarrying, X3 = MAN:

manufacturing, X4 = PS: power and water supplies, X5 = CON: construction, X6 = SER: services, X7 =
FIN: �nance, X8 = SPS: social and personal services and X9 = TC: transport and communications.

In addition, the countries were classi�ed as to whether they belonged to the EU, or EFTA, or were

2.8. EXAMPLE: COUNTRY EMPLOYMENT PROFILES 27

Eastern European, or `other'. The data is from 1995 and uses the classi�cations that were appropriate

then. For `USSR' read `former USSR', for `Yugoslavia' read `former Yugoslavia', etc ... The data set

is found on the course home page under employment.csv.

www<-"https://www.mimuw.edu.pl/~noble/courses/QPEDataScience/data/empl

oyment.csv"

employment <- read.csv(www)

View(employment)

country group AGR MIN MAN PS CON SER FIN SPS TC

1 Belgium EU 2.6 0.2 20.8 0.8 6.3 16.9 8.7 36.9 6.9

2 Denmark EU 5.6 0.1 20.4 0.7 6.4 14.5 9.1 36.3 7.0

3 France EU 5.1 0.3 20.2 0.9 7.1 16.7 10.2 33.1 6.4

4 Germany EU 3.2 0.7 24.8 1.0 9.4 17.2 9.6 28.4 5.6

5 Greece EU 22.2 0.5 19.2 1.0 6.8 18.2 5.3 19.8 6.9

6 Ireland EU 13.8 0.6 19.8 1.2 7.1 17.8 8.4 25.5 5.8

7 Italy EU 8.4 1.1 21.9 0.0 9.1 21.6 4.6 28.0 5.3

8 Luxemb. EU 3.3 0.1 19.6 0.7 9.9 21.2 8.7 29.6 6.8

9 Netherl. EU 4.2 0.1 19.2 0.7 0.6 18.5 11.5 38.3 6.8

10 Portugal EU 11.5 0.5 23.6 0.7 8.2 19.8 6.3 24.6 4.8

11 Spain EU 9.9 0.5 21.1 0.6 9.5 20.1 5.9 26.7 5.8

12 U.K. EU 2.2 0.7 21.3 1.2 7.0 20.2 12.4 28.4 6.5

13 Austria EFTA 7.4 0.3 26.9 1.2 8.5 19.1 6.7 23.3 6.4

14 Finland EFTA 8.5 0.2 19.3 1.2 6.8 14.6 8.6 33.2 7.5

15 Iceland EFTA 10.5 0.0 18.7 0.9 10.0 14.5 8.0 30.7 6.7

16 Norway EFTA 5.8 1.1 14.6 1.1 6.5 17.6 7.6 37.5 8.1

17 Sweden EFTA 3.2 0.3 19.0 0.8 6.4 14.2 9.4 39.5 7.2

18 Switzerl. EFTA 5.6 0.0 24.7 0.0 9.2 20.5 10.7 23.1 6.2

19 Albania Eastern 55.5 19.4 0.0 0.0 3.4 3.3 15.3 0.0 3.0

20 Bulgaria Eastern 19.0 0.0 35.0 0.0 6.7 9.4 1.5 20.9 7.5

21 Czech/Sl. Eastern 12.8 37.3 0.0 0.0 8.4 10.2 1.6 22.9 6.9

22 Hungary Eastern 15.3 28.9 0.0 0.0 6.4 13.3 0.0 27.3 8.8

23 Poland Eastern 23.6 3.9 24.1 0.9 6.3 10.3 1.3 24.5 5.2

24 Romania Eastern 22.0 2.6 37.9 2.0 5.8 6.9 0.6 15.3 6.8

25 USSR Eastern 18.5 0.0 28.8 0.0 10.2 7.9 0.6 25.6 8.4

26 Yugoslav. Eastern 5.0 2.2 38.7 2.2 8.1 13.8 3.1 19.1 7.8

27 Cyprus Other 13.5 0.3 19.0 0.5 9.1 23.7 6.7 21.2 6.0

28 Gibraltar Other 0.0 0.0 6.8 2.0 16.9 24.5 10.8 34.0 5.0

29 Malta Other 2.6 0.6 27.9 1.5 4.6 10.2 3.9 41.6 7.2

30 Turken Other 44.8 0.9 15.3 0.2 5.2 12.4 2.4 14.5 4.4

28 CHAPTER 2. PRINCIPAL COMPONENT AND FACTOR ANALYSIS

Firstly, the sample correlation matrix for the standardised variables for the nine industries may be

obtained:

> cormat <- cor(employment[,3:11])

> cormat

AGR MIN MAN PS CON SER

AGR 1.0000000 0.31606875 -0.25438889 -0.38235660 -0.34861031 -0.60471243

MIN 0.3160688 1.00000000 -0.67193466 -0.38737805 -0.12902071 -0.40654843

MAN -0.2543889 -0.67193466 1.00000000 0.38789059 -0.03445846 -0.03294004

PS -0.3823566 -0.38737805 0.38789059 1.00000000 0.16479638 0.15498141

CON -0.3486103 -0.12902071 -0.03445846 0.16479638 1.00000000 0.47308319

SER -0.6047124 -0.40654843 -0.03294004 0.15498141 0.47308319 1.00000000

FIN -0.1757533 -0.24805846 -0.27374053 0.09430991 -0.01802316 0.37928368

SPS -0.8114755 -0.31641839 0.05028408 0.23774016 0.07200705 0.38798122

TC -0.4890732 0.04363923 0.24283766 0.10527250 -0.05581358 -0.08413452

FIN SPS TC

AGR -0.17575329 -0.81147553 -0.48907320

MIN -0.24805846 -0.31641839 0.04363923

MAN -0.27374053 0.05028408 0.24283766

PS 0.09430991 0.23774016 0.10527250

CON -0.01802316 0.07200705 -0.05581358

SER 0.37928368 0.38798122 -0.08413452

FIN 1.00000000 0.16601516 -0.38953393

SPS 0.16601516 1.00000000 0.47766783

TC -0.38953393 0.47766783 1.00000000

The eigenvalues and eigenvectors may be obtained by:

> ev <- eigen(cormat)

> ev

$values

[1] 3.113358e+00 1.808358e+00 1.496866e+00 1.063671e+00 7.102833e-01

3.113942e-01

[7] 2.927508e-01 2.033110e-01 7.945502e-06

$vectors

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.5115354 0.0232344722 -0.27813086 0.01485514 -0.02439567 -0.04269187

[2,] 0.3747526 -0.0007024389 0.51486608 0.11531920 0.34654797 0.19857793

[3,] -0.2461080 -0.4314434990 -0.50242351 0.05793390 -0.23361655 -0.03084313

[4,] -0.3159322 -0.1085180547 -0.29430765 0.02293593 0.85439646 0.20623295

2.8. EXAMPLE: COUNTRY EMPLOYMENT PROFILES 29

[5,] -0.2212554 0.2441275595 0.06938066 0.78219676 0.06182311 -0.50302464

[6,] -0.3812441 0.4090143576 0.06449693 0.16822359 -0.26685196 0.67268477

[7,] -0.1309033 0.5524403796 -0.09429308 -0.49138387 0.13088760 -0.40566601

[8,] -0.4283699 -0.0552823165 0.36065300 -0.31507798 -0.04512635 -0.15820227

[9,] -0.2063304 -0.5161419256 0.41300662 -0.04165603 -0.02322350 -0.14187821

[,7] [,8] [,9]

[1,] 0.16697139 0.53949206 0.58212143

[2,] -0.21599546 -0.44673451 0.41883163

[3,] -0.23891313 -0.43014036 0.44707205

[4,] 0.06108782 0.15521495 0.03031326

[5,] 0.01933405 0.03159870 0.12874070

[6,] -0.17317838 0.20281109 0.24507813

[7,] -0.45674441 -0.02535405 0.19070896

[8,] 0.62182700 -0.04639853 0.41013704

[9,] -0.48888289 0.50530953 0.06084925

The eigenvalues, with the percentages of the total of nine in parentheses, are

3.112(34.6%), 1.809(20.1%), 1.496(16.6%),
1.063(11.8%), 0.710(7.9%), 0.311(3.5%), 0.293(3.3%), 0.204(2.3%), 0.000(0.0%).
The last value is necessarily zero, because the data is percentages of the workforce, which necessarily

adds up to 100. Therefore, although there are 9 variables, there are only 8 free variables. This

information may be obtained as follows:

> pca <- prcomp(employment[,3:11],scale = TRUE)

> summary(pca)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7

PC8 PC9

Standard deviation 1.7645 1.3448 1.2235 1.0313 0.84278 0.5580 0.54106

0.45090 0.002819

Proportion of Variance 0.3459 0.2009 0.1663 0.1182 0.07892 0.0346 0.03253

0.02259 0.000000

Cumulative Proportion 0.3459 0.5469 0.7132 0.8314 0.91028 0.9449 0.97741

1.00000 1.000000

It is a matter of judgement whether or not to use 4 or 5 components. The �rst 4 components account

for 83% of the variation; the �rst 5 account for over 90% of the variation. From the eigenvectors,

Z1 = 0.51(AGR) + 0.37(MIN)

−0.25(MAN) − 0.31(PS) − 0.22(CON) − 0.38(SER) − 0.13(FIN) − 0.42(SPS) − 0.21(TC),

30 CHAPTER 2. PRINCIPAL COMPONENT AND FACTOR ANALYSIS

Z2 = −0.02(AGR) + 0.00(MIN)

+0.43(MAN) + 0.11(PS) − 0.24(CON) − 0.41(SER) − 0.55(FIN) + 0.05(SPS) + 0.52(TC).

and the others similarly.

The �rst component contrasts (AGR) and (MIN) on the one hand with (MAN), (PS), (CON), (SER),

(FIN), (SPS) and (TC) on the other hand.

The second component gives little or no weight to (AGR), (MIN), (SPS) and constrasts (MAN), (PS),

(TC) with (CON), (SER), (FIN).

Interpretations for the other components may be derived similarly.

While PC1 and PC2 are uncorrelated when taken with respect to the whole data set, ignoring the

classi�cations, it is interesting to plot PC1 against PC2, using di�erent symbols for the four categories

(Western EU, EFTA, Eastern European, Other). When prcomp is used and the results stored in pca,

the principal component values are stored under pca$x. They may be added to the data frame in the

following way:

> emp <- employment

> emp$pc1 <- pca$x[,1]

> emp$pc2 <- pca$x[,2]

> library("ggplot2")

> qplot(pc2,pc1,colour=group,data=emp)

−2.5

0.0

2.5

5.0

−3 −2 −1 0 1 2 3

pc2

pc
1

group

Eastern

EFTA

EU

Other

Figure 2.3: First two principal components for employment data, coloured by group

The analysis may be continued to give a factor analysis. There are four eigenvalues greater than 1 for

the standardised variables in the principal component analysis, so the `rule of thumb' suggests that

four factors are appropriate using (initially) Fj =
Zj
√
λj
, giving

2.8. EXAMPLE: COUNTRY EMPLOYMENT PROFILES 31

Xj = Aj1F1 +Aj2F2 +Aj3F3 +Aj4F4 + ϵj , . . . j = 1, . . . ,9.

It is useful if each variable can be expressed in terms of as few factors as possible. The next step

is therefore to try a rotation, which keeps the factors uncorrelated. That is, F∗ = ΘF, where Θ is a

rotation matrix, which tries to ensure that for each variable the loading is weighted as much as possible

towards one predominant factor. The varimax seems to work quite well.

> install.packages("GPArotation")

>library("GPArotation")

>install.packages("psych")

>library("psych")

> fit <- principal(emp[,3:11], nfactors=4, rotate="varimax")

> fit

Principal Components Analysis

Call: principal(r = emp[, 3:11], nfactors = 4, rotate = "varimax")

Standardized loadings (pattern matrix) based upon correlation matrix

RC1 RC3 RC2 RC4 h2 u2

AGR -0.85 -0.27 -0.10 -0.36 0.93 0.068

MIN -0.11 -0.86 -0.30 -0.10 0.85 0.152

MAN 0.03 0.89 -0.32 -0.09 0.91 0.093

PS 0.19 0.64 0.04 0.14 0.46 0.538

CON 0.02 0.04 -0.08 0.95 0.92 0.082

SER 0.35 0.15 0.48 0.65 0.79 0.209

FIN 0.08 0.00 0.93 -0.01 0.88 0.125

SPS 0.91 0.12 0.18 0.04 0.88 0.123

TC 0.73 0.03 -0.56 -0.14 0.87 0.129

RC1 RC3 RC2 RC4

SS loadings 2.26 2.05 1.66 1.51

Proportion Var 0.25 0.23 0.18 0.17

Cumulative Var 0.25 0.48 0.66 0.83

Proportion Explained 0.30 0.27 0.22 0.20

Cumulative Proportion 0.30 0.58 0.80 1.00

For the employment data, this yields the model (where the communality is indicated on the right)

X1 = −0.85F ∗1 − 0.10F ∗2 − 0.27F ∗3 − 0.36F ∗4 + ϵ1 0.93

X2 = −0.11F ∗1 − 0.30F ∗2 − 0.86F ∗3 − 0.10F ∗4 + ϵ2 0.85

X3 = 0.03F ∗1 − 0.32F ∗2 + 0.89F ∗3 − 0.09F ∗4 + ϵ3 0.91

X4 = 0.19F ∗1 + 0.04F ∗2 0.64F ∗3 + 0.14F ∗4 + ϵ4 0.46

32 CHAPTER 2. PRINCIPAL COMPONENT AND FACTOR ANALYSIS

X5 = 0.02F ∗1 − 0.08F ∗2 + 0.04F ∗3 + 0.95F ∗4 + ϵ5 0.92

X6 = 0.35F ∗1 + 0.48F ∗2 + 0.15F ∗3 + 0.65F ∗4 + ϵ6 0.79

X7 = 0.08F ∗1 +0.93F ∗2 + 0.00F ∗3 − 0.01F ∗4 + ϵ7 0.87

X8 = 0.91F ∗1 + 0.18F ∗2 + 0.12F ∗3 + 0.04F ∗4 + ϵ8 0.88

X9 = 0.73F ∗1 − 0.57F ∗2 + 0.03F ∗3 − 0.14F ∗4 + ϵ9 0.87.

The `varimax' rotation has conveniently expressed each variable in terms of a predominant factor plus

other less important factors for that variable. The only variable that seems to have two predominant

factors is X9.

Following the varimax rotation, the results are interpreted by considering the four factors in terms

of the variables. From that, it may be possible to give useful labels to each factor.

Here, it is clear that F ∗1 has high positive loadings for X1 (agriculture, forestry and �shing) and

high negative loadings for X8 (social and personal services) and X9 (transport and communications).

Therefore, F ∗1 measures the extent to which people are employed in agriculture rather than services and

communications. It could be labelled `rural industries rather than social service and communication'.

Factor F ∗2 turns out to have a high negative loading for X7 (�nance). The loading for X9 (transport

and communication) seems to be higher than the others. A possible labelling could be `lack of �nance

industries'.

Chapter 3

Cluster Analysis

3.1 Introduction

Cluster Analysis is the most well-known example of unsupervised learning. Unsupervised learning

means that we do not have a training set of examples where the classi�cation is known; we learn the

number of the classes and assign objects to classes purely using the data. It is a tool for arranging

large quantities of multivariate data into natural groups.

Consider a sample of n independent observations on p variables, (xj1, . . . , xjp)nj=1. The data may

come from various groups, but the number or size of each group may not be known in advance. The

idea of cluster analysis is to derive, from the data, the characteristics of the various groups from which

the outcomes in the sample came.

Absolutely nothing is assumed about the data, except that the n observations come from K group-

ings (where K is not known in advance), where for group j, E[X] = µ
j
. The number K and the vectors

µ
j
, j = 1, . . . ,K have to be estimated from the data through cluster analysis. In other words, cluster

analysis only attempts to locate the collection of di�erent average values and assigns the observations

to the groups determined by these averages.

Cluster analysis techniques are purely numerical, measuring distances and assigning observations

to groups based on the distance measures; the techniques do not involve statistics. On the one hand,

the techniques do not seem to be very powerful; in a few cases, where the data seems to have some

very pronounced centres, cluster analysis techniques can locate them. Having said that, they can work

well for large data sets.The important advantage of clustering is that very few modelling assumptions

are required.

There are numerous ways of clustering a data set of n independent observations on p correlated

variables. We consider three:

1. Clustering Observations This is the usual use of the term `clustering'; we divide the observa-

tions into K groups.

2. Clustering Variables In situations where there are large numbers of variables, many of which

are highly correlated with each other (for example gene expression levels), We may wish to

33

34 CHAPTER 3. CLUSTER ANALYSIS

partition the p variables into K distinct groups. For each cluster of variables, a representative

variable is taken and used.

3. Two-way clustering In some situations, both variables and observations may be clustered

together. For example, we may want to cluster both genes and tissue samples at the same time

to see which subset of genes is most closely related to which subset of tissue samples.

In this lecture, we concentrate on the �rst of these tasks, clustering observations.

Warning In many situations, cluster analysis is a total waste of time; the algorithms will only detect

the simplest patterns. Consider, for example, a bivariate data set, coming from two random variables;

the �rst uniformly distributed in the circle of radius 1 and the second uniformly distributed in the

annulus {(x, y)∣1.5 ≤ x2 + y2 ≤ 2.5}. A cluster analysis is unlikely to detect that there are two di�erent

groups.

3.2 Distance and Dissimilarity Measures

Let xik denote observation i on variable k, where there are n observations on p variables. Usually,

quantitative variables are standardised before the analysis;

sk =
¿
ÁÁÀ 1

n − 1

n

∑
j=1

(xjk − x̄.k)2

and

yik =
xik − x̄.k

sk
.

For quantitative variables, a common distance measure in cluster analysis is the Euclidean distance:

dij =
¿
ÁÁÀ

p

∑
k1

(yik − yjk)2.

The statistical distance between two p-variate observations x and y is usually of the form

d(x, y) =
√
(x − y)tS−1(x − y)

where S is the sample covariance matrix. This is the simply the Mahalanobis distance. The Penrose

distance may be used instead. There are many choices of distance.

In situations where the data is categorical, such a distance measure is not meaningful. It is then useful

to try and compare data by the presence and absence of certain characteristics in the p variables. The

distance is then the number of di�erences. For example, suppose p = 5 and the �ve variables for items

i and k are coded as

3.3. CLUSTERING TECHNIQUES 35

1 2 3 4 5

i 1 0 0 1 1

k 1 1 0 1 0

Then the distance d(i, k) = 2.

In some cases, a 1 − 1 match is stronger evidence of similarity than a 0 − 0 match. For example, if two

people can understand ancient Greek, this is stronger evidence of a similarity than if both of them do

not read ancient Greek. Then the following table is useful:

i/k 1 0

1 a b a + b
0 c d c + d

a + c b + d p = a + b + c + d

This leads to the de�nition of similarity, which is a number that lies between 0 and 1, equal to 1 if the

two objects are identical and equal to 0 if the two objects have nothing in common. The following are

common similarity measures that are used depending on the situation.

1. sik = a+d
p if equal weight is given to 1 − 1 and 0 − 0 matches.

2. sik = 2(a+d)
2(a+d)+b+d if double weight is given to 1 − 1 matches than 0 − 0 matches

3. sik = a
p if the 0 − 0 matches do not contribute to similarity.

4. sik = a
a+b+c if the 0 − 0 matches are considered irrelevant.

5. sik = 2a
2a+b+c Double weight for 1 − 1 matches, 0 − 0 matches irrelevant

6. sik = a
a+2(b+c) 0 − 0 matches irrelvant, double weight for unmatched pairs.

7. sik = a
a+b Ratio of matches to mis-matches, the 0 − 0 matches excluded.

The dissimilarity is de�ned as dik = 1 − sik.

3.3 Clustering Techniques

We �rst consider hierarchical metohds for clustering. These methods start by computing the distances,

or dissimilarities (depending on the type of data) from each object to every other object in the sample

and storing this as a dissimilarity matrix. Groups are then formed by a process of agglomeration or

division. Agglomeration techniques start with all individuals in groups of size 1. Close groups are

merged until the process is complete. With division, all objects start in a single group. This group

is split into two and then the subgroups are split into pairs until all the elements in each group are

su�ciently similar and the groups as a whole are su�ciently far apart from each other.

36 CHAPTER 3. CLUSTER ANALYSIS

There is also a partitioning approach to cluster analysis. For algorithms that fall into this class,

objects are permitted to move in and out of groups at various stages in the analysis. First, some more

or less arbitrary group centres are chosen. Objects are allocated to the nearest group centre. New

centres are then calculated, representing the averages of the objects in the groups. An object is then

moved to a new group if it is closer to that group's centre than the centre of the present group. Groups

that are close together are merged; groups that are spread out are split, following some de�ned rules.

The process continues iteratively until stability is achieved with a predetermined number of groups.

For each run, the number of groups is �xed in advance. This is repeated over a range of values for the

group number and the output is the most successful one, where some criteria for goodness of �t are

given.

3.4 Hierarchic Methods

First, a matrix of distances between each object is calculated. For example, if there are 5 objects, the

matrix might be

object

object 1 2 3 4 5

1 −
2 2 −
3 6 5 −
4 10 9 4 −
5 9 8 5 3 −

Firstly, each object is considered to be in a group on its own. Then run through all possible distances,

from lowest to highest. As the distance is increased, a criterion for deciding whether groups should

merge is decided upon.

Single Linkage With single linkage, also known as nearest neighbour linkage, the groups are merged

as the distance increases if one of the objects in a group has distance less than or equal to that distance

from an object in another group. In the example above, no merging takes place for a distance less

than 2. At 2, (1) and (2) merge to form a new group, (1,2). The groups, formed according to nearest

neighbour linkage, are given below, as the distance increases.

distance groups

0,1 (1), (2), (3), (4), (5)
2 (1,2), (3), (4), (5)
3 (1,2), (3), (4,5)
4 (1,2), (3,4,5)
5 (1,2,3,4,5)

This may be expressed as a dendrogram.

3.4. HIERARCHIC METHODS 37

Complete Linkage With complete linkage, also known as furthest neighbour linkage, two groups

merge only if the most distant members of the two groups are close enough. Starting with each

member in a group on its own, the groups formed under furtherst neighbour linkage, as the distance

is increased and using the groups already formed, are given below.

distance groups

0,1 (1), (2), (3), (4), (5)
2 (1,2), (3), (4), (5)
3 (1,2), (3), (4,5)
5 (1,2), (3,4,5)
10 (1,2,3,4,5)

As with all hierarchical techniques, the dendrogram is a natural way to visualise it graphically. With

group average linkage, two groups merge if the average distance between them is small enough. Merging

groups based on average distance, letting the distance range through the continuum, yields

distance groups

0 (1), (2), (3), (4), (5)
2 (1,2), (3), (4), (5)
3 (1,2), (3), (4,5)
4.5 (1,2), (3,4,5)
7.8 (1,2,3,4,5)

Average Linkage Again, the input into the algorithm may be distances or dissimilarities. The

algorithm begins by searching for the closest objects. Suppose these are U and V . These are then

merged to form a cluster (UV).
Now, suppose that (UV) and W are clusters. The distance between the two clusters is de�ned as

d(UV)W =
1

N(UV)NW
∑
ik

dik.

The Ward Clustering Algorithm

The Ward Clustering Algorithm does not measure the distance between groups in terms of nearest

neighbours, furthest neighbours or group centres. Rather, it tries to join groups that do not increase

a given measure of heterogeneity too much. That is, the distance is related to the variance within

the group; two groups are merged if the within-group variance of the merged group is lower than a

speci�ed level.

The Ward Clustering algoritm uses the following distance function: let the distance between groups

containing single multivariate observations x and y be

d(x, y) =
¿
ÁÁÀ

p

∑
j=1

(xj − yj)2.

38 CHAPTER 3. CLUSTER ANALYSIS

Then, for larger groups, the distance between them is computed inductively. If two distinct groups P

and Q are merged to form a group P ∪Q, the distance between P ∪Q and another group R, in terms

of the previously calculated d(P,R) and d(Q,R) is given by

d(P ∪Q,R) = nR + nP
nR + nP + nQ

d(P,R) +
nR + nQ

nR + nP + nQ
d(Q,R) − nR

nR + nP + nQ
d(P,Q),

where nR, nP , nQ are the numbers in R,P,Q respectively Two groups are merged when the Ward

distance between them reaches the speci�ed level.

Motivation The inertia of a group R is de�ned as

IR =
1

nR

nR

∑
j=1

d2(x(j), x̄R);

in other words, the inertia is the average squared distance from each group member to the group centre.

When two distinct groups P and Q are merged, the new group P ∪Q has a larger inertia than the sum

of inertias of P and Q. That is, if P and Q are disjoint, then a straightforward computation yields

that:

IP∪Q ≥ IP + IQ.

More precisely, if d is the Ward measure, then a straightforward computation gives the following

expression for IP∪Q − IP − IQ:

∆(P,Q) ∶= IP∪Q − (IP + IQ) =
nQnP

nQ + nP
d2(P,Q).

With the Ward algorithm, therefore, the next pair of groups to be joined as the distance parameter

increases is the pair of groups that currently gives the smallest value for ∆(P,Q).

3.5 Divisive Analysis (diana)

Divisive hierarchic methods are less common. Objects start in a single group. Then, the object furthest

from the mean is split o�. Then objects from the main group are moved to the new group if they are

closer to the new group as it stands, than from the main group. The pair of groups from the original

group has been established when all objects are closest to the centre of the group they are in.The

most-used divisive hierarchical clustering procedure was proposed by MacNaughton-Smith, Williams,

Dale, and Mockett (1964).

Suppose the algorithm has reached a stage where there are several clusters. Let the current collec-

tion of clusters be C. The cluster C ∈ C that has the largest average dissimilarity between an item and

the remaining items in the cluster is chosen.

A splinter group (say cluster A) is computed, where A ⊂ C. The splinter group is initiated by

extracting the item that has the largest average dissimilarity from all the other items in A.

3.6. NON-HIERARCHICAL CLUSTERING METHODS 39

Let B = C/A. For each of the items in B, we compute (1) the average dissimilarity between that

item and all the other items in B and (2) the average dissimilarity between that item and all the items

in A. We compute the di�erence (1)-(2) for each item in B. If all the di�erences are negative, we stop.

If any of the di�erences are positive, we move the item with the largest (1)-(2) into A and then repeat

until we have a division of C into two clusters, A and B. This is continued recursively; after each

division, the largest average distance between each item and the other items in the cluster is recorded.

3.6 Non-hierarchical Clustering Methods

Non-hierarchical methods start from either (1) an initial partition of items into groups or (2) an initial

set of seed points, which will form the nuclei of clusters. One way to start is to randomly select seed

points from among the items or to randomly partition them into groups. This eliminates bias.

3.6.1 K-means method

This algorithm proceeds as follows:

1. Partition the items into K initial clusters.

2. Proceed through the list of items assigning an item to the cluster whose mean is nearest. Distance

is usually computed using Euclidean measure with standardised variables. Recalculate the mean

for the cluster receiving the new item and for the cluster losing the item.

3. Repeat step 2 until no more reassignments take place.

Example 3.1.

Consider 4 measurements, A,B,C,D of the two variables (X1,X2). The data is

x1 x2

A 5 3

B −1 1

C 1 −2
D −3 −2

Suppose they are to be divided into two clusters. To start with, randomly assign them to two clusters.

For example, suppose this were AB and CD. Then the co-ordinates for the cluster centres (means)

are

(AB) ∶ (x̄1, x̄2) = (
5 + (−1)

2
,
3 + 1
2
) = (2,2)

(CD) ∶ (x̄1, x̄2) = (
1 + (−3)

2
,
−2 + (−2)

2
) = (−1,−2).

Using Euclidean distance, the distance from each item to each group centre is computed and then the

group centre updated to:

x̄i,new =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

nx̄i+xji

n+1 item j added
nx̄i−xji

n−1 item j removed

x̄i no change

40 CHAPTER 3. CLUSTER ANALYSIS

In the �rst round, if A were re-assigned to group (ACD), the group centres would then be

x̄ACD = (1,−
1

3
), x̄B = (−1,1).

Since A is closer (using Euclidean distance) to the centre of AB than to ACD, it is not moved. By

proceeding, the �nal partition is (A), (BCD).

3.6.2 K-medoids

A medoid is simply a representative object. The K-medoids algorithm searches for K `representative

objects' rather than the centroids. A dissimilarity-based distance is used instead of squared-Euclidean

distance. Because it minimises a sum of dissimilarities instead of a sum of squared Euclidean distances,

it is more robust to data anomalies such as outliers and missing values.

K-medoids starts with the proximity matrix D and an initial con�guration into K clusters. The

representative object is the object that minimises the total dissimilarity to all other items in the cluster.

From this point onwards, the role of centroids in K-means is replaced by represenative objects in K-

medoids and the sum of squares of Euclidean distances replaced by the sum of squares of dissimilarities.

With these changes, the algorithm proceeds in the same way.

3.6.3 Partitioning Around Medoids (pam)

This clustering method is a modi�cation of the K-medoids algorithm.The pam algorithm modi�es K-

medoids by introducing a swapping strategy by which the medoid of a cluster is replaced by the item

in the cluster that minimises the value of an objective function that may be di�erent from the sum of

squares of the dissimilarities.

K-medoids and pam run well on small data sets, but are not e�cient enough to use for clustering

large data sets.

3.6.4 Silhouette Plot

With kmeans and pam, the result of the partition can be represented graphically in a so-called silhouette

plot. Suppose the data is split into K clusters. Let c(i) denote the cluster of item i. Let c be some

cluster di�erent from c(i) and d(i, c) the average dissimilarity between i and items of c. We compute

d(i, c) for all clusters other than c(i). let

bi = min
c≠c(i)

d(i, c)

and ai the average dissimilarity between i and all items of the same cluster. The ith silhouette value

is

siK =
bi − ai

maxai, bi
.

Large positive values indicate that item i is well clustered, large negative that it is badly clustered. A

silhouette plot is a plot of these after they have been ranked in decreasing order for each cluster, where

the length of the bar is siK .

3.7. SELF ORGANISING MAPS (SOM) 41

The average silhouette width may also be used to �nd the best value of K, by maximising sK . The

silhouette coe�cient is sC =maxK sK .

3.7 Self Organising Maps (SOM)

The self-organising map algorithm is due to Kohonen (1982). The basic idea is data reduction. A set

of n observations in (say) Rp is reduced to a number K =K1 ×K2 nodes, where K << n. These nodes
are represented on a 2-d grid. To each node m is assigned a representative value xm ∈ Rp, or whatever

the state space for the observations is. Observations are assigned to a node m if they lie within the

neighbourhood of the representative value xm. These nodes may be considered as nodes of a neural

network and there is a link between two nodes a and b if their representative values lie within each

others neighbourhood.

Two versions of the algorithm are available; the on-line version and the batch version. The end

product of SOM, after a large number of iterative steps, is a graphical image known as an SOM plot.

This is displayed in output space and consists of a grid (or network) of a large number of inter-connected

nodes or arti�cial neurons. The SOM algorithm has much in common with K-means.

3.7.1 On-Line Version

For a 2-d SOM, �rstly set up the map size K1 ×K2 (select K1 and K2 usually larger than intended for

the �nal output). Let K denote the space of labels; k = (i, j) ∈ K for i ∈ {1, . . . ,K1} and j ∈ {1, . . . ,K2}.
For each k ∈ K, choose at random a representative value mk ∈ Rp (or whatever the input space is) for

the standardised data matrix.

Firstly, the data set is standardised so that the columns have mean 0 and variance 1. At each

stage, an input vector X is randomly selected and assigned to k∗ where

k∗ = argmink∥X −mk∥.

k∗ is declared to be the winning node. We then look at nodes that are `neighbours' of the winning

node. Two nodes k and k′ are neighbours if the Euclidean distance between mk and mk′ is less than

a given threshold c. We update the value of mk for the winning node and for all its neighbours using:

mk ←mk + α(X −mk) k ∈ N(k∗).

Here α ∈ (0,1) is the learning factor.
A useful rule of thumb is to run the algorithm for 500 ×K1 ×K2 steps.

A distance weighted strategy is more popular:

mk ←mk + αhk(X −mk)

where

42 CHAPTER 3. CLUSTER ANALYSIS

hk = exp{
−∥mk −mk∗∥2

2σ2
}1{k∈Nc(k∗)}

where Nc(k) denotes the neighbourhood of k with parameter c. Values of c, α and σ are provided by

the user, but may change during the process.

Batch Version mk is updated by listing all items Xi already examined whose mk∗ ∈ Nc(k). These
are averaged over and the average is used for the update. This turns out to be much faster.

3.8 Implementation in R

We'll see whether or not a cluster analysis on the European Employment Data can recover the four

categories.

� step 1: standardise the nine variables.

� step 2: compute the Euclidean distances between all pairs of countries, using the standardised

variables.

� step 3: construct a dendrogram using, for example, the agglomerative, nearest neigbour, hierar-

chic process.

> www =

"https://www.mimuw.edu.pl/~noble/courses/QPEDataScience/data/

employment.csv"

> employment <- read.csv(www,header=T)

> y<-scale(employment[,3:11])

> emp<-employment

> emp[,3:11]<-y

The `Ward' method may be implemented as follows:

> d <- dist(y, method = "euclidean")

> fit <- hclust(d, method="ward.D2")

> plot(fit,labels=employment$group)

> rect.hclust(fit, k=4, border="red")

The plot is shown in �gure 3.1.

At a distance of about 1, there are four clusters. The performance of the clustering algorithm, using

the Ward distance is clear from the plot. Other distance measures give less satisfactory results.

3.8. IMPLEMENTATION IN R 43

E
F

TA
E

F
TA E

U
E

U
E

U
E

F
TA E

U
O

th
er

O
th

er
E

U
E

F
TA E

U
E

U
E

U
E

F
TA

E
F

TA E
U

O
th

er E
U

E
U

E
as

te
rn

E
as

te
rn

E
as

te
rn

E
as

te
rn

O
th

er
E

U
E

as
te

rn
E

as
te

rn
E

as
te

rn
E

as
te

rn

0
15

Cluster Dendrogram

hclust (*, "ward")
d

H
ei

gh
t

Figure 3.1: Dendrogram for employment data

Cluster Analysis: Example

The package cluster is extremely useful and contains most of the methods (for example diana and

pam) discussed in the lecture. Install this package and check it out.

Consider the data set satimage.txt in the course data directory. Since 1972, Landsat satellites orbiting

the Earth have been using a combination of scanning geometry, satellite orbit and Earth rotation to

collect high-resolution multispectral digital information for detecting and monitoring di�erent types

of land surface cover characteristics. The 36 variables in the data set are arranged in groups of 4

spectral bands: 1,2,3 and 4, covering each pixel of a 3 × 3 neighbourhood (top-left TL, top-centre TC,

top-right TR, centre-left CL, centre-right CR, centre-centre CC, bottom-left BL, bottom-centre BC,

bottom-right BR. The centre pixel CC of each of the 4435 neighbourhoods is classi�ed into one of

six classes: 1-red soil, 2-cotton crop, 3-grey soil, 4-damp grey soil, 5-soil with vegetation stubble and

7-very damp grey soil. There is no class 6.

Warning The data �le is rather large and therefore the clustering methods are rather slow and

take a long time. You should select a random subset of the data (say 500 observations from the data

set) and work with these. Make sure your sample contains su�cient numbers of observations from

each class.

1. Do not use the class variable. Standardise the other variables and perform cluster analysis using

SL (single linkage), AL-average linkage, CL-complete linkage, K-means and pam (partition around

medioids. How do the various clustering methods perform?

2. Construct a silhouette plot for partitioning around medioids (pam) with K = 6 clusters. A

silhouette plot is a ba plot of all the

siK =
bi − ai

maxj∈C ∣bj − aj ∣

after they have been ranked in decreasing order, where the length of the ith bar is siK . Let d(i, j)
denote the dissimilarity between items i and j, then ai is the average dissimilarity that item i

has to other items in the same cluster and bi = minc≠c(i) d(i, c) where c(i) denotes the cluster

containing item i and d(i, c) is the average dissimilarity between item i and items in cluster c.

3. Construct a confusion table for pam clustering with K = 6 clusters.

4. Run the clustering algorithms for the satimage.txt data, but only using the centre pixels (i.e.

the variables CC1, CC2, CC3, CC4) of each 3 × 3 neighbourhood. Compare your results with

those obtained from the full data set.

5. There are several R packages tha deal with self organising maps. I draw attention to kohonen.

We'll put it through its paces.

44

Make a 6×6 hexagonal batch-SOM plot of the Landsat satellite image data. The circles correspond

to nodes and the projected points are plotted randomly within the appropriate circle to which

they were deemed closest. Use the six classes of vegetation as plotting symbols.

Solution We start by loading the data:

> www =

"https://www.mimuw.edu.pl/~noble/courses/QPEDataScience/data/satimage.

txt"

> satellite = read.table(www,header=T)

The data frame is satellite. This data set (sadly) is too large for my small laptop, so I take a random

subset of 500 rows.

> satdata = satellite[sample(nrow(satellite),500),]

and this is what we will use. Firstly, we scale the data; this operation centres the data (so that each

column has mean 0 and scales the data (so that each column has standard deviation 1).

> scaleddata = sapply(satdata[,1:36],scale)

This operation does not return a data frame, so we make it a data frame.

> scaleddata = as.data.frame(scaleddata)

Now let us add the class variable:

> scaleddata$class = satdata$class

1. Clustering: Illustration with Ward and PAM Firstly, let us see how the Ward clustering

algorithm performs.

> d = dist(scaleddata[,1:36],method="euclidean")

> satward=hclust(d,method="ward.D")

> plot(satward,labels=scaleddata$class)

There are 6 di�erent classes in the data. We can see that we get 5 classes at a height of approximately

30. In fact, two of the classes are di�cult to distinguish from each other.

Now let us try pam, partition around means. Let us see how it performs with 6 clusters, which is the

true number.

The partition around means for this data is given, quite simply, by:

> satpam <-pam(scaleddata[,1:36],6)

45

46 CHAPTER 3. CLUSTER ANALYSIS

2. Silhouette Plot Now try a silhouette plot:

> silpam = silhouette(satpam)

> plot(silpam,border=NA)

The border = NA is an RStudio issue; without this, the graph can go wrong. This indicates that the

6 cluster solution is reasonably good; not many of the entries are negative.

3. Confusion Table Now we make a confusion table, comparing with the value of the class variable.

> tabsat = table(satpam$clustering,scaleddata$class)

> tabsat

1 2 3 4 5 7

1 37 9 0 5 17 0

2 2 0 26 28 3 36

3 0 1 0 3 35 89

4 0 59 0 0 0 0

5 71 0 0 0 2 0

6 2 0 67 8 0 0

We can see how well the clustering compares with the `true' classes. The labels are clearly di�erent,

but some of the classes have been detected reasonably well. The dendrogram from the Ward clustering

indicates that things are not clear cut. The confusion table results are in line with the silhouette plot.

4. Self Organising Map Now let us try a SOM. We need the package kohonen

> library(kohonen)

> satdat=as.matrix(scaleddata[,1:36])

> somnet = som(satdat,somgrid(7,7,"hexagonal"))

> sommap = map(somnet,satdat)

> predict <- predict(somnet,satdat)

> plot(somnet, type="mapping", col = as.integer(scaleddata$class),

+ pchs = as.integer(scaleddata$class), bgcol = predict,

+ main = "another mapping plot", shape = "straight", border = NA)

Chapter 4

Conditional Independence and Graphical

Models

The �rst lecture dealt with the data matrix, geometry, distance between di�erent objects. The second

lecture dealt with principal component analysis, the aim of which is to reduce the dimension of the

problem. Related to this was exploratory Factor Analysis, whereby the important principal components

could suggest hidden (or latent) factors which in�uenced the variables.

We now turn to the topic of graphical models, where again we try to reduce the computational

complexity of the problem. This time, we do this by �nding and exploiting the independence structure

between variables. We'll also touch on causality; the attempt to ascertain whether one variable has a

causal in�uence on other variables.

The idea of a graphical model is that the variables are represented as nodes on a graph and the edges

in the graph represent a direct link between two variables. If two variables X and Y are graphically

separated by a set of variables S, then all the in�uence that X and Y have on each other is mediated

through the variables in S; X and Y are conditionally independent given S.

The problem of ascertaining statistical independence thereby becomes a problem of graphical sep-

aration and a powerful toolbox of graphical separation algorithms becomes available.

It is important to stress that, in a graphical model, graphical separation implies conditional in-

dependence, but the converse does not (in general) hold; there are often conditional independence

relations that a graphical model cannot detect.

Introduction A graphical model for a probability distribution over several variables is, quite simply,

a graph, where the random variables correspond to the node set of the graph and each graphical

separation statement implies the corresponding conditional independence statement for the random

variables. The opposite (that conditional independence implies graphical separation) in general does

not hold. In a system with a large numbers of variables, the task of determining graphical separation

statements is, in general, computationally far less demanding than the task of determining conditional

independence.

A Bayesian network is the representation of a probability distribution on a directed acyclic graph

47

48 CHAPTER 4. CONDITIONAL INDEPENDENCE AND GRAPHICAL MODELS

(DAG). In this setting, the most useful notion of separation is D-separation, de�ned later. If a prob-

ability distribution factorises along a DAG, then D-separation statements in the DAG imply the

corresponding conditional independence statements (although the reverse implication is, in general,

false).

In many problems, for example gene expression data where there are thousands of variables, it may

not be either possible or desirable to obtain a complete description of the dependence structure. The

aim for such problems is to learn a DAG which encodes the most important features of the dependence

structure. In classi�cation problems, a complete description of the dependence structure is usually

unnecessary; algorithms only locate the key features of the dependence structure to ensure accurate

classi�cation.

4.1 Conditional Independence and Factorisation

De�nition 4.1 (Independence). Two random vectors X and Y are independent if their joint probability

distribution factorises as

PX,Y = PXPY .

X and Y are conditionally independent given a random vector X if

PX,Y,Z = PX ∣ZPY ∣ZPZ .

This is written X ⊥ Y ∣Z.

Example 4.1 (Binary Variables).

Suppose X1, . . . ,Xd are binary variables (i.e. each takes values in {0,1}). Then the state space

is {0,1}d, which has 2d possible con�gurations. To specify the probability distribution PX1,...,Xd
, we

therefore need to specify 2d − 1 values (since all the values sum to 1).

Suppose that X1, . . . ,Xd are mutually independent. Then we only need to specify d values; we need

PX1(1), . . . ,PXd
(1), since PXi(0) = 1 − PXi(1) for i = 1, . . . , d.

For large d, there is therefore much computational advantage to be gained from exploiting the inde-

pendence structure between the variables.

4.2 De�nition of a Bayesian Network

Consider a probability distribution over d variables PX1,...,Xd
.

Recall that for any collection of events A1, . . . ,An,

P(A1 ∩ . . . ∩An) = P(A1)
P(A1 ∩A2)

P(A1)
. . .

P(A1 ∩ . . . ∩An)
P(A1 ∩ . . . ∩An−1)

4.2. DEFINITION OF A BAYESIAN NETWORK 49

so that (using the de�nition P(A∣B) = P(A∩B)
P(B)):

P(A1 ∩ . . . ∩An) = P(A1)P(A2∣A1) . . .P(An∣A1 ∩ . . . ∩An−1).

Clearly, any probability distribution PX1,...,Xd
over X may be factorised as

PX1,...,Xd
= PXσ(1)

d

∏
j=2

PXσ(j)∣Xσ(1),...,Xσ(j−1)

for any permutation σ of 1, . . . , d. Let Pa(σ)(j) ⊂ {σ(1), . . . , σ(j − 1)} satisfy

�

PX1,...,Xd
= PXσ(1)

d

∏
j=2

P
Xσ(j)∣Pa

(σ)
(j)

�

PX1,...,Xd
= PXσ(1)

d

∏
j=2

PXσ(j)∣Θ(j)

if any Θ(j) is a strict subset of Pa
(σ)
j .

Unless otherwise stated, it will be assumed that the variables are labelled in such a way that σ = I,
the identity.

For Paj = {lj,1, . . . , lj,mj}, the state space of XPa(j) is Xlj,1 × . . . × Xlj,mj
. For discrete variables, there

are qj = ∏
mj

a=1 klj,a con�gurations. These may be labelled (π(l)j)
qj
l=1 and the parameters required for the

probability distribution PX1,...,Xd
are

θjil = PXj ∣XPa(j)
(i∣π(l)j) j = 1, . . . , d i = 0, . . . , kj − 1, l = 1, . . . , qj .

Estimating Parameters Suppose we have an n × d data matrix x; to estimate the parameter θjil,

we use

θ̂jil =
number of appearances of (i, πlj) con�guration in x

number of appearances of πlj con�guartion in x
.

Factorising a Probability Distribution along a Directed Acyclic Graph The factorisation of

a Bayesian network may be represented by a Directed Acyclic Graph. For example, if the probability

distribution over X,Y,Z,W satis�es

PX,Y,Z,W = PXPY ∣XPZ∣XPW ∣Y,Z ,

the factorisation may be represented by the graph in Figure 4.1.

50 CHAPTER 4. CONDITIONAL INDEPENDENCE AND GRAPHICAL MODELS

X

 ~~

Y

Z

~~

W

Figure 4.1: DAG representing the factorisation of a probability distribution

α // β // γ

Figure 4.2: A Chain Connection

4.3 Connections in a Directed Acyclic Graph and Conditional Inde-

pendence

De�nition 4.2 (Instantiated). When the state of variable is known, the variable is said to be instan-

tiated.

Within a directed acyclic graph, there are three basic ways in which two nodes α, γ such that α → γ /∈D
and γ → α /∈ D can be connected via a third node. They are the chain, fork and collider connections

respectively.

Chain Connections A chain connection between nodes α and γ is a connection via a node β such

that the graph contains directed edges α → β and β → γ, but no edge between α and γ.

Consider a probability distribution over (Xα,Xβ,Xγ) factorised according to the graph in Fig-

ure 4.2, as PXαPXβ ∣Xα
PXγ ∣Xβ

.

Clearly, Xα /⊥Xγ in general;

PXα,Xγ(x1, x3) = PXα(x1) ∑
x2∈X2

PXβ ∣Xα
(x2∣x1)PXγ ∣Xβ

(x3∣x2)

and, without further assumptions, this cannot be expressed in product form.

Conditioned on the instantiation Xβ = x2,

4.3. CONNECTIONS IN A DIRECTED ACYCLIC GRAPH AND CONDITIONAL INDEPENDENCE51

β

�� ��
α γ

Figure 4.3: A Fork Connection

PXα,Xγ ∣Xβ
(., .∣x2) =

PXα,Xβ ,Xγ(., x2, .)
PXβ
(x2)

=
PXα(.)PXβ ∣Xα

(x2∣.)PXγ ∣Xβ
(.∣x2)

PXβ
(x2)

= (
PXα(.)PXβ ∣Xα

(x2∣.)
PXβ
(x2)

) (PXγ ∣Xβ
(.∣x2)) = (PXα∣Xβ

(.∣x2)) (PXγ ∣Xβ
(.∣x2))

where Bayes rule has been used and so Xα ⊥Xγ ∣Xβ .

Fork Connections A fork connection between two nodes Xα and Xγ is a situation where there is no

edge between Xα and Xγ , but there is a node Xβ such that the graph contains directed edges Xβ ↦Xα

and Xβ ↦Xγ . It is illustrated in Figure 4.3.

A distribution over the variables (Xα,Xβ,Xγ) that factorises according to the DAG in Figure 4.3

has factorisation

PXα,Xβ ,Xγ = PXβ
PXα∣Xβ

PXγ ∣Xβ
.

It is clear that Xα /⊥Xγ in general;

PXα,Xγ(x1, x3) = ∑
x2∈X2

PXβ
(x2)PXα∣Xβ

(x1∣x2)PXγ ∣Xβ
(x3∣x2)

and, without further assumptions, this cannot be expressed in product form. Conditioned on Xβ ,

though:

PXα,Xγ ∣Xβ
=
PXα,Xγ ,Xβ

PXβ

=
PXβ

PXα∣Xβ
PXγ ∣Xβ

PXβ

= PXα∣Xβ
PXγ ∣Xβ

.

It follows that Xα ⊥Xγ ∣Xβ .

Collider Connections A collider connection between two nodes α and γ is a connection such that

the graph does not contain an edge between α and γ, but there is a node β such that the graph contains

directed edges α ↦ β and γ ↦ β. A collider connection is illustrated in Figure 4.4.

The factorisation of the distribution PXα,Xβ ,Xγ corresponding to the DAG for the collider is

PXα,Xβ ,Xγ = PXαPXγPXβ ∣Xα,Xγ
.

52 CHAPTER 4. CONDITIONAL INDEPENDENCE AND GRAPHICAL MODELS

α

��

γ

��

β

Figure 4.4: A Collider Connection

In general, Xα /⊥Xγ ∣Xβ . But for each (x, z) ∈ Xα × Xγ ,

PXα,Xγ(x, z) = ∑
y∈Xβ

PXα(x)PXγ(z)PXβ ∣Xα,Xγ
(y∣x, z)

= PXα(x)PXγ(z) ∑
y∈Xβ

PXα∣Xβ ,Xγ
(y∣x, z)

= PXα(x)PXγ(z).

so that Xα ⊥Xγ .

A Causal Interpretation So far, the discussion has considered sets of random variables where,

based on the ordering of the variables, the parent set of a variable is a subset of those of a lower

order. The representation of a probability distribution by factorising along a Directed Acyclic Graph

may be particularly useful if there are cause to e�ect relations between the variables, the ancestors

being the cause and the descendants the e�ect. For a causal model, the connections have the following

interpretations:

Fork Connection: Common cause For the fork connection, illustrated by Figure 4.2, Xβ may

be a cause that in�uences both Xα and Xγ which are e�ects. The variables are only related through

Xβ . The situation is illustrated by the following example, taken from a cartoon by Albert Engström;

`during a convivial discussion at the bar one evening, about the unhygienic nature of galoshes, one

of the participants pipes up, �you have a very good point there. Every time I wake up wearing my

galoshes, I have a sore head.�

Let Xα denote the state of the feet and Xγ the state of the head. These two variables are related;

Xα /⊥ Xβ . But there is a common cause; X2, which denotes the activities of the previous evening.

Once it is known that he has spent a convivial evening drinking, the state of the feet gives no further

information about the state of the head; Xα ⊥Xγ ∣Xβ .

Chain Connection This may similarly be understood as cause to e�ect. Xα in�uences Xβ , which

in turn in�uences Xγ , but there is no direct causal relationship between the values taken by Xα and

those taken by Xγ . If Xβ is unknown, then Xα /⊥Xγ , but once the state of Xβ is established, Xα and

Xγ give no further information about each other; Xα ⊥Xγ ∣Xβ .

4.4. SEPARATION WITHIN A DAG 53

Collider Connection For the collider connection, Xα and Xβ are unrelated; Xα ⊥ Xγ . But they

both in�uence Xβ . For example, consider a burglar alarm (Xβ) that is activated if a burglary takes

place, but can also be activated if there is a minor earth tremor.

One day, somebody calls you while you are at work to say that your burglar alarm is activated.

You get into the car to go home. But on the way home, you hear on the radio that there has been an

earth tremor in the area. As a result, you return to work.

Once Xβ is instantiated, the information that there has been an earth tremor in�uences the likeli-

hood that a burglary has taken place; Xα /⊥Xγ ∣Xβ .

This is known as explaining away.

4.4 Separation within a DAG

Attention is now turned to trails within a DAG, and characterisation of those along which information

can pass.

De�nition 4.3 (S-Active Trail). Let G = (V,D) be a directed acyclic graph. Let S ⊂ V and let

α,β ∈ V /S. A trail τ between the two variables α and β is said to be S-active if

1. Every collider node in τ is in S, or has a descendant in S (that is, for each collider node α ∈ τ ,
there is a directed path α → β1 → . . .→ βm → γ for some γ ∈ S).

2. Every other node is outside S.

De�nition 4.4 (Blocked Trail). A trail between α and β that is not S-active is said to be blocked by

S.

The following de�nition is basic; it will be seen that if a probability distribution factorises along a

DAG G and two nodes α and β are D-separated by S, then Xα ⊥Xβ ∣XS .

De�nition 4.5 (D-separation). Let G = (V,D) be a directed acyclic graph, where V = {1, . . . , d}. Let
S ⊂ V . Two distinct nodes α and β not in S are D-separated by S if all trails between α and β are

blocked by S.

Let A and B denote two sets of nodes. If every trail from any node in A to any node in B is blocked

by S, then the sets A and B are said to be D-separated by S. This is written

A á B ∥G S. (4.1)

The terminology D-separation is short for directed separation. The insertion of the letter `D' points

out that this is not the standard use of the term `separation' found in graph theory.

De�nition 4.6 (D-connected). If two nodes α and β are not D-separated, they are said to be D-

connected.

54 CHAPTER 4. CONDITIONAL INDEPENDENCE AND GRAPHICAL MODELS

Notation The notation α /á β∥GS denotes that α and β are D-connected by S in the DAG G. Here
α and β may refer to individual nodes or sets of nodes.

Example 4.2.

Consider the chain connection α ↦ β ↦ γ in the DAG in Figure 4.2 and the fork connection of

Figure 4.3. For the chain connection of Figure 4.2, the D-separation statements are: α á γ∥Gβ
while α /á γ∥Gϕ (ϕ denotes the empty set). For the DAG in Figure 4.3, α á γ∥Gβ while α /á γ∥Gϕ.
These correspond to the conditional independence statements derived for probability distributions

that factorise along these graphs. For Figure 4.4, α á γ∥Gϕ while α /á γ∥Gβ. Again, these statements

correspond to the conditional independence statements that may be derived from the fact that a

distribution factorises along the DAG of Figure 4.4.

Let MB(α) denote the set of nodes which are either parents of α or children of α or a node which

shares a common child with α. Then α is D-separated from the rest of the network by MB(α). This
set of nodes is known as the Markov blanket of the node α.

De�nition 4.7 (Markov Blanket). The Markov blanket of a node α in a DAG G = (V,D), denote
MB(α), is the set consisting of the parents of α, the children of α and the nodes sharing a common

child with α.

4.4.1 Bayes Ball

The Bayes ball provides a convenient method for deciding whether or not two nodes are D-separated

by a set S in a DAG G = (V,D). Variables are D-connected by a set S if the Bayes ball can be passed

between them employing the following rule. The nodes which are not in S are depicted as unshaded;

nodes in S as shaded.

De�nition 4.8 (Instantiated Nodes). Let G = (V,D) be a directed acyclic graph. When considering

statements α á β∥GS and α /á β∥GS, the nodes in S are referred to as instantiated.

Consider the three types of connection in a DAG; chain, collider and fork.

� For the chain connection illustrated in Figure 4.2, the Bayes ball algorithm indicates that if node

β is instantiated, then the ball does not move from α to γ through β. The communication in the

trail is blocked. If the node is not instantiated, then communication is possible.

� For the fork connection illustrated in Figure 4.3, the algorithm states that if node β is instantiated,

then again communication between α and γ is blocked. If the node is not instantiated, then

communication is possible.

� For the collider connection illustrated in Figure 4.4, the Bayes ball algorithm states that the ball

does move from α to γ if node α or any of its descendants is instantiated. If β or a descendant

is instantiated, this opens communication between the parents. If neither β nor any of its

descendants are instantiated, then there is no communication.

4.5. D-SEPARATION AND CONDITIONAL INDEPENDENCE 55

Figure 4.5: Bayes Ball

For a collider node β, instantiating any of the descendants of β also opens communication. If node β

is not instantiated, and none of its descendants are instantiated, then there is no communication.

A DAG G = (V,D) satis�es the following important property:

Theorem 4.9. A DAG G = (V,D) contains an edge between two nodes α,β ∈ V if and only if α /á β∥GS
for any S ⊆ V /{α,β}.

Proof The proof of this is straightforward and left as an exercise.

4.5 D-Separation and Conditional Independence

The following key result shows that if a probability distribution factorises along a given DAG G,
then every D-separation statement for the DAG implies the corresponding conditional independence

statement for the distribution.

Theorem 4.10 (D-Separation Implies Conditional Independence). Let G = (V,D) be a directed acyclic
graph and let P be a probability distribution that factorises along G. Then for any three disjoint subsets

A,B,S ⊂ V , it holds that XA ⊥ XB ∣XS (XA and XB are independent given XS) if A á B∥GA (A and

B are D-separated by S).

Proof of Theorem 4.10 Omitted

Of course, the converse is not true in general; D-separation is a convenient way of locating some of

the independence structure of a distribution. It does not, in general, locate the entire independence

structure.

56 CHAPTER 4. CONDITIONAL INDEPENDENCE AND GRAPHICAL MODELS

4.6 Queries

Once a probability distribution has been factorised according to a Bayesian Network, the next task is

to use it to answer queries.

De�nition 4.11 (Query). A query in probabilistic inference is simply a conditional probability distri-

bution, over the variables of interest (the query variables) conditioned on information received.

4.7 Bayesian Networks in R

4.8 Introduction

It has become clear that R is now the most e�ective and dominant language of statistical computing.

There are excellent packages available in R for Bayesian Networks, for inference using a given Bayesian

Network and for learning the structure of a Bayesian Network. This chapter introduces some of the

software in R available for Bayesian Networks and discusses graphs in R and inference using networks

that have already been de�ned. Parameter learning and structure learning are considered later.

The packages considered are gRain by Søren Højsgaard and bnlearn.

Having installed R and a suitable editor (for example Rstudio), the relevant packages have to be

installed.

gRain and related packages Information for gRain is available on the author's web page:

http://people.math.aau.dk/~sorenh/software/gR/

The package, along with all the supporting packages, has to be installed. As pointed out on the web

page, the package uses the packages graph, RBGL and Rgraphviz. These packages are not on

CRAN, but on `bioconductor'. To install these packages, execute

install.packages("BiocManager")

setRepositories()

and then make sure that all are activated (2 3 4 5 6 7 8)

Now install using:

install.packages("gRbase", dependencies=TRUE);

install.packages("gRain", dependencies=TRUE);

install.packages("gRim", dependencies=TRUE)

The package bnlearn also has some useful inference functions, although its main consideration is

learning. Install it in the usual way:

> install.packages("bnlearn")

4.9. GRAPHS IN R 57

4.9 Graphs in R

This section considers the various graphs that appear in graphical modelling and how to render them

in R. In addition to the packages mentioned so far, the package ggm, has some useful functions for

graphical Markov models.

>install.packages("ggm")

Another useful graphics package is igraph

>install.packages("igraph")

We also need the package RBGL, which is not available on CRAN, but is only available on BioCon-

ductor. So set repositories with

setRepositories()

make sure that the appropriate repositories are checked and then

install.packages("RBGL")

These packages should be activated:

> library("bnlearn")

> library("gRain")

> library("ggm")

> library("igraph")

> library("RBGL")

> library("gRbase")

4.10 Example: `Asia' by Lauritzen

We consider the `Asia' example of Lauritzen et. al. You have returned from holiday in Asia and you

are feeling unwell. There may be nothing seriously wrong with you, but you could be su�ering from

tuberculosis, lung cancer or bronchitis. The causal diagram is shown in Figure 4.6. Let A denote `visit

to Asia' with values `yes' or `no'. Similarly, all the other variables are binary and are llabelled S for

smoker, T for tuberculosis, L for lung cancer, B for bronchitis, E for either, X for X-ray (`yes' for

indication of a problem, `no' for clear), D for dyspnoea (shortness of breath)

P(A = yes) = 0.01

P(T = yes∣A = yes) = 0.05 P(T = yes∣A = no) = 0.01

P(S = yes) = 0.5

58 CHAPTER 4. CONDITIONAL INDEPENDENCE AND GRAPHICAL MODELS

P(L = yes∣S = yes) = 0.1 P(L = yes∣S = no) = 0.01

P(B = yes∣S = yes) = 0.6 P(B = yes∣S = no) = 0.3

P(E = yes∣L = yes,B = yes) = 1, P(E = yes∣L = yes,B = no) = 1

P(E = yes∣L = no,B = yes) = 1, P(E = yes∣L = no,B = no) = 0

P(X = yes∣E = yes) = 0.98 P(X = yes∣E = no) = 0.05

P(D = yes∣B = yes,E = yes) = 0.9 P(D = yes∣B = yes,E = no) = 0.7

P(D = yes∣B = no,E = yes) = 0.8 P(D = yes∣B = no,E = no) = 0.1

We can programme the network into R as follows. We need the packages gRain and gRbase. The

conditional probability potentials may be speci�ed as follows:

> library("gRain")

Loading required package: gRbase

> yn <- c("yes","no")

> a<-cptable(~asia, values=c(1,99),levels=yn)

> t.a<-cptable(~tub+asia,values=c(5,95,1,99),levels=yn)

> s<-cptable(~smoke, values=c(5,5),levels=yn)

> l.s<-cptable(~lung+smoke,values=c(1,9,1,99),levels=yn)

> b.s<-cptable(~bronc+smoke,values=c(6,4,3,7),levels=yn)

> e.lt<-cptable(~either+lung+tub,values=c(1,0,1,0,1,0,0,1),levels=yn)

> x.e<-cptable(~xray+either,values=c(98,2,5,95),levels=yn)

> d.be<-cptable(~dysp+bronc+either, values=c(9,1,7,3,8,2,1,9), levels

= yn)

The + operator could be considered slightly misleading. There are other ways to enter the conditional

probability potentials:

> t.a<-cptable(~tub|asia,values=c(5,95,1,99),levels=yn)

> t.a<-cptable(c("tub","asia"),values=c(5,95,1,99),levels=yn)

There are also special functions ortable() and andtable. For example, e.lt() could be entered by:

> e.lt <-ortable(~either+lung+tub, levels=yn)

4.10.1 Building the Network

A network is created with the function grain(), which returns an object of class grain:

4.10. EXAMPLE: `ASIA' BY LAURITZEN 59

> plist<-compileCPT(list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be))

> grn1<-grain(plist)

> summary(grn1)

Independence network: Compiled: FALSE Propagated: FALSE

Nodes : chr [1:8] "asia" "tub" "smoke" "lung" "bronc" "either" ...

> plot(grn1)

asia

tub

smoke

lung

bronceither

xray dysp

Figure 4.6: Asia Network

The plot is shown in Figure 4.6.

4.10.2 Compilation

The network has to be compiled and propagated before queries can be made.

> grn1c<-compile(grn1)

> summary(grn1c)

Independence network: Compiled: TRUE Propagated: FALSE

Nodes : chr [1:8] "asia" "tub" "smoke" "lung" "bronc" "either" ...

Number of cliques: 6

Maximal clique size: 3

Maximal state space in cliques: 8

4.10.3 Absorbing Evidence and Answering Queries

Evidence may be entered as follows: for example, suppose we have evidence that someone has visited

asia and has dyspnoea. This is entered as follows:

> grn1c.ev<-

+ setFinding(grn1c,nodes=c("asia","dysp"),states=c("yes","yes"))

60 CHAPTER 4. CONDITIONAL INDEPENDENCE AND GRAPHICAL MODELS

This creates a new grain object. The grain objects with (grn1c.ev) and without (gran1c) can be

queried to give marginal probabilities:

> querygrain(grn1c.ev,nodes=c("lung","bronc"),type="marginal")

$lung

lung

yes no

0.09952515 0.90047485

$bronc

bronc

yes no

0.8114021 0.1885979

> querygrain(grn1c,nodes=c("lung","bronc"),type="marginal")

$lung

lung

yes no

0.055 0.945

$bronc

bronc

yes no

0.45 0.55

The evidence in a grain object can be retrieved with the getFinding() function, while the probability

of observing the evidence is obtained using the pFinding() function:

> getFinding(grn1c.ev)

Finding:

asia: yes

dysp: yes

Pr(Finding)= 0.004501375

> pFinding(grn1c.ev)

[1] 0.004501375

Joint and conditional distributions may be computed as follows:

> querygrain(grn1c.ev,nodes=c("lung","bronc"),type="joint")

bronc

lung yes no

yes 0.06298076 0.03654439

4.10. EXAMPLE: `ASIA' BY LAURITZEN 61

no 0.74842132 0.15205354

> querygrain(grn1c.ev,nodes=c("lung","bronc"),type="conditional")

bronc

lung yes no

yes 0.07761966 0.1937688

no 0.92238034 0.8062312

These are both conditioned on the evidence; the former the joint distribution of lung and bronc

conditioned on the evidence, while the latter is the conditional distribution of lung given bronc and

the evidence.

62 CHAPTER 4. CONDITIONAL INDEPENDENCE AND GRAPHICAL MODELS

Chapter 5

Intervention Calculus

5.1 Causal Models and Bayesian Networks

In many applications, a Bayesian network is constructed as a causal model, where for each variable, its

parent variables are considered to be direct causes that in�uence the value taken by the variable.

For example, an earth tremor or a burglary can cause the burglar alarm to go o� and the arrows

in the associated collider DAG represent cause to e�ect relations. It is self evident, but nevertheless

has to be stated, that only associations can be inferred from an n × d data matrix x of instantiations;

directions of cause to e�ect cannot be inferred from data alone. When conditional independence

statements are learned from data, this can be interpreted as a Markov model and it may be possible to

construct an e�cient factorisation of the distribution using these conditional independence statements.

Clearly, this factorisation cannot be understood as a causal model, unless there are other modelling

assumptions. For example, consider a model containing observable variables A,B,C, where there are

hidden variables H1,H2 that are unknown to the experimenter. If the causal diagram representing the

causal relations between these variables is given by the DAG on the left in Figure 5.1, then the learned

DAG, along which the distribution of A,B,C can be factorised, is the DAG on the right of Figure 5.1.

This is the correct DAG, in that it preserves the d-connection properties between A,B, C, but the

collider connection cannot be interpreted as A and B having a causal e�ect on C; they are e�ects of

the latent common causes H1 and H2.

If a Bayesian network is to be interpreted as a causal model, then the possible directions of cause

H1

~~

H2

~~

A

��

B

��

A C B C

Figure 5.1: Hidden causes and the learned DAG

63

64 CHAPTER 5. INTERVENTION CALCULUS

to e�ect must be part of the modelling assumptions before the data is analysed, determined by other

considerations. The data analysis only determines which directed edges remain and which are removed.

From data, one can determine whether or not there is an association between earth tremors and alarms

triggered; it is not possible to determine from the data what causes what.

This is self evident, but surprisingly it turns out that it is necessary to state this. An article by

Freedman and Humphreys from 1999 pointed out the obvious fact that causality could not be inferred

from data alone and was a necessary response to obvious errors in the literature, where the term `causal

discovery' has been used in surprising ways, even after it had been established, with simple concrete

and obvious examples, that the concept was ridiculous and long after publication of the Friedman

Humphreys article illustrating that it was ridiculous. The article by Freedman and Humphreys is a

good article; it is surprising that the literature had degenerated to such an extent that it was necessary

for the authors to write it.

To de�ne a causal network, an additional ingredient is needed; this is the concept of intervention,

introduced by Judea Pearl in a seminal article from 1995.

5.2 Conditioning by Observation and by Intervention

Let X and Y be two random variables and suppose that X = x is observed. Then the conditional

probability of Y = y is de�ned as

PY ∣X(y∣x) =
PX,Y (x, y)
PX(x)

.

This formula describes the way that the probability distribution of the random variable Y changes

after X = x is observed. If, instead, the value X = x is forced by the observer, irrespective of other

considerations, the conditional probability statement is invalid.

If random variables are linked through a causal model, expressed by a directed acyclic graph,

where parent variables have a causal e�ect on their children, some attempt can be made to compute

the probability distribution over the remaining variables when the states of some variables are forced.

In a controlled experiment, a variable is forced to take a particular value, chosen at random,

irrespective of the other variables in the network. In terms of the directed acyclic graph, the variable

is instantiated with this value, the directed edges between the variable and its parents are removed

(because the parents no longer have in�uence on the state of the variable) and all other conditional

probabilities remain unaltered.

5.3 The Intervention Calculus for a Bayesian Network

De�nition 5.1 (The Intervention Formula). The conditional probability of XV /A = xV /A, given that

the variables XA were forced to take the values xA independently of all else, is written

PV /A∥A(xV /A∣XA ← xA) or PV /A∥A(xV ∥xA)

5.3. THE INTERVENTION CALCULUS FOR A BAYESIAN NETWORK 65

and de�ned as

PV /A∥A(xV /A∣XA ← xA) = PV /A∥A(xV /A∥xA) = ∏
v∈V /A

Pv∣Pa(v)(xv ∣xPa(v)). (5.1)

Note that (5.1) is equivalent to:

PV /A∥A(xV /A∥xA) =
PV (xV)

∏v∈A Pv∣Pa(v)(xv ∣xPa(v))
. (5.2)

The last expression of Equation (5.1) is in terms of the required factorisation; instantiation of the

variables indexed by the set A and elimination of those edges in D which lead from the parents of the

nodes in A to the nodes in V /A. The terminology `local surgery' is used to describe such an elimination.

A local surgery is performed and the conditional probabilities on the remaining edges are multiplied.

This yields a factorisation along a mutilated graph where the direct causes of the manipulated variable

are put out of e�ect.

The intervention formula (5.1) is obtained by wiping out those factors from the factorisation which cor-

respond to the interventions. An explicit translation of intervention in terms of `wiping out' equations

was �rst proposed by Strotz and Wold (1960).

The quantity PV /A∥A(.∥xA) from De�nition 5.1 de�nes a family of probability measures over XV /A,

which depends on the values xA, which may be considered as parameters. These are the values forced

on the variables indexed by A. This family includes original probability measure; if A = ϕ, then
PV /A∥A(.∥xA) = PX(.). This family is known as the intervention measure. In addition, the expression

on the right hand side of (5.1) is called the intervention formula.

Intervention An `intervention' is an action taken to force a variable into a certain state, without

reference to its own current state, or the states of any of the other variables. It may be thought of as

choosing the values x∗A for the variables XA by using a random generator independent of the variables

X.

Remark In the same style of notation, conditioning by observation is

PXV /A∣XA
(xV /A∣see(xA)) = PXV /A∣XA

(xV /A∣xA) (5.3)

where, by the standard de�nition of conditional probability,

PV /A∣A(xV /A∣xA) =
PV (x)
PX(xA)

. (5.4)

Example 5.1.

Consider the DAG given in Figure 5.2, for `X having causal e�ect on Y '.

The factorisation of PX,Y along the DAG in Figure 5.2 is

PX,Y (x, y) = PY ∣X(y∣x)PX(x)

66 CHAPTER 5. INTERVENTION CALCULUS

X // Y

Figure 5.2: A DAG for X having causal e�ect on Y

and the intervention formula gives

PY ∥X(y∥x) = PY ∣X(y∣x).

Since X is a parent of Y , the intervention to force X = x produces exactly the same conditional

probability distribution over Y as observing X = x. But if instead Y is forced, the intervention formula

yields

PX∥Y (x∥y) = PX(x).

Clearly, PX∥Y (x∥y) ≠ PX ∣Y (x∣y) as functions unless X and Y are independent.

Example 5.2 (The DAG for a wet pavement).

The `wet pavement' example is a classic illustration, introduced by Judea Pearl. The DAG represents

a causal model for a wet pavement and is given in Figure 5.3. The season A has four states; spring,

summer autumn, winter. Rain B has two states; yes / no. Sprinkler C has two states; on / o�. Wet

pavement D has two states; yes / no. Slippery pavement E has two states; yes / no.

B

A

??

��

D // E

C

>>

Figure 5.3: DAG for wet pavement, no intervention

The joint probability distribution is factorised as

PA,B,C,D,E = PAPB∣APC∣APD∣B,CPE∣D.

Suppose, without reference to the values of any of the other variables and without reference to the

current state of the sprinkler, `sprinkler on' is now enforced. This could be, for example, regular mainte-

nance work, which is carried out at regular intervals, irrespective of the season or other considerations.

Then

5.4. CAUSAL MODELS 67

PA,B,D,E∥C(.∥C ← 1) = PAPB∣APD∣B,C(.∣.,1)PE∣D.

After observing that the sprinkler is on, it may be inferred that the season is dry and that it probably

did not rain and so on. If `sprinkler on' is enforced, without reference to the state of the system when

the action is taken, then no such inference should be drawn in evaluating the e�ects of the intervention.

The resulting DAG is given in Figure 5.4. It is the same as before, except that C = 1 is �xed and the

edge between C and A disappears. The deletion of the factor PC∣A represents the understanding that

whatever relationships existed between sprinklers and seasons prior to the action, found from

PA,B,D,E∣C(., ., ., .∣1)

are no longer in e�ect when the state of the variable is forced, as in a controlled experiment, without

reference to the state of the system.

B = 1

""

A

""

D // E

C

<<

Figure 5.4: Sprinkler `on' is forced

After observing that the sprinkler is on, it may be inferred that the season is dry, that it probably

did not rain and so on. No such inferences may be drawn in evaluating the e�ects of the intervention

`ensure that the sprinkler is on'.

5.4 Causal Models

Having de�ned the family of intervention measures, the concept of causal model may now be de�ned.

De�nition 5.2 (Causal Model). Let X = (X1, . . . ,Xd) be a random vector and let V = {1, . . . , d}
denote the indexing set. A causal model consists of the following:

1. A Bayesian Network for PX , that is, an ordering σ of the indices V , a factorisation of the

probability distribution

PV =
d

∏
j=1

P
σ(j)∣Pa(σ)(j)

(5.5)

where Pa(σ)(j) ⊆ {σ(1), . . . , σ(j − 1)} and is the smallest such subset such that (5.5) holds.

68 CHAPTER 5. INTERVENTION CALCULUS

2. The node set V consists of two types of nodes; VI and VN , where VI ∩ VN = ϕ and VI ∪ VN =
V . The nodes VI are the interventional nodes and VI are the non-interventional nodes, where

no intervention is possible. The intervention formula (5.1) holds for each subset A ⊆ VI of

interventional nodes and each xA ∈ XA.

The arrows α ↦ β of the DAG for either α or β (or both) in VI are causal arrows, indicating direct

cause to e�ect. The remaining arrows are non-causal; a cause to e�ect relation between nodes α and

β cannot be inferred from an arrow α ↦ β if both α,β ∈ VN .

5.4.1 Establishing a Causal Model via a Controlled Experiment

If su�cient data is available, a suitable Bayesian Network may be learned from the data. A causal

model cannot be established from data alone. Additional information is needed, which is obtained

through interventions on the interventional variables.

For example, the three graphs in Figure 5.5 are Markov equivalent; if the probability distribution

factorises along one of these graphs, it also factorises along the others. The chains α → γ → β and

α ← γ ← β and the fork α ← γ → β are all Markov equivalent, with D-separation structure α á β∥γ.
If any of these DAGs represents a causal network, then it is not possible to learn the causal network

from the data alone.

Suppose that it is possible to intervene by controlling the variable Xγ , then if one of these graphs is

the DAG for a causal network, it will be possible to establish which one through a controlled experiment.

Figure 5.6 shows the associated structural model when the control Xγ ← z has been applied, forcing

Xγ to be independent of its ancestors. A controlled experiment, where the direct causal links between

Xγ and its parent variables have been eliminated, will exhibit independence structure Xα ⊥ {Xβ,Xγ}
in the �rst case, Xα ⊥ Xβ ∣Xγ in the second {Xα,Xγ} ⊥ Xβ in the third. Once the associations

Xα ⊥ Xβ ∣Xγ , Xα /⊥ Xβ , Xα /⊥ Xγ , Xα /⊥ Xγ ∣Xβ , Xβ /⊥ Xγ and Xβ /⊥ Xγ ∣Xα have been established, an

additional controlled experiment, if it is possible to control the variable Xγ with interventions to force

all possible values of Xγ , will determine which graph within the equivalence class is appropriate.

γ

��

γ

��

γ

����
α

@@

β α β

^^

α β

Figure 5.5: Three Markov Equivalent Graphs

If it is possible to control variables, then it is possible to learn whether or not a collider represents

independent causes with a common e�ect. If the DAG on the left hand side of Figure 5.1 represents

a causal structure, then an experiment where variable A is controlled will establish that it is not a

direct cause of C, since an intervention on A leaves it separated from the rest of the network, as in

Figure 5.7.

5.5. CONFOUNDING, THE `SURE THING' PRINCIPLE AND SIMPSON'S PARADOX 69

Xγ ← z

""

Xγ ← z

||

Xγ ← z

""||
α β α β α β

Figure 5.6: Graphs from Figure 5.5 with intervention Xγ ← z applied

H1

H2

~~

A = a C B

Figure 5.7: Hidden causes H1 and H2; intervention A = a

5.5 Confounding, The `Sure Thing' Principle and Simpson's Paradox

5.5.1 Confounding

Consider the DAG given in Figure 5.8. It corresponds to the factorisation:

C

����

A // B

Figure 5.8: Illustration for Confounding

PA,B,C = PB∣A,CPA∣CPC .

Consider the conditional probability of B, when A is controlled; PB∥A(.∥a). The DAG illustrating the

intervention is shown in Figure 5.9. Note that

PB∥A(.∥a) = ∑
c∈XC

PB,C∥A(., c∥a).

and that

PB,C∥A(., .∥a) = PB∣C∥A(.∣.∥a)PC∥A(.∥a) = PB∣A,C(.∣a, .)PC ,

70 CHAPTER 5. INTERVENTION CALCULUS

C

��

A = a // B

Figure 5.9: Intervention on A

where in the second term, the do-conditioning of A ← a is applied �rst, and then C is observed. It

follows that

PB∥A(.∥a) = ∑
c∈XC

PB∣A,C(.∣a, c)PC(c).

This shows that to estimate PB∥A(.∥a) from data alone (i.e. without controlling A), it is necessary to

be able to estimate PB∣A,C and PC from data. If C is observable, then the e�ect on the probability

distribution of B of manipulating Amay be estimated. But if C is a hidden random variable (sometimes

the term latent is used) in the sense that no direct sample of the outcomes of C may be obtained, it

will not be possible to estimate the probabilities used on the right hand side and hence it will not be

possible to predict the e�ect on B of manipulating A. This is known as confounding.

5.5.2 Simpson's Paradox

Consider three binary variables, A,B and C. Simpson's paradox is the observation that there are

situations where

PB∣C,A(1∣1,1)/PB∣C,A(0∣1,1)
PB∣C,A(1∣1,0)/PB∣C,A(0∣1,0)

> 1 and
PB∣C,A(1∣0,1)/PB∣C,A(0∣0,1)
PB∣C,A(1∣0,0)/PB∣C,A(0∣0,0)

> 1,

but

PB∣A(1∣1)/PB∣A(0∣1)
PB∣A(1∣0)/PB∣A(0∣0)

< 1.

For example let A denote `treatment', B `recovery' and C `blood pressure'. Simpson's paradox states

that even if the `treatment' may improve the chances of recovery for those with high blood pressure

and those with low blood pressure, it may nevertheless be bad for the population as a whole. It could

be that although the treatment is comparatively good within the group where high blood pressure

is observed after treatment and also comparatively good within the group where low blood pressure

is observed after treatment, it may be bad for the population as a whole. This occurs if `treatment'

increases blood pressure and increased blood pressure reduces the chances of recovery.

This situation is illustrated by the DAG given in Figure 5.10, where A denotes treatment, B

recovery and C blood pressure. Suppose that C is a hidden variable. Even if the `treatment' variable

5.5. CONFOUNDING, THE `SURE THING' PRINCIPLE AND SIMPSON'S PARADOX 71

A can be controlled, an intervention on A does not remove any arrows from the causal diagram; there

is the possibility of a Simpson's paradox, even with a controlled experiment.

If A denotes `treatment' and B `recovery' and C denotes a common cause of both A and B, as in

Figure 5.8, Simpson's paradox may be resolved if A can be controlled, because controlling A breaks

the causal link between C and A. This is the sure thing principle, considered next, which states that if

the treatment improves the chances of recovery for each level of the `common cause' variable C, then

it is good for the population as a whole.

C

��

A

??

// B

Figure 5.10: A=treatment / B=recovery / C=blood pressure

5.5.3 The Sure Thing Principle

Consider again the situation of Figure 5.8. Suppose that A is controlled; values for the variable A are

assigned at random, so the link C → A is broken and hence the e�ect on B of manipulating A is not

confounded by the e�ects of hidden variables. The following result is referred to as `The Sure Thing

Principle'. It states that when Figure 5.8 represents the causal structure and there is do-conditioning

on A, then Simpson's paradox does not hold.

Proposition 5.3. Consider three binary variables A, B, C with the network given in Figure 5.8.

If

PB∣C∥A(1∣1∥1) < PB∣C∥A(1∣1∥0)

and

PB∣C∥A(1∣0∥1) < PB∣C∥A(1∣0∥0)

then

PB∥A(1∥1) < PB∥A(1∥0).

The notation means: �rst A is forced, then C is observed.

Proof Firstly,

PB∥A(1∥1) = PB∣C∥A(1∣1∥1)PC∥A(1∥1) + PB∣C∥A(1∣0∥1)PC∥A(0∥1).

Since C is a parent of A,

72 CHAPTER 5. INTERVENTION CALCULUS

PC∥A(.∥1) = PC(.).

It follows that

PB∥A(1∥1) =
1

∑
x=0

PB∣C∥A(1∣x∥1)PC∥A(x∥1) =
1

∑
x=0

PB∣C∥A(1∣x∥1)PC(x).

Similarly,

PB∥A(1∥0) =
1

∑
x=0

PB∣C∥A(1∣x∥0)PC(x).

It now follows directly from the assumptions that

PB∥A(1∥1) < PB∥A(1∥0),

which is the stated result.

Identi�ability An e�ect is said to be identi�able if it can be estimated from data alone.

In the example above, when C is a common cause of both A and B, the e�ect of A on B is

identi�able.

When C is on the causal path between A and B, the e�ect of treatment A on condition B is not

identi�able from data alone; it is necessary to additionally control for the e�ect of B

5.6 Identi�ability: Back-Door and Front-Door Criteria

In a wide variety of situations, the aim is to compute the e�ects of an intervention, when it is not

possible to carry out a controlled experiment. The following example, introduced by Pearl, introduced

the issues involved.

Example 5.3.

Consider an experiment in which soil fumigants X are to be used to increase oat crop yields Y ,

by controlling the eelworm population, Z. These may also have direct e�ects, both bene�cial and

adverse, on yields, besides the control of eelworms. We would like to assess the total e�ects of the

fumigants on yields when the study is complicated by several factors. First, controlled, randomised

experiments are infeasible: farmers insist on deciding for themselves which plots are to be fumigated.

Secondly, the farmers' choice of treatment depends on last year's eelworm population Z0. This is an

unknown quantity, but is strongly correlated with this year's population. This presents a classic case

of confounding bias, which interferes with the assessment of the treatment e�ects, regardless of sample

size. Fortunately, through laboratory analysis of soil samples, the eelworm populations before and

after treatment can be determined. Furthermore, since fumigants are only active for a short period,

they do not a�ect the growth of eelworms surviving the treatment; eelworm growth depends on the

5.6. IDENTIFIABILITY: BACK-DOOR AND FRONT-DOOR CRITERIA 73

population of bird and other predators. This, in turn, is correlated with last year's eelworm population

and hence with the treatment itself.

The situation may be represented by the causal diagram in Figure 5.11. The variables are:

� X fumigants,

� Y crop yields,

� Z0 last year's eelworm population,

� Z1 eelworm population before treatment,

� Z2 eelworm population after treatment,

� Z3 eelworm population at the end of the season,

� B population of birds and other predators.

X

��

Z0

66

//

Z1
// Z2

//

��

Y

B // Z3

??

Figure 5.11: A causal diagram representing the e�ect of fumigants X on yields Y

In this example, the variables B and Z0 are hidden variables.

The issue is whether interventional probabilities PY ∥X(.∥X ← x)may be computed from information

on the observables (Z1, Z2, Z3,X,Y). When they can, they are said to be identi�able.

De�nition 5.4 (Identi�able). The causal e�ect of X on Y is said to be identi�able if the quantity

PY ∥X can be computed uniquely from the probability distribution of the observable variables.

In this section, two graphical conditions are described which ensure that causal e�ects can be

estimated consistently from observational data. The �rst of these is named back door criterion and is

equivalent to the ignorability condition of Rosenbaum and Rubin. The second of these is the front-door

criterion. This involves covariates which are a�ected by the treatment (in this example Z2 and Z3).

74 CHAPTER 5. INTERVENTION CALCULUS

5.6.1 Back Door Criterion

The back door criterion is de�ned as follows:

De�nition 5.5 (Back Door Criterion). A set of nodes C satis�es the back door criterion relative to

an ordered pair of nodes (X,Y) ∈ V × V if

1. no node of C is a descendant of X and

2. C blocks every trail (in the sense of D-separation) between X and Y which contains an edge

pointing to X.

If A and B are two disjoint subsets of nodes, C is said to satisfy the back door criterion relative to

(A,B) if it satis�es the back door criterion relative to any pair (Xi,Xj) ∈ A ×B.

Example 5.4.

In Figure 5.11, the set C = {Z0} satis�es the back door criterion relative to (X,Y). The node Z0

is unobservable. The set C = {Z1, Z2, Z3} does block all trails between X and Y with an arrow

pointing into X, but Z2 and Z3 are descendants of X and therefore this set does not satisfy back door

criterion.

The name `back door criterion' re�ects the fact that the second condition requires that only trails with

nodes pointing at Xi be blocked. The remaining trails can be seen as entering Xi through a back door.

Example 5.5.

Consider the back door criterion DAG, given in Figure 5.12. The sets of variables C1 = {Z3, Z4}
and C2 = {Z4, Z5} satisfy the back door criterion relative to the ordered pair of nodes (X,Y), whereas
C3 = {Z4} does not satisfy the criterion relative to the ordered pair of nodes (X,Y); if Z4 is instantiated,

the Bayes ball may pass through the collider connection from Z1 to Z2.

Z1

 ~~

Z2

 ~~

Z3

Z4

 ~~

Z5

~~

X // Z6
// Y

Figure 5.12: Back Door Criterion

5.6. IDENTIFIABILITY: BACK-DOOR AND FRONT-DOOR CRITERIA 75

Identi�ability Consider a causal network and A a subset of the variables which satis�es the back

door criterion with respect to an ordered pair (X,Y). Such a set of variables A plays a similar role to

the variable C in the discussion on confounding; if we can observe these variables, then we can estimate

the intervention probability without a controlled experiment; otherwise we cannot.

If a set of variables A satisfying the back door criterion with respect to (X,Y) can be chosen such

that PA and PY ∣A,X can be estimated from the observed data, then the distribution PY ∥X can also be

estimated from the observed data.

Identi�ability If a set of variables Z satis�es the back door criterion relative to (X,Y), then the

causal e�ect of X to Y is given by the formula

PY ∥X = (PY ∣X,ZPZ)
↓(X∪Y)

(5.6)

and the intervention of X on Y is said to be identi�able.

Formula (5.6) is named adjustment for concomitants. The word identi�ability refers to the fact that the

concomitants Z satisfying the back door criterion are observable and hence it is possible to compute, or

identify the intervention probability PY ∥X(y∥x) using the `see' conditional probabilities (PXj ∣Paj
)dj=1.

5.6.2 Front Door Criterion

The front door criterion is de�ned as follows:

De�nition 5.6 (Front Door Criterion). A set of variables Z satis�es the front door criterion relative

to the ordered pair (X,Y) if:

� Z intercepts all directed paths from X to Y ,

� there is no back-door path between X and Z,

� every back-door path between Z and Y is blocked by X.

The situation is illustrated in Figure 5.13. The variable U is a hidden (latent) variable. The variable

Z satis�es the front door criterion relative to (X,Y).

U

��~~

X // Z // Y

Figure 5.13: Front Door Criterion

The result is the following:

76 CHAPTER 5. INTERVENTION CALCULUS

Theorem 5.7 (Front Door Criterion). Let Z satisfy the front door criterion relative to the ordered

pair (X,Y). Then the causal e�ect on Y of an intervention on X is:

PY ∥X = (PZ∣XPY ∣Z)
↓Z
.

This is self evident; note that PY ∣Z = (PY ∣Z,UPU)
↓(Y ∪Z)

. In other words, if the see-conditional PZ∣X

and PY ∣Z are available, then the intervention PY ∥X may be computed.

5.6.3 Non-Indenti�ability

There are various conditions for non-identi�ability of PY ∥X . These include:

1. A necessary condition is that there is an unblockable back-door path between X and Y ; that

is, a path ending with an arrow pointing into X which cannot be blocked by observable non-

descendants of X. This is not a su�cient condition, as Figure 5.13 illustrates. This shows a

situation where there is a non-blockable back-door path, yet PY ∥X is identi�able (front-door

criterion).

2. A su�cient condition for identi�ability of PY ∥X is existence of a confounding path between X

and any of its children on a path from X to Y ; two examples are given in Figure 5.14.

U

��

U

��

// Z

��

X // Z // Y X

>>

// Y

Figure 5.14: Su�cient condition for identi�ability

3. Local identi�ability is not a su�cient condition for global identi�ability. In Figure 5.15, PZ1∥X ,

PZ2∥X , PY ∥Z1
, PY ∥Z2

are all identi�able, but PY ∥X is not.

U1

~~ ((

U2

~~

X // Z1
// Y Z2
oo

Figure 5.15: Su�cient condition for identi�ability

Chapter 6

Time Series

6.1 Introduction

This chapter provides a very brief introduction to Time Series data, the decomposition into trends,

seasonal (oscillating) components and noise, which is usually a stationary process. We'll discuss Holt-

Winters �ltering, a robust technique for forecasting which dates back to 1960 and which, nevertheless,

still outperforms many more `modern' techniques.

An observed time series is a set of observations (xt)t∈N

De�nition 6.1 (Time Series Model). A time series model for the observed data {xt ∶ t ∈ T } is the

hypothesis that the observed data is an observation of a sequence of random variables {Xt ∶ t ∈ T } and
the speci�cation of its joint probability distribution, or possibly only its expectations and covariances.

A time series can only be observed at a �nite number of times, (xt)nt=1 and the n observations are a

realisation of an n dimensional random vector X = (X1,X2, . . . ,Xn). These random variables may be

considered to come from an in�nite sequence {Xt, t ∈ Z+ or Z}, a stochastic process.

Example 6.1 (The binary process).

A simple example of a stochastic process {Xt, t ∈ Z+} is a process where the variables are i.i.d.

(independent identically distributed) satisfying

P(Xt = 1) = P(Xt = −1) =
1

2
.

For this process, the �nite dimensional marginals are well de�ned; for any i1 < . . . < in,

P(Xi1 = j1, Xi2 = j2, . . . ,Xin = jn) = 2−n

for any {j1, . . . , jn} ∈ {−1,1}n.

De�nition 6.2 (IID noise). A process {Xt, t ∈ Z} is said to be an IID noise with mean 0 and variance

σ2, written

{Xt} ∼ IID(0, σ2),

if the random variables Xt are independent and identically distributed with E[Xt] = 0 and V(Xt) = σ2.

77

78 CHAPTER 6. TIME SERIES

Notation Througout, V(.) will be used to denote variance.

The binary process is clearly an example of an IID(0,1) noise, since the variables are independent,

E[Xt] = −1 × 1
2 + 1 ×

1
2 = 0 and V(Xt) = E[X2

t] −E[X2
t] = E[X2

t] = 1.

In many situations, the complete speci�cation of the underlying stochastic process is not required; the

methods will generally rely only on its means and covariances. Sometimes even less general assumptions

are needed, but these will not be treated here.

De�nition 6.3 (Mean function, Covariance function). Let {Xt, t ∈ T } be a stochastic process with

V(Xt) < ∞ for each t ∈ T . The mean function of {Xt} is denoted by µX , or simply µ when there is

no danger of ambiguity:

µX(t) ∶= E[Xt], t ∈ T (6.1)

The covariance function of {Xt} is denoted by CX or C when there is no danger of ambiguity and is

de�ned as:

CX(r, s) ∶=C(Xr,Xs), r, s ∈ T . (6.2)

The symbol C will be used to denote covariance.

6.2 Stationarity

A stochastic process is said to be stationary, if its statistical properties do not change with time.

Formally, stationarity is de�ned in the following way.

De�nition 6.4 (Stationary, Strictly Stationary, Wide sense stationary). A time series {Xt, t ∈ Z} is
said to be weakly stationary, or wide sense stationary, or simply stationary if

1. V(Xt) < ∞ for all t ∈ Z,

2. µX(t) = µ for all t ∈ Z,

3. CX(r, r + h) = CX(0, h) for all r, h ∈ Z.

A process is said to be strictly stationary if any �nite collection (Xn1 , . . . ,Xnk
) has the same distribution

as (Xn1+t, . . . ,Xnk+t) for any k ≥ 1 and any (n1, . . . , nk, t) ∈ Z.

Let B be the backward shift operator (BX)t = Xt−1, with powers given by (BjX)t = Xt−j . Strict

stationarity means that BhX has the same distribution for all h ∈ Z+.
In most practical situations, only weak stationarity is considered; usually only expectation and

covariance, at most, can reasonably be assessed from data.

The third point in the de�nition of weak stationarity implies that CX(r, s) depends on r and s

only through r − s. It is therefore convenient to de�ne

6.2. STATIONARITY 79

γX(h) ∶= CX(h,0).

If only one time argument appears in γ, then the process is stationary. The value h is referred to as

the lag.

De�nition 6.5. Let {Xt, t ∈ Z} be a stationary time series. The autocovariance function (ACVF) of

{Xt} is de�ned as

γX(h) =C(Xt+h,Xt).

The autocorrelation function (ACF) is de�ned as:

ρX(h) ∶=
γX(h)
γX(0)

.

A simple example of a stationary process is the so-called white noise.

De�nition 6.6 (White noise). A process {Xt, t ∈ Z} is said to be a white noise with mean µ and

variance σ2, written

{Xt} ∼WN(µ,σ2),

if E[Xt] = µ for all t ∈ Z and

γ(h) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ2 if h = 0,

0 if h ≠ 0.

Note that IID noise is an example of white noise, but not necessarily vice versa; the underlying

distribution can be di�erent even if the mean and covariance structures are the same.

A strictly stationary time series {Xt, t ∈ Z} with V(Xt) < ∞ is stationary. A stationary time series

{Xt, t ∈ Z} does not need to be strictly stationary

From now on, the term `stationary' will be used to denote `weakly' or `wide sense stationary'; the term

strictly stationary will be used for the stronger assumption.

Example 6.2 (AR(1) process).

Autoregressive (AR) processes will be considered in more detail later. A process {Xt, t ∈ Z} is said to

be AR(1) if it stationary and satis�es:

Xt = ϕXt−1 +Zt {Zt} ∼WN(0, σ2).

For this process, the autocovariance may be computed as follows: by squaring up both sides and using

γX(0) =V(Xt),

γX(0) = ϕ2γX(0) + σ2 ⇒ γX(0) =
σ2

1 − ϕ2
.

80 CHAPTER 6. TIME SERIES

for h ≥ 1,

γX(h) =C(Xt+h,Xt) = ϕC(Xt+h−1,Xt) +C(Zt+h,Xt) = ϕγX(h − 1)

so that, since γX(−h) = γX(h),

γX(h) =
σ2

(1 − ϕ2)
ϕ∣h∣.

Its autocorrelation function (ACF) is

ρX(h) = ϕ∣h∣.

Note that the AR(1) process is not well de�ned if ∣ϕ∣ ≥ 1.

6.3 Trends and Seasonal Components

The classical decomposition model is:

Xt = µt + st + Yt,

where

� µt is a slowly changing function (the `trend component');

� st is a function with known period d (the `seasonal component');

� Yt is a stationary time series.

The aim is to extract the deterministic components µt and st and estimate them and then check

whether or not the residual component Yt is a stationary time series.

6.3.1 No Seasonal Component

Assume that

Xt = µt + Yt, t = 1, . . . , n

where, without loss of generality, E[Yt] = 0. There are several methods for estimating µ. Three are

considered here; least squares, moving average and di�erencing.

Method 1 : Least Squares estimation of µt The function µt is modelled by a function with as few

parameters as necessary for accurate modelling and the parameters are estimated by the least squares

technique. For example, suppose that µt can be modelled by a quadratic function, µt = a0 + a1t+ a2t2.
The parameters (ak)2k=0 are estimated by (âk)2k=0, chosen to minimise

n

∑
t=1

(xt − a0 − a1t − a2t2)2.

6.3. TRENDS AND SEASONAL COMPONENTS 81

Method 2 : Smoothing by means of a moving average Let q be a non-negative integer and

consider a smoothed version of X de�ned by

Wt ∶=
1

2q + 1

q

∑
j=−q

Xt+j , q + 1 ≤ t ≤ n − q.

If it turns out that µ is approximately linear over the time interval [t − q, t + q] and also that q is

su�ciently large so that 1
2q+1 ∑

q
j=−q Yt+j ≃ 0, then

Wt =
1

2q + 1

q

∑
j=−q

µt+j +
1

2q + 1

q

∑
j=−q

Yt+j ≃ µt.

For t ≤ q and t > n − q, W has to be de�ned in a di�erent way. For example,

Wt =
⎧⎪⎪⎨⎪⎪⎩

1
2t+1 ∑

t
j=−tXt+j t = 1, . . . , q

1
2(n−t)+1 ∑

n−t
j=−(n−t)Xt−j t = n − q + 1, . . . , n.

Unless µt is a straight line and the stationary time series component Y is very small, it will not be

possible to �nd a q satisfying both the conditions that µ is approximately linear over the interval

[t − q, t + q] (requiring small q) and such that 1
2q+1 ∑

t+q
t−q Ys ≃ 0 (requiring large q).

A more general expression for a linear �lter is:

µ̂t = ∑
j

ajXt+j ,

where ∑aj = 1 and aj = a−j . Such a �lter will allow a linear trend µt = α0 + α1t to pass without

distortion since

∑
j

aj(α0 + α1(t + j)) = (α0 + α1t)∑
j

aj + α1∑
j

ajj = α0 + α1t.

It is possible to choose the weights {aj} so that a larger class of trend functions pass without distortion.
For example, the Spencer 15-point moving average, de�ned as

⎧⎪⎪⎨⎪⎪⎩

[a0, a±1, . . . , a±7] = 1
320[74,67,46,21,3,−5,−6,−3]

aj = 0 for ∣j∣ > 7

allows a cubic trend to pass without distortion. That is, applied to µt = at3 + bt2 + ct + d,

µ̂t = ∑ajXt+j = ∑ajµt+j +∑ajYt+j ≃ ∑ajµt+j = µt.

Conditions required for a �lter to pass a trend which is polynomial of degree k without distortion may

be computed.

82 CHAPTER 6. TIME SERIES

Method 3: Di�erencing to generate stationarity The di�erence operator ∇ is de�ned by

∇Xt =Xt −Xt−1 = (1 −B)Xt,

where B is the backward shift operator. That is, (BX)t = Xt−1. For positive integer k, ∇k is de�ned

by: by:

∇kXt = ∇(∇k−1X)t.

For example,

∇2Xt = ∇Xt −∇Xt−1 = (Xt −Xt−1) − (Xt−1 −Xt−2) =Xt − 2Xt−1 +Xt−2.

Using the backward shift operator, this may be expressed as:

∇2Xt = (1 −B)2Xt = (1 − 2B +B2)Xt =Xt − 2Xt−1 +Xt−2.

For a linear trend µt = a + bt,

∇Xt = ∇µt +∇Yt = a + bt − a − b(t − 1) + ∇Yt = b +∇Yt.

For the covariance,

C(∇Yt,∇Ys) = C(Yt, Ys) −C(Yt−1, Ys) −C(Yt, Ys−1) +CYt−1, Ys−1)

= γY (t − s) − γY (t − s − 1) − γY (t − s + 1) + γY (t − s)

= 2γY (t − s) − γY (t − s + 1) − γY (t − s − 1).

It follows that ∇Xt is stationary with

µ∇X = b γ∇X(h) = 2γY (h) − γY (h + 1) − γY (h − 1).

In general, if µt = ∑k
j=0 cjt

j , then

∇kXt = k!ck +∇kYt,

which is stationary.

6.3.2 Trend and Seasonality

Now consider the model with a seasonal component:

Xt = µt + st + Yt,

where E[Yt] = 0, st+d = st and ∑d
k=1 sk = 0. For simplicity in the representation, assume that n/d is an

integer; in any reasonable modelling situation, n and d will be chosen so that n/d is an integer.

In models with a seasonal component, the data is often indexed by period and time-unit;

6.3. TRENDS AND SEASONAL COMPONENTS 83

xj,k = xk+d(j−1), k = 1, . . . , d, j = 1, . . . , n
d
.

In this notation, xj,k is the observation at the k:th time-unit of the j:th period.

Three methods for dealing with seasonal components will be considered; the small trend method,

the moving average estimation method and the di�erencing at lag d method.

Method S1: Small trends If the trend is considered to be constant during each period, the model

may be written as:

Xj,k = µj + sk + Yj,k.

A natural way to estimate the trend is:

µ̂j =
1

d

d

∑
k=1

xj,k

and a natural method for the seasonal component is:

ŝk =
d

n

n/d

∑
j=1

(xj,k − µ̂j).

Method S2: Moving average estimation For a known period d, the trend is estimated by

applying a moving average to eliminate the seasonal component and to reduce the noise. For d even

set q = d/2. The trend is estimated by:

µ̂t =
0.5xt−q + xt−q+1 + ⋅ ⋅ ⋅ + xt+q−1 + 0.5xt+q

d
.

For for d odd, set q = (d − 1)/2. The trend is estimated by:

µ̂t =
xt−q + xt−q+1 + ⋅ ⋅ ⋅ + xt+q−1 + xt+q

d
,

for q + 1 ≤ t ≤ n − q.
The seasonal component sk is then estimated in the following way. Set

wk =
1

number of summands
∑

q−k
d
<j≤n−q−k

d

(xk+jd − µ̂k+jd).

The seasonal component satis�es ∑d
k=1 ŝk = 0 and therefore the estimates are:

ŝk = wk −
1

d

d

∑
i=1

wi, k = 1, . . . , d.

Method S3: Di�erencing at lag d De�ne the lag-d di�erence operator ∇d by

∇dXt =Xt −Xt−d = (1 −Bd)Xt.

Then

∇dXt = ∇dµt +∇dYt.

This has no seasonal component and the methods for dealing with time series without a seasonal

component may be applied.

84 CHAPTER 6. TIME SERIES

6.4 Autocovariance and Spectral Density of a stationary time series

Recall De�nition 6.4 of a weakly stationary time series. It follows directly from the de�nition that:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

γ(0) ≥ 0,
∣γ(h)∣ ≤ γ(0) for all h ∈ Z,
γ(h) = γ(−h) for all h ∈ Z.

(6.3)

An autocovariance function is clearly non-negative de�nite, since∑n
j=1∑n

k=1 ajakγ(tj−tk) is the variance
of ∑n

j=1 ajXtj .

6.5 Extracting Trend, Seasonal and Noise in R

The stl command may be used to decompose a time series into trend, seasonal component and noise.

The computation of `trend' is based on moving average. For illustration, consider the carbon dioxide

data from Mauna Loa in the �le atmospheric-carbon-dioxide-recor.csv .

> www =

"https://www.mimuw.edu.pl/~noble/courses/QPEDataScience/data/

atmospheric-carbon-dioxide-recor.csv"

> carbon = read.csv(www)

Delete observation 611 which is `na':

> carbon = carbon[-611,]

(this deletes the last row, which is `na').

> y = carbon$MaunaLoaCO2

> MaunLoaCo2 = ts(data = y, frequency = 12)

(this gets it into an appropriate format - each row represents a year)

> output.stl = stl(MaunLoaCo2, s.window = "periodic")

> plot(output.stl)

This gives a plot of the original data, the seasonal component, the trend and the `remainder'.

> a <- output.stl$time.series

> acf(a)

The time.series part of the stl output gives a decomposition into trend, the seasonal and the noise. The

acf gives the autocorrelation for each of these; the trend, seasonal and noise, while the o�-diagonals

show the cross autocorrelations.

The dotted blue lines indicate `error' bars. The plot of interest is the residual (or `remainder'). The

acf indicates clear correlations between the residuals; they are not WN(0, σ2). The plot is in Figure 6.1
To get the sample standard deviation of each column in the time series, try:

6.6. HOLT WINTERS FILTERING 85

0.0 0.5 1.0 1.5

−
0

.5

Lag

A
C

F

seasonal

0.0 0.5 1.0 1.5

−
0

.5

Lag

ssnl & trnd

0.0 0.5 1.0 1.5

−
0

.5

Lag

ssnl & rmnd

−1.5 −0.5
−

0
.5

Lag

A
C

F

trnd & ssnl

0.0 0.5 1.0 1.5

−
0

.5

Lag

trend

0.0 0.5 1.0 1.5

−
0

.5

Lag

trnd & rmnd

−1.5 −0.5

−
0

.5

Lag

A
C

F

rmnd & ssnl

−1.5 −0.5

−
0

.5

Lag

rmnd & trnd

0.0 0.5 1.0 1.5

−
0

.5

Lag

remainder

Figure 6.1: Mauna Loa: estimated acf for decomposition

> apply(a,2,sd)

seasonal trend remainder

2.0402413 21.0085895 0.2735003

This indicates that the remainder is small compared with the trend and seasonal components.

6.6 Holt Winters Filtering

No trend, no seasonal component Given observations X1,X2, . . . ,Xn from the model:

Xt = µ +Zt {Zt} ∼WN(0, σ2)

where µ is considered to be approximately constant. The method of exponential smoothing is to

compute a smoothed series:

X̃t = λXt + (1 − λ)X̃t−1 λ ∈ (0,1) (6.4)

where λ is the smoothing parameter. The forecast for time t + h given the series up to time t is

X̂t+h∣t = X̃t.

The quantity X̃t is the estimate of µ at time t; the assumption is that the underlying value of µ will

not change between t and t + h.

Linear trend, no seasonal component Holt and Winters independently extended this idea (Holt

(1959) and Winters (1960)) to deal with the model

Xt = µt +Zt {Zt} ∼WN(0, σ2)

86 CHAPTER 6. TIME SERIES

under the assumption that the trend is approximately linear. Let mt = µt − µt−1. Then the equations

suggested by Holt and Winters are:

⎧⎪⎪⎨⎪⎪⎩

X̃t = λ1Xt + (1 − λ1) (X̃t−1 + m̃t−1)
m̃t = λ2 (X̃t − X̃t−1) + (1 − λ2)m̃t−1

(6.5)

where m̃t is the estimate of mt at time t. The h-step ahead forecasts are then given by:

X̂t+h∣t = X̃t + hm̃t.

Holt Winters with linear trend and additive seasonal component Now suppose that {Xt} is
a time series with both trend and seasonal component where the seasonal component {st} has period
d:

Xt = µt + st +Zt {Zt} ∼WN(0, σ2)

The Holt-Winters algorithm accommodates the seasonal component in the following way: let Yt =
Xt − st, then Ỹt is an approximation of µt and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ỹt = λ1(Xt − s̃t−d) + (1 − λ1)(Ỹt−1 + m̃t−1)
m̃t = λ2(Ỹt − Ỹt−1) + (1 − λ2)m̃t−1

s̃t = λ3(Xt − Ỹt) + (1 − λ3)s̃t−d

The initial conditions are:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ỹd+1 =Xd+1

m̃d+1 = 1
d(Xd+1 −X1)

s̃i =Xi − (X1 + m̃d+1(i − 1)) i = 1, . . . , d + 1

The predictors are:

X̂t+h∣t = Ỹt + hm̃t + s̃t+h h = 1,2, . . .

The parameters λ1, λ2, λ3 ∈ (0,1) may be chosen by minimising the sum of squares of the one-step

prediction error on data that has already been observed:

n

∑
i=d+2

(Xi − X̂i∣i−1)
2

Holt Winters Seasonal Multiplicative: Exercise The same technique can be used for an un-

derlying model:

Xt = (a + bt)st +Zt {Zt} ∼ IID(0, σ2).

If P denotes the period, then the forecasting model for time t + τ with forecasting origin t is:

6.6. HOLT WINTERS FILTERING 87

x̂t,t+τ = (ât + τ b̂t)Ŝt+τ−P

where:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ât = λ1 (xt

Ŝt−P
) + (1 − λ1) (ât−1 + b̂t−1)

b̂t = λ2(ât − ât−1) + (1 − λ2)̂bt−1
Ŝt = λ3 (xt

ât
) + (1 − λ3)Ŝt−P .

The justi�cation of this is left as an exercise.

6.6.1 Illustration

The `Air Passengers' data set is included in the data sets that come with R. Implementation of Holt-

Winters can be carried out as follows: Type

> data(AirPassengers)

> AP <- AirPassengers

> str(AP)

Time-Series [1:144] from 1949 to 1961: 112 118 132 129 121 135 148 148 136 119

...

The data set is now loaded. To see what the data looks like, try

> plot(AP)

and clearly it is seasonal, with a trend.

Type

> ?HoltWinters

to obtain the syntax for the command. Note that values for λ1, λ2 and λ3 may be given; if the user

does not give the values, then they are computed by minimising the sum of squares of the one-step

prediction errors as outlined above. To make a multiplicative seasonal Holt Winters, try:

> AP.hw <- HoltWinters(AP,seasonal="mult")

> plot(AP.hw)

> legend("topleft",c("observed","fitted"),lty=1,col=1:2)

This gives a plot showing both the original data and the one-step predictors. The plot is in Figure 6.2.

Prediction is made quite simply using the `predict' command, which makes the arithmetical computa-

tions from the Holt Winters object. The following shows the predictions for the next four years.

> AP.predict <-predict(AP.hw,n.ahead=4*12)

> ts.plot(AP,AP.predict,lty=1:2)

The plot is found in Figure 6.3.

88 CHAPTER 6. TIME SERIES

Holt−Winters filtering

Time

O
b

s
e

rv
e

d
 /

 F
it
te

d

1950 1952 1954 1956 1958 1960

1
0

0
3

0
0

5
0

0

observed
fitted

Figure 6.2: Air Passenger data with Holt Winters �ltering

Time

1950 1955 1960 1965

1
0

0
4

0
0

7
0

0

Figure 6.3: Air Passenger data: Holt Winters prediction

6.7. LINEAR TIME SERIES MODELS 89

6.7 Linear Time Series Models

The classical decomposition of a time series is into trend, seasonal component and a stationary compo-

nent. Prediction can be improved with better understanding of the stationary process. Very often, the

stationary component is not WN(0, σ2); there are correlations. The next task is to build a suitable

family of models for the stationary process. The classical models for the stationary process are linear

processes.

6.8 De�nitions and �rst properties

De�nition 6.7 (Linear process, Strictly Linear Process). A process {Xt, t ∈ Z} is said to be a linear

process if it has the representation

Xt = µ +
∞

∑
j=−∞

ψjZt−j , {Zt} ∼WN(0, σ2), (6.6)

where ∑∞j=−∞ ∣ψj ∣ < ∞. A stationary time series {Xt} is strictly linear if it has the representation

Xt = µ +
∞

∑
j=−∞

ψjZt−j , {Zt} ∼ IID(0, σ2).

where ∑j ∣ψj ∣ < +∞.

6.8.1 The Spectral Density

The spectral density of a stationary process is de�ned as follows:

De�nition 6.8 (Spectral Density). Let γ be the ACVF for a stationary time series. The function f

de�ned by

f(λ) = 1

2π

∞

∑
h=−∞

e−ihλγ(h), −π ≤ λ ≤ π, (6.7)

is the spectral density of γ. It is well de�ned if ∑∞h=−∞ ∣γ(h)∣ < ∞.

The ACVF may be recovered from the spectral density:

∫
π

−π
eihλf(λ)dλ = ∫

π

−π

1

2π

∞

∑
k=−∞

ei(h−k)λγ(k)dλ = 1

2π

∞

∑
k=−∞

γ(k)∫
π

−π
ei(h−k)λ dλ = γ(h).

The spectral density satis�es (among other things):

f(0) = 1

2π

∞

∑
h=−∞

γ(h).

90 CHAPTER 6. TIME SERIES

6.9 MA(q), AR(p) and ARMA(p,q) Processes

The simplest time series model is white noise. A �rst generalisation of white noise is the moving average

model.

De�nition 6.9 (The MA(q) process). The process {Xt, t ∈ Z} is said to be a moving average of order

q if

Xt = Zt + θ1Zt−1 + . . . + θqZt−q, {Zt} ∼WN(0, σ2), (6.8)

where θ1, . . . , θq are constants.

De�nition 6.10 (The AR(p) process). The process {Xt, t ∈ Z} is said to be an AR(p) autoregressive
process of order p if it is stationary and if

Xt − ϕ1Xt−1 − . . . − ϕpXt−p = Zt, {Zt} ∼WN(0, σ2). (6.9)

A process {Xt} is an AR(p) process with mean µ if {Xt − µ} is an AR(p) process.

De�nition 6.11 (The ARMA(p, q) process). A process {Xt, t ∈ Z} is said to be an ARMA(p, q)
process if it is stationary and

Xt − ϕ1Xt−1 − . . . − ϕpXt−p = Zt + θ1Zt−1 + . . . + θqZt−q, (6.10)

where {Zt} ∼ WN(0, σ2). A process {Xt} is an ARMA(p, q) process with mean µ if {Xt − µ} is an

ARMA(p, q) process.

Clearly, an ARMA(0, q) process is an MA(q) process, while an ARMA(p,0) process is an AR(p)
process.

Generating Polynomials for the ARMA Process An important tool for analysis of ARMA

processes is the so-called generating polynomial. Equations (6.10) can be written as

ϕ(B)Xt = θ(B)Zt, t ∈ Z,

where

ϕ(z) = 1 − ϕ1z − . . . − ϕpzp,

θ(z) = 1 + θ1z + . . . + θqzq

and B is the backward shift operator. The polynomials ϕ(⋅) and θ(⋅) are called generating polynomials.

6.9. MA(Q), AR(P) AND ARMA(P,Q) PROCESSES 91

Causal Models An important property of a time series model is thatXt depends only on information

available up to and including time t. A linear time series model that satis�es this is said to be causal.

De�nition 6.12. An ARMA(p, q) process de�ned by the equations

ϕ(B)Xt = θ(B)Zt {Zt} ∼WN(0, σ2)

is said to be causal if there exists constants {ψj} such that ∑∞j=0 ∣ψj ∣ < ∞ and

Xt =
∞

∑
j=0

ψjZt−j , t ∈ Z. (6.11)

Another way to express this is to require that

Cov(Xt, Zt+j) = 0 for j = 1,2, . . . (6.12)

The following theorem gives conditions under which an ARMA(p,q) process is causal.

Theorem 6.13. Let {Xt} be an ARMA(p,q) for which ϕ(⋅) and θ(⋅) have no common zeros. Then

{Xt} is causal if and only if ϕ(z) ≠ 0 for all ∣z∣ ≤ 1. The coe�cients {ψj} in Equation (6.11) are

determined by the relation

ψ(z) =
∞

∑
j=0

ψjz
j = θ(z)

ϕ(z)
, ∣z∣ ≤ 1.

Proof Assume that ϕ(z) ≠ 0 if ∣z∣ ≤ 1. Then 1
ϕ(z) is analytic within the unit disc and therefore there

exists a (ξj)∞j=0 such that ∑∞j=0 ∣ξj ∣ < +∞ such that

1

ϕ(z)
=
∞

∑
j=0

ξjz
j = ξ(z), ∣z∣ ≤ 1.

The operator ξ(B) may be applied to both sides of the equation ϕ(B)Xt = θ(B)Zt to give:

Xt = ξ(B)θ(B)Zt,

which is well de�ned since ∑∣ξj < +∞ and θ(z) is a polynomial of degree q.

Now assume that ϕ(z) = 0 for some ∣z∣ ≤ 1 and consider the power series expansion 1
ϕ(z) = ∑ ξjz

j . The

coe�cients are not summable, hence Xt does not satisfy the de�nition of a linear time series model.

If ϕ(B)Xt = θ(B)Zt and if ϕ(z) = 0 for some z with ∣z∣ = 1 then there does not exist a stationary

solution. Consider for example Xt = Xt−1 +Zt; ϕ(z) = 1 − z so that ϕ(1) = 0. For Z ∼WN(0, σ2) and
X0 = 0, then Xt = ∑t

j=1Zj so that Var(Xt) = σ2t, which is clearly not stationary.

92 CHAPTER 6. TIME SERIES

Example 6.3 (AR(1) process).

Let {Xt} be an AR(1) process:

Xt = Zt + ϕXt−1 or ϕ(z) = 1 − ϕz. (6.13)

Since 1 − ϕz = 0 gives z = 1/ϕ it follows that Xt is causal if ∣ϕ∣ < 1. For ∣ϕ∣ < 1,

Xt = Zt + ϕXt−1 = Zt + ϕ(Zt−1 + ϕXt−2) = Zt + ϕZt−1 + ϕ2Xt−2 =
∞

∑
j=0

ϕjZt−j .

It now follows:

γX(h) =
∞

∑
j=0

ϕ2j+∣h∣σ2 = σ
2ϕ∣h∣

1 − ϕ2
, (6.14)

If ∣ϕ∣ > 1, Equation (6.13) may be rewritten as:

ϕ−1Xt = ϕ−1Zt +Xt−1 or Xt = −ϕ−1Zt+1 + ϕ−1Xt+1.

It follows that Xt has representation

Xt = −
∞

∑
j=1

ϕ−jZt+j .

If ∣ϕ∣ = 1 there does not exist a stationary solution.

De�nition 6.14. An ARMA(p, q) process de�ned by the equations

ϕ(B)Xt = θ(B)Zt, {Zt} ∼WN(0, σ2)

is said to be invertible if there exists constants {πj} such that ∑∞j=0 ∣πj ∣ < ∞
and

Zt =
∞

∑
j=0

πjXt−j , t ∈ Z. (6.15)

Theorem 6.15. Let {Xt} be an ARMA(p, q) for which ϕ(⋅) and θ(⋅) have no common zeros. Then

{Xt} is invertible if and only if θ(z) ≠ 0 for all ∣z∣ ≤ 1. The coe�cients {πj} in Equation (6.15) solve

the equation:

π(z) =
∞

∑
j=0

πjz
j = ϕ(z)

θ(z)
, ∣z∣ ≤ 1.

6.9. MA(Q), AR(P) AND ARMA(P,Q) PROCESSES 93

Proof The proof follows in the same way as the proof of Theorem 6.13.

Example 6.4 (MA(1) process).

Let {Xt} be an MA(1) process:

Xt = Zt + θZt−1 or θ(z) = 1 + θz.

Since 1 + θz = 0 gives z = −1/θ it follows that Xt is invertible if ∣θ∣ < 1. In that case

Zt =Xt − θZt−1 =Xt − θ(Xt−1 − θZt−2) =
∞

∑
j=0

(−1)jθjXt−j .

The autocovariance function may be computed quite easily; for a linear stationary process with ψ0 = 1,
ψ1 = θ and ψj = 0 for j ≠ 0,1, it follows that

γ(h) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 + θ2)σ2 if h = 0,

θσ2 if ∣h∣ = 1,

0 if ∣h∣ > 1.

(6.16)

94 CHAPTER 6. TIME SERIES

6.10 Linear �lters

A linear process may be regarded as a linear �lter. Let {Xt} be a time series. A �lter is an operation

on a time series in order to obtain a new time series {Yt}. {Xt} is called the input and {Yt} the output.
A linear �lter C is the following operation:

C(X)t ∶= Yt =
∞

∑
k=−∞

ct,kXk. (6.17)

We only consider the situation were E [X2
t] < ∞ and E [Y 2

t] < ∞.

A linear �lter is said to be time-invariant if ct,k = ct−k, in which case it may be written as:

Yt =
∞

∑
j=−∞

cjXt−j .

A time-invariant linear �lter (TLF) is said to by causal if

cj = 0 for j < 0,

When the input {Xt} of a time invariant linear �lter is stationary, then the output {Yt} is also stationary
provided ∑k ∣ck∣ < +∞.

De�nition 6.16 (Stable Linear Filter). A TLF of the form (6.17) is stable if ∑∞k=−∞ ∣ck∣ < ∞.

De�nition 6.17 (Transfer function, Power function). Consider a stable linear �lter and set

c(z) =
∞

∑
j=−∞

cjz
j .

The function c(e−iλ) ∶= ∑∞j=−∞ cje−iλj is known as the transfer function, while the function ∣c(e−iλ)∣2 is
known as the power transfer function.

A �lter may be written as c(B), in the sense that

Yt = c(B)Xt

where B as usual denotes the backward shift operator.

A linear process is a linear �lter where the input is WN(0, σ2).

Impulse Response Function In general, for a stationary process {Xt ∶ t ∈ Z}, where the variables
{Xt} are functions of impulses {Zt ∶ t ∈ Z}, the impulse response function g(s) is de�ned as:

g(t; s) = ∂Xt+s

∂Zt
(6.18)

In the case of a causal linear �lter Xt = ∑j cjZt−j , g(t; s) = g(s) = cs.

6.11. THE ARIMA PROCESS 95

The impulse response function may be extended to vectors; if {Xt ∶ t ∈ Z} is anm-vector valued process

which is a function of vector impulses {Zt ∶ t ∈ Z}, then

gij(t, s) =
∂Xt+s,i

∂Zt,j
. (6.19)

If {Xt} is a linear causal vector valued process satisfying Xt.j = ∑s≥0∑k cjk;sZt−s,k then

gij(t, s) = gij(s) = cij;s.

6.11 The ARIMA Process

The ARIMA process is de�ned as follows:

De�nition 6.18 (The ARIMA(p, d, q) process). Let d be a non-negative integer. The process {Xt, t ∈
Z} is said to be an ARIMA(p, d, q) process if ∇dXt is a causal ARMA(p, q) process.

A causal ARIMA(p, d, q) process {Xt} satis�es:

ϕ(B)Xt = ϕ∗(B)(1 −B)dXt = θ(B)Zt, {Zt} ∼WN(0, σ2), (6.20)

where ϕ∗(z) ≠ 0 for all ∣z∣ ≤ 1. The process Yt ∶= ∇dXt = (I −B)dXt satis�es:

ϕ∗(B)Yt = θ(B)Zt.

Example 6.5 (Random Walk).

Consider the simple random walk process:

Xt =Xt−1 +Zt {Zt} ∼WN(0, σ2) 0 < σ2 < +∞.

This is not a stationary process; Var(Xt) = tσ2
t→+∞Ð→ +∞; the central limit theorem gives that Xt

t1/2
t→+∞Ð→(d)

N(0, σ2). A stationary process may be obtained from X by di�erencing; let

Yt = ∇Xt =Xt −Xt−1 = (I −B)Xt.

then Yt is a stationary process;

Yt = Zt ∼WN(0, σ2).

It follows that the random walk {Xt ∶ t ∈ Z+} is an ARIMA(0,1,0) process.

It is clear that, for d ≥ 1 there are no stationary solutions of Equation (6.20). Furthermore, neither the

mean nor ACVF of {Xt} are determined by (6.20), since any process Xt + Yt, where Yt disappears by
di�erencing d times, satis�es equation (6.20). For example, if Y is a random variable, then ∇(Xt+Y) =
∇Xt.

For ∣ϕ∣ < 1, the process

96 CHAPTER 6. TIME SERIES

Xt − ϕXt−1 = Zt {Zt} ∼WN(0, σ2)

is a causal AR(1) process and is stationary, while for ϕ = 1, the process is not stationary, but is an

ARIMA(0,1,0) process.

Recall that a causal AR(1) process has autocorrelation function

ρ(h) = ϕ∣h∣ , ∣ϕ∣ < 1.

and hence, for any h,

lim
∣ϕ∣↑1
∣ρ(h)∣ = 1.

Similarly it holds for any ARMA process that its ACVF decreases slowly if some of the roots of

ϕ(z) = 0 are near the unit circle. From a sample of �nite length, it is di�cult to distinguish between

an ARIMA(p,1, q) process and an ARMA(p + 1, q) where ϕ(z) has a root near the unit circle. An

estimated ACVF that decreases slowly indicates that di�erencing may be advisable.

Suppose that {Xt} is a causal and invertible ARMA(p, q) process:

ϕ(B)Xt = θ(B)Zt, {Zt} ∼WN(0, σ2),

where θ(z) ≠ 0 for all ∣z∣ ≤ 1 and ϕ(z) has no roots in the unit circle. Then

ϕ(B)∇Xt = ϕ(B)(1 −B)Xt = θ(B)(1 −B)Zt, {Zt} ∼WN(0, σ2),

from which it follows that ∇Xt is a causal, but non-invertible ARMA(p, q + 1) process. A unit root in

the moving average polynomial indicates that Xt has been overdi�erenced.

6.11.1 Testing for Unit Roots

For given time series data, there are tests available to indicate whether or not there are unit roots

present. One common test is the Dickey Fuller test, introduced by Dickey and Fuller (1979), which has

been re�ned to produce the Augmented Dickey Fuller Test (abbrieviated to ADF). This is a relatively

straightforward test. It assumes that {Zt} ∼ IIDN(0, σ2) (independent, identically distributed normal

random variables) and works on the principles of linear regression.

The disadvantage of this test is that presence of a unit root is the null hypothesis. In statistics,

a null hypothesis is never accepted; the result of a hypothesis test is either `reject the null hypothesis

and accept the alternative hypothesis', or `do not reject the null hypothesis'.

Failure to reject a null hypothesis does not imply that the hypothesis is true; it simply means that

there is not enough evidence to establish the alternative.

There is a test, known as the KPSS test, which states the presence of a unit root as the alternative

hypothesis; rejecting the null hypothesis of no unit root establishes that there is a unit root.

6.11. THE ARIMA PROCESS 97

The Dickey Fuller Test Consider the AR(1) model:

Xt = ϕXt−1 +Zt {Zt} ∼WN(0, σ2).

Subtracting Xt−1 from both sides gives:

∇Xt = (ϕ − 1)Xt−1 +Zt ⇒∇Xt = βXt−1 +Zt {Zt} ∼WN(0, σ2).

The Dickey Fuller test simply takes a linear regression of {∇Xt} against Xt−1 and estimates the

parameter β in the model, with error bounds. The test may also include a constant, and a deterministic

drift; using linear regression, assuming {Zt} ∼ IIDN(0, σ2), one tests whether the parameter β is

signi�cant in either

∇Xt = α + βXt−1 +Zt

or

∇Xt = α0 + α1t + βXt−1 +Zt.

While standard multiple linear regression techniques may be used, the approach by Dickey and Fuller

represents a re�nement where the estimates are made in a di�erent way and the distribution of the

test statistic DFτ ∶= β̂

sd(β̂)
turns out not to be exactly t distributed. The distribution is known as the

Dickey�Fuller distribution.

The tests have low statistical power; they cannot distinguish between a true unit-root (β = 0) and near

unit-root (β close to zero). This is called the `near observation equivalence' problem.

The Augmented Dickey Fuller Test The testing procedure for the ADF test is the same as for

the Dickey�Fuller test but it is applied to the model

∇Xt = α0 + α1t + βXt−1 + δ1∇Xt−1 +⋯ + δp−1∇Xt−p+1 +Zt {Zt} ∼ IIDN(0, σ2)

The lag length p is determined when applying the test, using standard model building techniques from

multiple linear regression analysis. The unit root test is then carried out under the null hypothesis

β = 0 against the alternative hypothesis β < 0. The test statistic

DFτ =
β̂

sd(β̂)

is computed it can be compared to the relevant critical value for the Dickey�Fuller test.

The KPSS Test The KPSS test was introduced by Kwiatkoski, Phillips, Schmidt and Shin in 1992

(Biometrics vol. 54 pp 159 - 178). It is based on the LM (Lagrange Multiplier) test in regression for

omitted variables.

Assume that a time series {Yt} can be decomposed into a linear trend ξt, a random walk Rt and a

stationary error process Xt:

98 CHAPTER 6. TIME SERIES

⎧⎪⎪⎨⎪⎪⎩

Yt = ξt +Rt +Xt

Rt = Rt−1 +Zt {Zt} ∼ IIDN(0, σ2Z)

R0 is �xed. The hypothesis that Yt − ξt is stationary is equivalent to the hypothesis that σ2 = 0.

For the test statistic, it is assumed that {Xt} ∼ IIDN(0, σ2X). Let (et)t≥1 denote the residuals from

an OLS regression Yt = β0 + β1t + ϵt, let σ̂2e the estimate of the error variance from this regression and

St = ∑t
i=1 ei. The LM statistic for Y1, . . . , YT is:

LM = ∑
T
t=1 S

2
t

σ̂2e

Under the assumption that σ2u = 0, the distribution (or at least the asymptotic distribution) of
1
T 2 ∑T

t=1 S
2
t may be computed explicitly and σ̂2e

T→+∞Ð→ σ2X .

Testing for unit roots using R The following gives a demonstration of a unit root test. Consider

the log series of U.S. quarterly GDP from 1947.I to 2008.IV. The �le is found in q-gdp4708.txt in the

course directory. The data is plotted in Figure 6.4.

0 50 100 150 200 250

0
6

0
0

0
1

4
0

0
0

Index

q
.g

d
p

4
7

0
8

$
g

d
p

Figure 6.4: US quarterly GDP 1947 - 2008

The following indicates that the unit root test cannot be rejected. The test used is the KPSS test.

library(urca)

www2 <- "https://www.mimuw.edu.pl/~noble/courses/TimeSeries/data/q-gdp4708.txt"

q.gdp4708 <- read.table(www2, header=T)

a = ur.kpss(q.gdp4708$gdp,type = "tau")

summary(a)

The test statistic is larger than the 1% critical value. We may safely reject the null hypothesis of no

unit root and accept the alternative of unit root. In fact, we can see that the unit root has multiplicity

2:

6.12. SARIMA PROCESSES 99

> library("forecast")

> auto.arima(q.gdp4708$gdp)

Series: q.gdp4708$gdp

ARIMA(0,2,1)

Coefficients:

ma1

-0.6438

s.e. 0.0685

sigma^2 estimated as 1361: log likelihood=-1236.89

AIC=2477.79 AICc=2477.84 BIC=2484.8

6.12 SARIMA Processes

Seasonal series are characterised by a strong serial correlation at the seasonal lag and multiples thereof.

Seasonal ARIMA models allow for randomness in the seasonal pattern from one cycle to the next.

De�nition 6.19 (The SARIMA(p, d, q)×(P,D,Q)s Process). A process {Xt} is said to be a Seasonal

ARIMA(p,d,q)×(P,D,Q) process with period s if the di�erenced process

Yt ∶= (1 −B)d(1 −Bs)DXt

is a causal ARMA process,

ϕ(B)Φ(Bs)Yt = θ(B)Θ(Bs)Zt {Zt} ∼WN(0, σ2)

where

ϕ(z) = 1 − ϕ1z − . . . − ϕpzp

Φ(z) = 1 −Φ1z
s − . . . −ΦP z

Ps

θ(z) = 1 + θ1z + . . . + θqzq

Θ(z) = 1 +Θ1z
s + . . . +ΘQz

Qs.

Note that the process {Yt} is causal if and only if both ϕ(z) ≠ 0 and Φ(z) ≠ 0 for all ∣z∣ ≤ 1.

Note The SARMA process is a stationary process; the mean zero SARMA process satis�es E[Xt] ≡ 0
for all t.

Therefore, the stationary SARMA process is not suitable for the situation where the process has a

deterministic stationary component (so that E[Xt] = st, where st is a deterministic periodic function).

What is in view here is a process where the autocovariance is seasonal.

The SARMA process is therefore not suitable for modelling, for example, a situation where there

is a `January e�ect', when trade increases in January due to January sales.

100 CHAPTER 6. TIME SERIES

Chapter 7

Dynamic Bayesian Networks

7.1 Introduction

Dynamic Bayesian networks (DBNs) are an important tool that have proved useful for a large class of

problems. The thesis of Kevin Murphy (2002) provides a comprehensive introduction to the topic.

The �rst mention of dynamic Bayesian networks seems to be by Dean and Kanazawa (1989).

The DBN framework provides a way to extend Bayesian network machinery to model probability

distributions over collections of random variables (Zt)t≥0. The parameter t ∈ {0,1,2, . . .} represents
time. Typically, the variables at a time slice t are partitioned into Zt = (U t,Xt, Y t) representing the

input, hidden and output variables of the model. The term `dynamic' refers to the fact that the system

is dynamic; the basic structure remains the same over time.

De�nition 7.1. A k - slice Dynamic Bayesian network is a DAG corresponding to a factorisation of

the probability distribution over the variables {Z0, Z1, . . .} such that for t ≥ k,

PZ0,...,Zt = PZ0

k−1

∏
s=1

PZs∣Z0,...,Zs−1

t

∏
s=k

PZs∣Zs−k,...,Zs−1

where, for t ≥ k,
PZt∣Zt−k−1,...,Zt−1 =∏

j

P
Zj
t ∣Pa(Z

j
t)
,

Zj
t is the jth node at time t, which could be a component of either Xt, Yt or Ut and the set Pa(Zj

t)
of parents of Zj

t belongs to the collection

Zt−k, . . . , Zt−1,{Z
1
t , . . . , Z

j−1
t }.

The arrows within the same time slice do not represent causality.

The requirement is that the subgraph restricted to {Zt, . . . , Zt+k−1} is the same for each t ≥ 0 and

the conditional probabilities P
Zj
t ∣Pa(Z

j
t)

are the same for each t ≥ k. Furthermore, for 1 ≤ i ≤ j ≤ k,
and each s ≥ j, the subgraph restricted to {Zs+i, . . . , Zs+j} is a subgraph of the subgraph restricted to

{Zs+i−1, . . . , Zs+j}.

101

102 CHAPTER 7. DYNAMIC BAYESIAN NETWORKS

The arcs between slices are from left to right and re�ecting the causal �ow of time. If there is an

arc from Zj
t−1 to Zj

t , the node Z
j is said to be persistent. The arcs within a slice may have arbitrary

direction, so long as the overall DBN is a DAG. The arcs within a time slice may be undirected, since

they model correlation or constraints rather than causation. The resulting model is then a (dynamic)

chain graph.

The parameters of the conditional probabilities P
Zj
t ∣Pa(Z

j
t)

are time-invariant for t ≥ k, i.e., the
model is time-homogeneous. If parameters can change, they may be added to the state-space and

treated as random variables or alternatively a hidden variable may be added that selects which set of

parameters to use.

Within the engineering community, DBNs have become a popular tool, because they can express

a large number of models and are often computationally tractable.

DBNs have been successfully applied to in the reconstruction of genetic networks, where genes do

not remain static, but rather their expression levels �uctuate constantly. Increased expression level of a

gene will result in increased levels of mRNA from that gene which will in turn in�uence the expression

levels of other genes. DBNs have proved to be a successful way of analysing genetic expression data.

With a Dynamic Bayesian Network, the n × d data matrix no longer represents n independent

instantiations of a random d-vector. Rather, the rows represent time slices of a process {X(t) ∶ t ∈ N}.
Some assumptions (for example time homogeneity) have to be made in order to learn structure and

parameters.

If the number of instantiations n available is large in comparison to d, then standard multivariate

time series techniques may be used e�ectively. If n is small compared with d, other techniques (such

as LASSO L1 regularisation) should be used.

7.2 Multivariate Time Series

A VARMA(p,q) model (vector auto regressive moving average, lags p and q for the auto-regressive and

moving average parts respectively) is a model:

X(t) = µ
0
+ tµ

1
+

p

∑
j=1

AjX(t − j) +
q

∑
k=1

Bkϵt+1−q

where ϵt ∼ N(0,Σ) are i.i.d. (the distribution is not necessarily normal, but the normality assumption,

if true, leads to sharper estimation).

The MA part often leads to instability for estimation; we therefore only consider VAR(p) processes;

X(t) = µ
0
+ tµ

1
+

p

∑
j=1

AjX(t − j) + ϵt

The package vars �ts a vector auto regressive model:

> install.packages("vars")

> library(vars)

7.2. MULTIVARIATE TIME SERIES 103

Within vars, there is a test data-set Canada, which contains 4 macroeconomic indicators; prod (labour

productivity), e (employment), U (unemployment rate) and rw (real wages). A VAR(2) model is �tted

quite simply with the command:

> data(Canada)

> can = VAR(Canada,p=2)

> summary(can)

VAR Estimation Results:

=========================

Endogenous variables: e, prod, rw, U

Deterministic variables: const

Sample size: 82

Log Likelihood: -175.819

Roots of the characteristic polynomial:

0.995 0.9081 0.9081 0.7381 0.7381 0.1856 0.1429 0.1429

Call:

VAR(y = Canada, p = 2)

Estimation results for equation e:

==================================

e = e.l1 + prod.l1 + rw.l1 + U.l1 + e.l2 + prod.l2 + rw.l2 + U.l2 + const

Estimate Std. Error t value Pr(>|t|)

e.l1 1.638e+00 1.500e-01 10.918 < 2e-16 ***

prod.l1 1.673e-01 6.114e-02 2.736 0.00780 **

rw.l1 -6.312e-02 5.524e-02 -1.143 0.25692

U.l1 2.656e-01 2.028e-01 1.310 0.19444

e.l2 -4.971e-01 1.595e-01 -3.116 0.00262 **

prod.l2 -1.017e-01 6.607e-02 -1.539 0.12824

rw.l2 3.844e-03 5.552e-02 0.069 0.94499

U.l2 1.327e-01 2.073e-01 0.640 0.52418

const -1.370e+02 5.585e+01 -2.453 0.01655 *

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.3628 on 73 degrees of freedom

Multiple R-Squared: 0.9985,Adjusted R-squared: 0.9984

F-statistic: 6189 on 8 and 73 DF, p-value: < 2.2e-16

104 CHAPTER 7. DYNAMIC BAYESIAN NETWORKS

Estimation results for equation prod:

=====================================

prod = e.l1 + prod.l1 + rw.l1 + U.l1 + e.l2 + prod.l2 + rw.l2 + U.l2 + const

Estimate Std. Error t value Pr(>|t|)

e.l1 -0.17277 0.26977 -0.640 0.52390

prod.l1 1.15043 0.10995 10.464 3.57e-16 ***

rw.l1 0.05130 0.09934 0.516 0.60710

U.l1 -0.47850 0.36470 -1.312 0.19362

e.l2 0.38526 0.28688 1.343 0.18346

prod.l2 -0.17241 0.11881 -1.451 0.15104

rw.l2 -0.11885 0.09985 -1.190 0.23778

U.l2 1.01592 0.37285 2.725 0.00805 **

const -166.77552 100.43388 -1.661 0.10109

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.6525 on 73 degrees of freedom

Multiple R-Squared: 0.9787,Adjusted R-squared: 0.9764

F-statistic: 419.3 on 8 and 73 DF, p-value: < 2.2e-16

Estimation results for equation rw:

===================================

rw = e.l1 + prod.l1 + rw.l1 + U.l1 + e.l2 + prod.l2 + rw.l2 + U.l2 + const

Estimate Std. Error t value Pr(>|t|)

e.l1 -0.268833 0.322619 -0.833 0.407

prod.l1 -0.081065 0.131487 -0.617 0.539

rw.l1 0.895478 0.118800 7.538 1.04e-10 ***

U.l1 0.012130 0.436149 0.028 0.978

e.l2 0.367849 0.343087 1.072 0.287

prod.l2 -0.005181 0.142093 -0.036 0.971

rw.l2 0.052677 0.119410 0.441 0.660

U.l2 -0.127708 0.445892 -0.286 0.775

const -33.188339 120.110525 -0.276 0.783

7.2. MULTIVARIATE TIME SERIES 105

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.7803 on 73 degrees of freedom

Multiple R-Squared: 0.9989,Adjusted R-squared: 0.9987

F-statistic: 8009 on 8 and 73 DF, p-value: < 2.2e-16

Estimation results for equation U:

==================================

U = e.l1 + prod.l1 + rw.l1 + U.l1 + e.l2 + prod.l2 + rw.l2 + U.l2 + const

Estimate Std. Error t value Pr(>|t|)

e.l1 -0.58076 0.11563 -5.023 3.49e-06 ***

prod.l1 -0.07812 0.04713 -1.658 0.101682

rw.l1 0.01866 0.04258 0.438 0.662463

U.l1 0.61893 0.15632 3.959 0.000173 ***

e.l2 0.40982 0.12296 3.333 0.001352 **

prod.l2 0.05212 0.05093 1.023 0.309513

rw.l2 0.04180 0.04280 0.977 0.331928

U.l2 -0.07117 0.15981 -0.445 0.657395

const 149.78056 43.04810 3.479 0.000851 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.2797 on 73 degrees of freedom

Multiple R-Squared: 0.9726,Adjusted R-squared: 0.9696

F-statistic: 324 on 8 and 73 DF, p-value: < 2.2e-16

Covariance matrix of residuals:

e prod rw U

e 0.131635 -0.007469 -0.04210 -0.06909

prod -0.007469 0.425711 0.06461 0.01392

rw -0.042099 0.064613 0.60886 0.03422

U -0.069087 0.013923 0.03422 0.07821

Correlation matrix of residuals:

106 CHAPTER 7. DYNAMIC BAYESIAN NETWORKS

e prod rw U

e 1.00000 -0.03155 -0.1487 -0.6809

prod -0.03155 1.00000 0.1269 0.0763

rw -0.14870 0.12691 1.0000 0.1568

U -0.68090 0.07630 0.1568 1.0000

The default value, which estimates µ
0
and sets µ

1
= 0 is const. To set µ

0
= 0 and µ

1
= 0, type:

> VAR(Canada,p=2,type="none")

To set µ
0
= 0 while estimating an unknown trend µ

1
, type:

> VAR(Canada,p=2,type="trend")

To estimate both an intercept µ
0
and a trend µ

1
, type:

> VAR(Canada,p=2,type="both")

The stability function veri�es the covariance stationarity of a VAR process, using cumulative

sums of residuals. This may be carried out by:

> var.2c=VAR(Canada,p=2,type="const")

> stab=stability(var.2c,type="OLS-CUSUM")

> plot(stab)

There are several tests for normality which come under normality.test.

> normality.test(var.2c)

$JB

JB-Test (multivariate)

data: Residuals of VAR object var.2c

Chi-squared = 5.094, df = 8, p-value = 0.7475

$Skewness

Skewness only (multivariate)

data: Residuals of VAR object var.2c

Chi-squared = 1.7761, df = 4, p-value = 0.7769

7.3. LASSO LEARNING 107

$Kurtosis

Kurtosis only (multivariate)

data: Residuals of VAR object var.2c

Chi-squared = 3.3179, df = 4, p-value = 0.5061

The function serial.test carries out the Portmanteau (i.e. Ljung-Box) test

> serial.test(var.2c,lags.pt=16,type="PT.adjusted")

Portmanteau Test (adjusted)

data: Residuals of VAR object var.2c

Chi-squared = 231.5907, df = 224, p-value = 0.3497

The VARMA model is standard and is treated in any reasonable text on Time Series.

7.3 Lasso Learning

One of the most prominent applications of DBNs is to gene expression data and locating regulatory

pathways. The main di�culty is that n (the number of instantiations) tends to be small compared

with d (the number of genes under investigation). On the other hand, gene expression networks tend

to be sparse.

One technique that has developed and is quite e�ective in such situations is L1 regularisation, or

LASSO learning.

LASSO and Least Angle Regression Given a set of input measurements (xj,1, . . . , xj,d) for j =
1, . . . , n and outcome measurement yj ∶ j = 1, . . . , n, taken as observations on independent variables,

the lasso �ts a linear model

ŷj = β̂0 +
d

∑
j=1

xj β̂j .

The criterion it uses is:

Minimise ∑n
j=1(yj − ŷj)2 subject to ∑d

j=0 ∣βj ∣ ≤ s for a constraint value s.

The bound s is a tuning parameter. When s is su�ciently large, the constraint has no e�ect and the

solution is simply the usual multiple linear least squares regression of y on x1, . . . , xd.

For smaller values of s (s ≥ 0), the solutions are shrunken versions of the least squares estimates.

The L1 penalisation often forces some of the coe�cient estimates β̂j to be zero.

108 CHAPTER 7. DYNAMIC BAYESIAN NETWORKS

The choice of s therefore plays a similar role to choosing the number of predictors in a regression

model.

Cross-validation is the standard tool for estimating the best value for s.

Forward stepwise regression achieves the same objective as regularisation by adding in explanatory

variables one at a time:

� Start with all coe�cients βj equal to zero.

� Find the predictor xj which is most correlated to y and add it into the model. Take residuals

r = y − ŷ.

� Continue, at each stage adding to the model the predictor most correlated with r.

� Until: all predictors are in the model

The Least Angle Regression procedure follows the same general scheme, but does not add a predictor

fully into the model. The coe�cient of that predictor is increased only until that predictor is no longer

the one most correlated with the residual r. Then some other competing predictor is included.

Least Angle Regression algorithm The algorithm proceeds as follows:

� Start with all coe�cients βj equal to zero.

� Find the predictor xj most correlated with y.

� Increase the coe�cient βj in the direction of the sign of its correlation with y. Take residuals

r = y − ŷ. Stop when some other predictor xk has as much correlation with r as xj has.

� Increase (βj , βk) in their joint least squares direction, until some other predictor xm has as much

correlation with the residual r.

� Continue until: all predictors are in the model

It can be shown that, with one modi�cation, this procedure gives the entire path of lasso solutions,

as s is varied from 0 to in�nity. The modi�cation needed is: if a non-zero coe�cient hits zero, remove

it from the active set of predictors and recompute the joint direction.

Cross-Validation Cross validation is a model evaluation method where some of the data is removed

before training begins. Then when training is done, the data that was removed can be used to test

the performance of the learned model on �new� data. This is the basic idea for the class of model

evaluation methods called cross validation.

� Holdout The holdout method is the simplest kind of cross validation. The data set is separated

into two sets; the training set and the testing set. The function approximator �ts a function using

7.3. LASSO LEARNING 109

the training set only. Then the function approximator is asked to predict the output values for

the data in the testing set (it has never seen these output values before). The errors it makes

are accumulated as before to give the mean absolute test set error, which is used to evaluate the

model.

� K-fold Cross ValidationK-fold cross validation is one way to improve over the holdout method.

The data set is divided into k subsets, and the holdout method is repeated k times. Each time,

one of the k subsets is used as the test set and the other k-1 subsets are put together to form

a training set. Then the average error across all k trials is computed. The advantage of this

method is that it matters less how the data gets divided. Every data point gets to be in a test set

exactly once, and gets to be in a training set k-1 times. The variance of the resulting estimate is

reduced as k is increased. The disadvantage of this method is that the training algorithm has to

be rerun from scratch k times, which means it takes k times as much computation to make an

evaluation. A variant of this method is to randomly divide the data into a test and training set

k di�erent times. The advantage of doing this is that you can independently choose how large

each test set is and how many trials you average over.

� Leave-one-out Leave-one-out cross validation is K-fold cross validation taken to its logical

extreme, with K equal to n, the number of data points in the set. That means that the function

approximator is trained on all the data except for one point n separate times and a prediction

is made for that point. As before the average error is computed and used to evaluate the model.

The evaluation given by leave-one-out cross validation error (LOO-XVE) is good, but at �rst

pass it seems very expensive to compute.

7.3.1 Implementation

There are several packages available in R for DBN learning. One of the most prominent is the lars

package by Hastie and Efron (2012). Other packages available are: glmnet package by Friedman et.

al. (2010) and penalized by Goeman (2012). For illustration, we use the arth800MTS data set from

the GeneNet package. This describes the expression levels of 800 genes of the Arabidopsis thaliana

during the diurnal cycle. We consider a subset arth12 of 12 of the genes.

> library(lars)

> library(GeneNet)

> data(arth800)

> subset=c(60,141,260,333,365,424,441,512,521,578,799)

> arth12=arth800.expr[,subset]

Now lars is used to estimate a model for a target variable spei�ed by a vector (say y) and a set of

possible parents speci�ed by a matrix of predictors (say x). The arth800 data set consists of two time

series, each of 11 points in length. That is, there are two repeated measurements for each time point.

To estimate a VAR(1) process, �rstly remove the two repeated measurements for the �rst time point

110 CHAPTER 7. DYNAMIC BAYESIAN NETWORKS

of y and the two repeated measurements for the last time point of x. They cannot be used for LASSO,

since y(t) needs x(t − 1).

> x = arth12[1:(nrow(arth12)-2),]

> y = arth12[-(1:2),"265768_at"]

> lasso.fit = lars(y=y,x=x,type="lasso")

> plot(lasso.fit)

The plot is shown in Figure 7.1.

* ** * * *
*

**
** *

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

|beta|/max|beta|

S
ta

n
d

a
rd

iz
e

d
 C

o
e

ff
ic

ie
n

ts

* ** * * * * ** ** *
* ** * * * * ** ** ** ** * * * * ** ** *
* ** * * * * ** ** ** ** * * * *

** ** *

* ** * * * * ** ** ** ** * * *
*

**
** *

* ** * * * * **
** *

* ** * * * * **
** *

*

** * * * * ** ** *

LASSO

1
1

1
0

7
8

0 1 3 4 5 6 7 9 11

Figure 7.1: Lasso output

The �gure is interpreted as follows: the aim is to predict y(t) (the expression levels for gene labelled

265768_at) by the expression levels one time unit earlier (given at time index t − 2 because we have

double measurements for each time); x(t−2). The regression is carried out by evaluating the coe�cients

β which minimise∑22
t=3(y(t)−∑11

j=1 xj(t−2)βj)2, subject to a constraint that∑11
j=1 ∣βj ∣ ≤ t for t increasing.

For the x-axis, this is presented as ∣β∣/max ∣β∣, where ∣β∣ = ∑11
j=1 ∣βj ∣ and max ∣β∣ is the value of ∑11

j=1 ∣βj ∣
for the unconstrained problem.

The values of the coe�cients are denoted by di�erent colours and the plot shows how they change as

the value of t increases. The vertical lines indicate the points at which new coe�cients are introduced.

The coe�cients may be obtained by

> coef(lasso.fit)

Structure learning (i.e. deciding which directed edges to include in the network) is carried out via

cross-validation. The cv.lars function does this.

> lasso.cv=cv.lars(y=y,x=x,mode="fraction")

The output gives the MSE (mean squared error) as a function of ∣β∣/max ∣β∣ (where ∣β∣ denotes the
constraint and max ∣β∣ denotes the value of ∑11

j=1 ∣βj ∣ for the unconstrained problem) and the output is

shown in Figure 7.2. The optimal set of arcs is chosen to minimise the mean squared error.

7.3. LASSO LEARNING 111

> frac=lasso.cv$index[which.min(lasso.cv$cv)]

> predict(lasso.fit,s=frac,type="coef",mode="fraction")

$s

[1] 0.1919192

$fraction

[1] 0.1919192

$mode

[1] "fraction"

$coefficients

265768_at 263426_at 260676_at 258736_at 257710_at 255764_at

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

255070_at 253425_at 253174_at 251324_at 245319_at 245094_at

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 -0.6420806

The non-zero coe�cients indicate the arcs to be included on the gene 265768_at for the optimal value

s=frac computed by cv.lars.

0.0 0.2 0.4 0.6 0.8 1.0

0
.2

0
.6

Fraction of final L1 norm

C
ro

s
s
−

V
a

lid
a

te
d

 M
S

E

Figure 7.2: Lasso cross validation

The number of steps can be controlled by setting the mode argument of predict to step.

> predict(lasso.fit,s=3,type="coef",mode="step")$coefficients

265768_at 263426_at 260676_at 258736_at 257710_at 255764_at 255070_at 253425_at

-0.02152962 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

253174_at 251324_at 245319_at 245094_at

0.00000000 0.00000000 0.00000000 -0.72966658

112 CHAPTER 7. DYNAMIC BAYESIAN NETWORKS

The L1 penalty can be speci�ed with mode = �lambda�

> predict(lasso.fit,s=0.2,type="coef",mode="lambda")$coefficients

265768_at 263426_at 260676_at 258736_at 257710_at 255764_at 255070_at 253425_at

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

253174_at 251324_at 245319_at 245094_at

0.0000000 0.0000000 0.0000000 -0.6961228

The lars package also �ts least angle regression and stepwise regression.

> lar.fit=lars(y=y,x=x,type="lar")

> lar.cv=cv.lars(y=y,x=x,type="lar")

> step.fit=lars(y=y,x=x,type="stepwise")

> step.cv=cv.lars(y=y,x=x,type="stepwise")

7.4 Inference for Dynamic Bayesian Networks

For a given DBN (where the network structure and the conditional probability potentials have been

speci�ed), the queries of interest are usually those of computing the marginal distribution of Xi(t)
conditioned on all nodes other than Xi(t) at times 1, . . . , T . In line with standard time series problems,

these problems fall into three categories:

� If T = t, the query is called �ltering.

� If T > t (node Xi(t) is omitted), the query is called smoothing. It returns a smoothed value of

X̂i(t); the aim of the query is noise reduction.

� If T < t, the query is called prediction.

Queries which ask for the Most Probable Explanation can be performed for �ltering, smoothing

and prediction with the lars package.

To see how it works, consider the arth12 data set:

> library(GeneNet)

> data(arth800)

> subset = c(60, 141, 260, 333, 365, 424, 441, 512,

+ 521, 578, 789, 799)

> arth12 = arth800.expr[, subset]

> library(lars)

> x = arth12[1:(nrow(arth12) - 2),]

> y = arth12[-(1:2), "265768_at"]

y contains the expression levels of gene 265768_at at all times except for time 0 (recall that there are

two measurements at each time). x contains the whole data set for all times except for the last one,

labelled 24.

7.4. INFERENCE FOR DYNAMIC BAYESIAN NETWORKS 113

> lasso.fit = lars(y = y, x = x, type = "lasso")

> lasso.cv = cv.lars(y = y, x = x, mode = "fraction")

> frac = lasso.cv$index[which.min(lasso.cv$cv)]

frac contains the value of the index that minimises the cross variation. Therefore, this is the value

that is used to build the model. Estimation for the expression levels of 265768_at may be carried out

quite simply by:

> lasso.est = predict(lasso.fit, type = "fit",

+ newx = x, s = frac,

+ mode = "fraction")$fit

> lasso.est

0-1 0-2 1-1 1-2 2-1 2-2 4-1

7.099782 6.894064 7.166249 7.157744 7.592092 7.379432 7.990548

4-2 8-1 8-2 12-1 12-2 13-1 13-2

8.078921 8.353137 8.333108 8.940241 8.780302 8.816387 8.758480

14-1 14-2 16-1 16-2 20-1 20-2

8.542374 8.417818 7.446577 7.329513 6.717392 6.747178

The estimated expression levels at 20-1 and 20-2 are a result of �ltering, while the others given

here are a result of smoothing.

The values of 24-1 and 24-2 can be predicted by:

> lasso.pred = predict(lasso.fit, type = "fit",

+ newx = arth12[c("24-1", "24-2"),],

+ s = frac, mode = "fraction")$fit

> lasso.pred

24-1 24-2

6.822643 6.882054

The penalized package �ts LASSO models which are compatible with bnlearn. Therefore, more

complex conditional probability queries can be carried out using cpquery and cpdist if the model is

�rst learned in this way.

> library(penalized)

> lambda = optL1(response = y, penalized = x)$lambda

> lasso.t = penalized(response = y, penalized = x,

+ lambda1 = lambda)

nonzero coefficients: 2

> coef(lasso.t)

(Intercept) 245094_at

14.0402894 -0.7059011

114 CHAPTER 7. DYNAMIC BAYESIAN NETWORKS

The only parent of gene 256768_at is 245094_at, which seems to act as an inhibitor.

This suggests that a model with this explanatory variable might be useful. Such a DBN can be created

in the following way:

>dbn1 =

+ model2network("[245094_at][265768_at|245094_at]")

>xp.mean = mean(x[, "245094_at"])

>xp.sd = sd(x[, "245094_at"])

>dbn1.fit =

+ custom.fit(dbn1,

+ dist = list("245094_at" = list(coef = xp.mean,

+ sd = xp.sd), "265768_at" = lasso.t))

Since the data is continuous, there are two possibilities: either create a Gaussian network, or discretise

the variables. The network dbn1 is Gaussian. The mean xp.mean and standard deviation xp.sd need

to be speci�ed.

The regression analysis suggests that high expression levels of 245094_at at time t − 1 lead to low

expression levels of 265768_at at time t. The cpquery function can be used:

>cpquery(dbn1.fit, event = (`265768_at` > 8),

+ evidence = (`245094_at` > 8))

[1] 0.2454624

>cpquery(dbn1.fit, event = (`265768_at` > 8),

+ evidence = (`245094_at` < 8))

[1] 0.9829545

Note With this package, it is not permitted to condition on events of measure 0. Therefore, intervals

must be speci�ed both for event and evidence.

The function cpdist may be used to generate random observations. To compare the conditional

distributions for both pieces of evidence, use:

>dist.low = cpdist(dbn1.fit, node = "265768_at",

+ evidence = (`245094_at` < 8))

>dist.high = cpdist(dbn1.fit, node = "265768_at",

+ evidence = (`245094_at` > 8))

These may be plotted and the densities compared.

Now suppose that the variables at time t are not independent of those at t − 2 given t − 1. It is then a

good idea to construct a DBN which depends on lags 1 and 2. To check whether the introduction of

t − 2 to explain t improves the model:

7.4. INFERENCE FOR DYNAMIC BAYESIAN NETWORKS 115

> y = arth12[-(1:2), "245094_at"]

> colnames(x)[12] = "245094_at1"

> lambda = optL1(response = y, penalized = x)$lambda

> lasso.s = penalized(response = y, penalized = x,

+ lambda1 = lambda)

> coef(lasso.s)

(Intercept) 258736_at 257710_at 255070_at 245319_at

-2.659077706 -0.009220815 0.273648262 -0.444106451 -0.134050990

245094_at1

1.589716443

The assumption is that the DBN is time homogeneous. These results suggest a network structure

which can be created as follows:

> dbn2 = empty.graph(c("265768_at", "245094_at",

+ "258736_at", "257710_at", "255070_at",

+ "245319_at", "245094_at1"))

> dbn2 = set.arc(dbn2, "245094_at", "265768_at")

> for (node in names(coef(lasso.s))[-c(1, 6)])

+ dbn2 = set.arc(dbn2, node, "245094_at")

> dbn2 = set.arc(dbn2, "245094_at1", "245094_at")

The parameters of dbn2 may be estimated via maximum likelihood. The parameters of 265769_at and

245094_at may then be substituted with those from the LASSO models lasso.t and lasso.s.

7.5 Exercises

1. Consider the Canada data set from the vars package. Load the data set, make some exploratory

analysis and estimate a VAR(1) process for this data set. Estimate the auto-regressive matrix A

and the constant matrix B which de�ne the VAR(1) model.

Compare the results with the LASSO matrix when the L1 penalty is estimated by cross-validation.

What are your conclusions?

2. Consider the arth800 data set from the GeneNet package. Load the data set. The time

series expression of the 800 genes is included in a data set called arth800.expr. Investigate its

properties.

Compute the variances of each of the 800 variables, plot them in decreasing order and create a

data set with those variables whose variance is greater than 2.

Can you �t a VAR process using the var package (unlikely)? Suggest alternative approaches

(such as LASSO) and apply them. Estimate a DBN with each approach and compare the DBNs.

Plot the DBNs using plot from G1DBN.

116

Chapter 8

Discriminant Function Analysis

Suppose that we are given a learning set x of multivariate observations, where x ∈ Rn×p. That is,

n multivariate observations, with p variables. In addition, there is a variable p + 1 which is a class

variable taking values in C = {C1, . . . ,Cm}. That is, each observation comes from one of m pre-de�ned

classes. In this set up, there are p classi�cation variables and m groups or classes. Suppose that there

are nj observations from group Cj , for j = 1, . . . ,m. For example, for the Egyptian Skull data, there

are 5 di�erent periods and 30 skulls from each period. There is one class variable (the period) and

four classi�cation variables. The data may be represented by:

x =
⎛
⎜⎜
⎝

x1

⋮
xm

⎞
⎟⎟
⎠

where m is the number of groups and

xj =
⎛
⎜⎜
⎝

x1j1 . . . x1jp

⋮ ⋮
xnjj1 . . . xnjjp

⎞
⎟⎟
⎠

and n = ∑m
j=1 nj . These observations are described as labelled observations. There are two main goals:

� Discrimination Use the information in a learning set of labelled observations to construct a

classi�er (or classi�cation rule) that will separate the prede�ned classes as much as possible.

� Classi�cation Given a set of measurements on a new unlabelled observation, use the classi�er

to decide which class the observation belongs to.

There are two basic methods for discriminant analysis; themaximum likelihoodmethod and Fisher's

Linear Discriminant Function method. The maximum likelihood method may be used when the

probability distribution of each population is known; the linear discriminant function method is used

when the probability distribution is unknown.

117

118 CHAPTER 8. DISCRIMINANT FUNCTION ANALYSIS

8.1 The Maximum Likelihood Discriminant Rule

The maximum likelihood rule is used when the probability distribution, or at least the parametric

family of probability distributions, is known for each population. Unknown parameters are estimated

by the training data and the estimates plugged in. Then a new observation x is allocated to group j if

L̂j(x) =maxm L̂m(x), where L̂k ∶ k = 1, . . . ,m is the estimated likelihood function (when the parameter

estimates have been plugged in). It is assumed that the situation where there are two groups which

maximise the likelihood will not arise. If it does, a classi�cation cannot be determined.

Example 8.1 (Normal Populations, same covariance structure).

Assume that Xj ∼ N(µj ,C) for j = 1, . . . ,m. That is, from group j, the observations are independent

identical multivariate normal, with mean vector µ
j
and covariance matrix C. The covariance matrix

is assumed to be the same for each group. Then

Lj(x) =
1

(2π)p/2∣C ∣1/2
exp{−1

2
(x − µ

j
)tC−1(x − µ

j
)} ,

For an observation x, �nding the j that maximises L.(x) is equivalent to �nding the j that maximises

Lj(x) ∶= lnLj(x) = −
p

2
ln(2π) − 1

2
ln ∣C ∣ − 1

2
(x − µ

j
)tC−1(x − µ

j
).

If the parameters are unknown, they are estimated from the training examples. The expectation vectors

µ
j
are estimated by the sample average xj for group j and the covariance matrix C is estimated by

S, the pooled covariance matrix from all the observations. When classifying a new observation, the

problem is then to �nd the j which minimises the Mahalanobis distance from the observation x to the

centre of group j. Recall the de�nition of the Mahalanobis distance:

D2
j = (x − xj)

tS−1(x − xj).

New observations are classi�ed as belonging to group j for which Dj is smallest.

8.1.1 The Bayes Discriminant Rule

This is almost the same as likelihood, except that there is a prior probability over classes; if Xp+1 is

the class variable, then

P(Xp+1 = Ci) = πi.

The posterior probability for class Ci given X = (X1. . . . ,Xp) is then

P(Xp+1 = Ci∣X = x) ∝ πiLi(x).

The observation is then classi�ed as class Ci; i = argmaxjπjLj(x) (these are estimated by plugging in

the appropriate parameter estimates).

8.2. THE LINEAR DISCRIMINANT FUNCTION 119

8.2 The Linear Discriminant Function

Suppose we have two classes, C1 and C2. Suppose we have two normal populations, X1 ∼ N(µ1,C)
and X2 ∼ N(µ2,C). Let f1 and f2 denote the respective densities. Set

L(x) ∶= ln f1(x)
f2(x)

Then

L(x) = −1
2
(x − µ

1
)tC−1(x − µ

1
) + 1

2
(x − µ

2
)tC−1(x − µ

2
)

= (µ
1
− µ

2
)C−1x − 1

2
µt
1
C−1µ

1
+ 1

2
µ
2
C−1µ

2

= (µ
1
− µ

2
)C−1x − 1

2
(µt

1
+ µt

2
)C−1(µ

1
− µ

2
)

= (µ
1
− µ

2
)tC−1(x − µ) = b0 + btx

where

µ = 1

2
(µ

1
+ µ

2
).

This is a linear function, where

⎧⎪⎪⎨⎪⎪⎩

b = C−1(µ
1
− µ

2
)

b0 = −1
2 {µ

t
1
C−1µ

1
− µt

2
C−1µ

2
}

(8.1)

The function L is known as the Linear Discriminant Function (LDF). It partitions the space Rp into

disjoint classi�cation regions R1 and R2. If x falls into R1, then the observation is classi�ed as

belonging to C1. If it falls into R2, then it is classi�ed as belonging to C2.

8.3 Misclassi�cation Probability

Let

U = btX = C−1(µ
1
− µ

2
)X.

This is the part of L(X) that depends on X.

Conditioned on the class, this is a Gaussian random variable. We now compute its mean and variance

for each class. Let C denote the class variable, then

E[U ∣C ∈ Ci] = C−1(µ1 − µ2)µi
De�ne

∆2 = (µ
1
− µ

2
)tC−1(µ

1
− µ

2
).

120 CHAPTER 8. DISCRIMINANT FUNCTION ANALYSIS

then

Var(U ∣C ∈ Ci) = btCb =∆2

for i = 1,2. Let M denote the event of misclassi�cation. The misclassi�cation probabilities for individ-

uals from the respective groups is therefore:

P(M ∣C = C1) = P(X ∈ R2∣C ∈ C1), P(M ∣C = C2) = P(X ∈ R1∣C ∈ C2)

where

P(X ∈ R2∣C = C1) = P(L(X) < 0∣C = C1) = Φ(−
∆

2
)

and

P(X ∈ R1∣C = C2) = P(L(X) > 0∣C ∈ C2) = Φ(−
∆

2
) .

The details of the computations are left as an exercise.

A graph of P(M ∣C = Ci) against ∆ shows a downward sloping curve. It has value 1
2 when ∆ = 0 (the

two populations are identical) and tends to 0 as ∆ increases. In other words, the greater the distance

between the two population means, the less likely one is to misclassify x.

8.4 Fisher's Discriminant Function

Fisher's idea was to look for appropriate linear combinations of the variables

Z =
p

∑
k=1

akXk

to maximise the distance between the various groups. Fisher (1936) suggested taking the linear com-

bination that maximises the F ratio in the ANOVA table. Let n = ∑m
j=1 nj , z = 1

n ∑
m
k=1∑

nk

l=1 zlk,

zk = 1
nk
∑nk

l=1 zlk. The ANOVA is

source d.f. mean square f

SSB = ∑m
j=1 nj(zj − z)2 m − 1 MB = SSB

m−1
MB

ME

SSE = ∑m
j=1∑

nj

k=1(zkj − zj)
2 n −m ME = SSE

n−m

SST = SSB + SSE = ∑m
j=1∑

nj

k=1(zkj − z)
2 n − 1

Let T , W and B be the matrices for Total, Within (or error) and Between classes sums of squares

de�ned by

Tab =
m

∑
j=1

nj

∑
k=1

(xkja − xa)(xkjb − xb),

8.4. FISHER'S DISCRIMINANT FUNCTION 121

Wab =
m

∑
j=1

nj

∑
k=1

(xkja − xka)(xkjb − xkb),

Bab =
m

∑
j=1

nj(x.ja − x..a)(x.jb − x..b),

where xkja denotes observation k from sample j for variable a, xa = 1
mnj
∑m

j=1∑
nj

k=1 xkja and xja =
1
nj
∑m

k=1 xkja. As described before, T denotes `total', B denotes `between groups' and W as `within

groups', so W with suitable normalisation is an estimate of the error covariance. Note that

B = T −W.

Then it turns out that (this is one of the tutorial exercises) that Fisher's rule amounts to choosing a

vector a ∈ Rp that maximises the ratio

atBa

atWa
.

Then the discriminant function is Z = ∑p
j=1 ajXj .

De�nition 8.1. The linear function Z satisfying Z(x) = ∑p
j=1 ajxj is called Fisher's linear discriminant

function. The linear combination atx is also called the �rst canonical variate.

Theorem 8.2. The vector a that maximises
atBa
atWa is the eigenvector corresponding to the largest

eigenvalue of the p × p matrix W −1B.

Let xj denote the mean vector for population (or group) j. Using Fisher's linear discriminant function,

the rule is to assign a p- variate observation x to the class for which ∣at(x − xj)∣ is lowest.

Consider two populations j and k with mean vectors xj and xk respectively and assume that the

populations have been labelled such that atxj ≥ atxk. Then, for any x ∈ Rp,

∣at(x − xj)∣ < ∣a
t(x − xk)∣ Ô⇒ at (x − 1

2
(xj + xk)) > 0.

This enables the following interpretation of Fisher's linear discriminant rule. The set

Hjk = {x ∈ Rp∣at (x − 1

2
(xj + xk)) = 0}

de�nes a hyperplane perpendicular to the vector a. This hyperplane divides Rp into two disjoint half

spaces; the mean xj lies in one and the mean xk lies in the other.

By considering all pairs of populations (j, k) with 1 ≤ j ≤m and 1 ≤ k ≤m, Fisher's linear discriminant

function splits Rp into m disjoint regions

Rp = R1 ∪ . . . ∪Rm

122 CHAPTER 8. DISCRIMINANT FUNCTION ANALYSIS

by considering all p(p − 1)/2 hyperplanes Hjk. The region Rj corresponds to the region where an

observation x will be classi�ed as belonging to population j. These hyperplanes are all perpendicular

to the vector a.

To �nd Rj , drop a line from xj , perpendicular to the vector a, to the line through the origin containing

the point a. Denote the point of intersection by y
j
. From the m − 1 hyperplanes Hj1, . . . ,Hjm (there

is no hyperplane Hjj), �nd the two with smallest distance from y
j
, on either side of that point. The

region Rj is the region bounded by these two hyperplanes.

The following discussion shows the likelihood discrimination rule for multinormal observations, from

which it follows that if there are two populations, each with the same covariance, then the discrimina-

tion rule is the same as for Fisher's discrimination rule.

8.5 Quadratic Discrimination

When populations are normal, but the covariance matrices are not equal, the maximum likelihood

technique leads to quadratic discriminant functions.

Theorem 8.3. Suppose that Xj ∼ N(µj ,Cj) (that is, a p-variate observation from population j has

multivariate normal distribution with mean vector µ
j
and covariance matrix Cj). Suppose that xj and

Sj are the maximum likelihood estimates of the mean and covariance matrix for population j. Then the

maximum likelihood discrimination rule, where the estimates are used in place of the true parameter

values, allocates a new observation x to population j if and only if

(x − xj)
t(S−1k − S

−1
j)(x − xj) + (xj − xk)

tS−1k (2x − (xj + xk)) + ln
∣Sk∣
∣Sj ∣
> 0, k ≠ j. (8.2)

Proof The log likelihood for population j is

lj(x) = −
1

2
ln(2π) − 1

2
ln ∣Sj ∣ −

1

2
(x − xj)S

−1
j (x − xj).

The result follows from straightforward arithmetic manipulation.

Corollary 8.4. If m = 2 (two populations) and C1 = C2 = C and this model is used, with S = 1
n1+n2

W ,

then the maximum likelihood method allocates a new observation x to population 1 if and only if

(x1 − x2)
tW −1(x − 1

2
(x1 + x2)) > 0.

Proof Straightforward exercise.

8.6 Canonical Discriminant Functions

Fisher's technique may be extended quite easily to obtain more discriminant functions, to sharpen up

the clasi�cation. Let s =min(p,m − 1) and let λ1 > . . . > λs be the �rst s eigenvalues of W −1B and let

(ai1, . . . , aip)t denote the eigenvector corresponding to eigenvalue λi and set

8.6. CANONICAL DISCRIMINANT FUNCTIONS 123

Zi(x) =
p

∑
k=1

aikxk.

Then Zi is known as the ith canonical discriminant function. It turns out (proof omitted) that the ith

eigenvalue is the ratio of the within group sum of squares to the between group sum of squares for

Z1 is the combination that gives the largestMB/MW ratio, subject to the constraint that ∑a21k = 1.

Z2 is the combination that gives the largest MB/MW ratio, subject to constraints that ∑k a
2
2k = 1 and

∑jk a1jSjka2k = 0; i.e. Z2 is statistically uncorrelated with Z1.

For i ≥ 2, Zi is the linear combination that gives the largest MB/MW ratio, subject to the constraints

that ∑p
k=1 a

2
jk = 1, j = 1, . . . , p and ∑α,β ajαakβSαβ = 0 for all 1 ≤ j < k ≤ i.

Where discriminant analysis is useful, the �rst few functions ought to be su�cient to show the group

di�erences. Hopefully, su�ciently few will be required so that they can be used to represent the group

di�erences graphically.

Important Remark The value s = min(p,m − 1) is the maximum number of canonical discriminant

functions available; this is the rank of B as is easily checked and hence, if s < p all remaining eigenvalues

λs+1 = . . . = λp = 0.

Signi�cance Tests The Hotelling T 2 test may be used to test for a signi�cant di�erence between the

mean values for any pair of groups. Other tests, which are variants of this test, may be used to detect

overall signi�cant di�erences between the means for the m groups.

χ2 test In addition, let (λj)sj=1 denote the eigenvalues of the matrix W −1B. Then, approximately,

ϕ2j ∶= (n − 1 −
p +m
2
) ln(1 + λj) ∼ χ2

p+m−2j .

A large value substantiates the claim that there are signi�cant di�erences of the mean vectors between

the groups. Alternatively, ϕ2j + . . . + ϕ2s may be used, the χ2 having the d.f. ∑s
k=j(p +m − 2k).

Warnings

1. The χ2 test does not seem to be robust if assumptions Xj ∼ N(µj ,C) are relaxed. This contrasts
with univariate analysis, where the results seem to be robust when assumptions of normality are

relaxed.

2. Even if the data is normal, the statistical values for λj may appear in the wrong order, if the

variance is large. The test does not take this possibility into account. A large value for an

eigenvalue further down on the list that happens by chance will give a wrong impression of the

124 CHAPTER 8. DISCRIMINANT FUNCTION ANALYSIS

signi�cance of all the eigenvalues; the test has a greater chance of wrongly indicating signi�cance

than the nominal signi�cance level.

Example 8.2 (Egyptian Skulls).

The matrices W , T , B = T −W can be obtained and the matrix W −1B calculated and its eigenvalues

computed. These turn out to be λ1 = 0.437, λ2 = 0.035, λ3 = 0.015, λ4 = 0.002. The corresponding

eigenvectors may be calculated, giving (up to scaling) canonical discriminant functions

Z1 = 0.127X1 − 0.037X2 − 0.145X3 − 0.0083X4

Z2 = 0.039X1 + 0.210X2 − 0.068X3 − 0.077X4

Z3 = 0.093X1 − 0.025X2 + 0.015X3 − 0.295X4

Z4 = 0.149X1 − 0.000X2 + 0.133X3 + 0.067X4

The eigenvalue λ1 is much larger than the others; most of the sample di�erences are described by Z1

alone. Large values correspond to skulls which are tall and narrow with long jaws and short nasal

heights.

The means and standard deviations for the discriminant function Z1 may be computed for the �ve

samples. They are

group mean standard deviation

I: Earl predynastic -0.029 0.097

II: Late predynastic -0.043 0.071

III: 12th and 13th dynasties -0.099 0.075

IV: Ptolemaic -0.143 0.080

V: Roman -0.167 0.095

This discriminant function shows a clear trend in the mean. It is decreasing over time, indicating on

average shorter broader skulls, with short jaws, but relatively larger nasal heights. But this is very

much an average change; the standard deviation is rather large. When the 150 skulls are classi�ed

according to the group to which they are closest according to the Mahalanobis distance, rather many

are wrongly classi�ed. The following table, known as a confusion table, gives the number of objects

which the classi�er places in each class, from each class. The diagonal entries indicate the number that

are correctly classi�ed, the o�-diagonals those that are incorrectly classi�ed.

number allocated to each group

source group I II III IV V total

I 12 8 4 4 2 30

II 10 8 5 4 3 30

III 4 4 15 2 5 30

IV 3 3 7 5 12 30

V 2 4 4 9 11 30

8.7. LDA USING MULTIPLE REGRESSION TECHNIQUES 125

Allowing for Additional Information

Suppose, for example, there are two groups and it is known that many more will fall into group 1

than into group 2. In that case, if an individual is allocated to each group, it makes sense to bias the

allocation procedure in favour of group 1. The procedure of allocating an individual to the group with

the smallest Mahalanobis distance is then modi�ed, by taking into account prior probabilities of group

membership.

Stepwise Discriminant Function Analysis

The standard approach to discriminant function analysis is to decide in advance the number of variables

to be used. Alternatively, a stepwise approach may be adopted, when there are a very large number

of variables, adding in the `best' variable at each stage, until it is found that adding in extra variables

does not lead to better discrimination.

The main problem with stepwise discriminant function analysis is that it introduces bias. Given

enough variables, it is likely that some combination of them will produce signi�cant discriminant

functions by chance alone.

To check that the results are valid, it might then be a good idea to (for example, with the Egyptian

skull data) allocate the 150 skulls to the groups I,II,III,IV,V purely at random and see if the procedure

is able to detect a pattern. If it can detect a pattern with the randomised data, then there is clearly a

problem.

Jackknife Classi�cation

A particular individual will necessarily a�ect the statistical average of the `correct' group for that

individual. To check that the classi�cation procedure works, it is therefore probably better to remove

that individual from the computations of sample means and sample covariance matrix, and then

allocate the individual based on the analysis from which that individual has been removed. When the

data set is reasonably large, this does not make much di�erence in practise.

8.7 LDA using Multiple Regression Techniques

The results on LDA can also be obtained using linear regression techniques. This may prove to be

useful when we have a large number of variables and we would like to choose a subset of them for

classi�cation purposes. We may then employ LASSO to construct the classi�er.

To use regression for LDA, create a variable Y which indicates which class the observations belong

to, Then regress the feature variables X on Y .

Consider two classes, n1 resp. n2 in each class, items 1, . . . , n1 belong to class 1 and items n1 +
1, . . . , n1 + n2 belong to class 2. let Yi = y1 for i = 1, . . . , n1 and y2 for i = n1 + 1, . . . , n2.

Let X =
⎛
⎝
X1

X2

⎞
⎠
where X1 and X2 are respectively the n1 × p and n2 × p matrices containing the

values of (X1, . . . ,Xp) for the observations for populations 1 and 2 respectively.

126 CHAPTER 8. DISCRIMINANT FUNCTION ANALYSIS

When classi�cation is in view, we may use centred variables. Let

H = In −
1

n
1n1

t
n

be the centring matrix and let

Xc =HnX Y c =HnY

so that the columns of Xc have mean zero and Y c has mean 0. Therefore

T =XctXc.

Regressing gives the OLS estimator

β̂ = (XctXc)−1XctY c.

Set

d = 1

n1
Xt

11n1 −
1

n2
Xt

21n2 ,

The vector d is a p-vector where the entries are the di�erences of the sample means of the two popu-

lations for each variable.

A straightforward computation gives:

B = n1n2
n

ddt

Let

SXX =Xt
1Hn1X1 +Xt

2Hn2X2

Here

SXX;ab =
n1

∑
k=1

(xk1a − x.1a)(xk1b − x.1b) +
n2

∑
k=1

(xk2a − x.2a)(xk2b − x.2b);

For two classes, the matrix SXX is the matrix W from earlier. Set

k = n1n2
n

Then

XctXc = SXX + kddt

This is the identity T = B +W .

XctY c = k(y1 − y2)d

Y ctY c = k(y1 − y2)2.

8.7. LDA USING MULTIPLE REGRESSION TECHNIQUES 127

It follows that

β̂ = k(y1 − y2)(SXX + kddt)−1d = k(y1 − y2)S−1XX(Ip + kddtS−1XX)−1d.

Recall the matrix result:

(A + uvt)−1 = A−1 − (A
−1u)(vtA−1)
1 + vtA−1u

.

Set A = Ip, u = kd, v = S−1XXd, then

(Ip + kddtS−1XX)−1 = Ip −
kddtS−1XX

1 + kdtS−1XXd
=

Ip

1 + kdtS−1XXd

from which

β̂ = k(y1 − y2)
n − 2 + T 2

Σ̂−1XXd

where Σ̂XX = 1
n−2SXX and

T 2 = kdtΣ̂−1XXd =
n1n2
n
(X1 −X2)tΣ̂−1XX(X1 −X2)

is the Hotelling T 2 statistic for testing µ1 = µ2.

Recall the formulae for linear discriminant analysis (8.1) Note that D2 = dtΣ̂−1XXd is proportional to

the estimate of ∆ and

β̂ ∝ Σ̂−1XX(X1 −X2) = b̂.

Variable Selection High dimensional data contains highly correlated variables. The equivalence

between LDA and linear regression means that exactly the same techniques may be employed for

making a selection; stepwise regression or other techniques that have not yet been encountered, such

as LARS (least angle regression) and LASSO.

8.7.1 Logistic Discrimination

Consider two classes. Starting from

log
L1(x)
L2(x)

= b0 = btx

where

b = Σ−1XX(µ1 − µ2)

b0 = −
1

2
(µt1Σ−1XXµ1 + µt2Σ−1XXµ2)

and using P(C1∣x) ∝ L1(x), P(C2∣x) ∝ L2(x) so that P(C2∣x) = 1 − P(C1∣x), it follows that

128 CHAPTER 8. DISCRIMINANT FUNCTION ANALYSIS

logit(p(C1∣x) = b0 + btx

which is of the form of a logistic regression model. The logistic approach to discrimination assumes this

linear model, estimates the parameters by logistic regression and assigns the observation to whichever

category has the higher estimated likelihood.

8.8 Implementation in R

Implementation in R is straightforward, using (for example) the MASS library. This is illustrated using

the skulls.dat data set.

>www<-"https://www.mimuw.edu.pl/~noble/courses/QPEDataScience/data/

skulls.dat"

> skulls <- read.table(www,header=T)

> View(skulls)

> library("MASS")

> fit <- lda(Year ~ MB + BH + BL + NH, data=skulls, na.action="na.omit",

CV=TRUE)

`lda' stands for `linear discriminant analysis'. The variable `Year' is to be explained in terms of MB,

BH, BL and NH. The `na.action' refers to how R should treat a value that is not a number. The

command `CV = TRUE' generates the predictions. These are jacknifed (i.e. `leave one out'). The

.$class item gives the classes assigned to the skulls.

> head(fit$class)

[1] -1850 -4000 -3300 -4000 -1850 -200

Levels: -4000 -3300 -1850 -200 150

From the �rst 11 skulls, it is clear that they are not perfectly classi�ed. To assess the accuracy of

prediction, the following may help:

> ct <- table(skulls$Year, fit$class)

> ct

-4000 -3300 -1850 -200 150

-4000 9 10 5 4 2

-3300 11 7 5 4 3

-1850 6 4 12 2 6

-200 3 3 7 5 12

150 2 4 4 10 10

> diag(prop.table(ct, 1))

8.8. IMPLEMENTATION IN R 129

-4000 -3300 -1850 -200 150

0.3000000 0.2333333 0.4000000 0.1666667 0.3333333

> sum(diag(prop.table(ct)))

[1] 0.2866667

Note that `leave one out' is a more reliable method and this has substantially a�ected the accuracy of

the prediction. The last item gives the total percentage correct.

Quadratic discriminant analysis may be carried out by substituting the lda command for qda.

Quadratic discriminant analysis in this example does not give as good classi�cation.

> fit <- qda(Year ~ MB + BH + BL + NH, data=na.omit(skulls), CV = TRUE,

prior=c(1,1,1,1,1)/5)

> ct <- table(skulls$Year, fit$class)

> ct

-4000 -3300 -1850 -200 150

-4000 8 12 4 4 2

-3300 11 5 4 6 4

-1850 4 5 6 11 4

-200 2 3 2 14 9

150 3 4 5 11 7

> sum(diag(prop.table(ct)))

[1] 0.2666667

If one wants to obtain Fisher's canonical discriminant functions, this is not possible with the `jacknifed'

method; one needs to de�ne a training data set. In this case, it is the whole data set. try

> fit2 <- lda(Year~MB + BH + BL + NH, data = skulls,CV=FALSE)

> fit2

Call:

lda(Year ~ MB + BH + BL + NH, data = skulls, CV = FALSE)

Prior probabilities of groups:

-4000 -3300 -1850 -200 150

0.2 0.2 0.2 0.2 0.2

Group means:

MB BH BL NH

-4000 131.3667 133.6000 99.16667 50.53333

-3300 132.3667 132.7000 99.06667 50.23333

-1850 134.4667 133.8000 96.03333 50.56667

130 CHAPTER 8. DISCRIMINANT FUNCTION ANALYSIS

-200 135.5000 132.3000 94.53333 51.96667

150 136.1667 130.3333 93.50000 51.36667

Coefficients of linear discriminants:

LD1 LD2 LD3 LD4

MB 0.12667629 0.03873784 0.09276835 0.1488398644

BH -0.03703209 0.21009773 -0.02456846 -0.0004200843

BL -0.14512512 -0.06811443 0.01474860 0.1325007670

NH 0.08285128 -0.07729281 -0.29458931 0.0668588797

Proportion of trace:

LD1 LD2 LD3 LD4

0.8823 0.0809 0.0326 0.0042

These coe�cients give the discriminant functions listed above. Discriminant analysis requires training

data, which is used to construct the classi�er, followed by data to be classi�ed. Once the classi�er has

been constructed, classi�cation is made using:

> pred <- predict(fit2,skulls[,1:4])

The classes to which the objects are assigned are found in pred$class.

> ct2 <- table(skulls$Year,pred$class)

> ct2

-4000 -3300 -1850 -200 150

-4000 12 8 4 4 2

-3300 10 8 5 4 3

-1850 4 4 15 2 5

-200 3 3 7 5 12

150 2 4 4 9 11

8.9 Worked Example: Diabetes

Consider the diabetes data in diabetes.txt. Ignore the �rst 4 columns; they do not contain useful

information. The three primary variables are glucose area (measure of glucose intolerance), insulin

area (measure of insulin response to oral glucose), SSPG (steady state plasma glucose - a measure of

insulin resistance). In addition, relative weight and fasting plasma glucose were measured. The

8.9. WORKED EXAMPLE: DIABETES 131

three clinical classi�cations (the target variable) are: overt diabetic (Class 1, 33 individuals), chemical

diabetic (Class 2, 36) and normal (Class 3, 76).

Draw a scatterplot matrix of all 5 variables with di�erent colours or symbols representing the

three classes of diabetes. Do these pairwise plots suggest multivariate Gaussian distributions for each

class with equal covariance matrices? Carry out an LDA and draw a 2D scatterplot of the �rst two

discriminating functions. Using the leave-one-out cross validation procedure, �nd the confusion table

(how many from each class have been classi�ed according to each class) and identify those observations

which have been wrongly classi�ed according to the LDA rule. Do the same for QDA.

Hint You'll �nd the package GGAlly useful for the scatterplot matrix. For adding colours, the

package seems to like factors, so apply as.factor() to the column that represents the di�erent colours

(di�erent classes of diabetes).

You'll see clearly how using two discriminant functions helps with the classi�cation in this example.

Solution Firstly, we need to get the data.

> www <-

"https://www.mimuw.edu.pl/~noble/courses/QPEDataScience/data/diabetes.

txt"

> diabetes <-read.table(www,header=F)

This data doesn't have column headers, so let's add them:

>

colnames(diabetes)<-c("one","two","three","four","glucArea","InsArea",

"SSPG","relweight","FPG","type")

Later, we'll discover that ggplot2 and GGally need the class variable to be a factor and not a

numerical variable. We can see the type of each variable as follows:

> sapply(diabetes,class)

one two three four glucArea InsArea SSPG

relweight FPG

"integer" "integer" "integer" "integer" "numeric" "integer" "integer"

"integer" "integer"

type

"integer"

To use GGally, we need the class variable to be a factor and we can do this as follows:

> diabetes$type <-as.factor(diabetes$type)

Now activate the libraries with the appropriate graph packages;

132 CHAPTER 8. DISCRIMINANT FUNCTION ANALYSIS

> library(GGally, lib.loc = "/usr/lib/R/site-library")

Loading required package: ggplot2

Registered S3 method overwritten by 'GGally':

method from

+.gg ggplot2

> library(ggplot2, lib.loc = "/usr/lib/R/site-library")

Now we would like to visually examine pairs of variables to see if there are good pairs that will help

with classi�cation. Scatterplots are useful here. For example, Glucose area versus Insulin area

where the points are coloured according to type of diabetes is done as follows:

> ggplot(diabetes,aes(x=glucArea,y=InsArea,color=type))+geom_point()

Look at the plot. We can see that even with these two variables, we can make a reasonable job of

classi�cation; type 3 diabetes can be determined by the InsArea variable, although the di�erence

between types 1 and 2 is not so obvious from this pair of variables.

From GGally, we can get scatter plots of all pairs of variables, coloured by type as follows:

> ggpairs(data=diabetes,columns=5:9,aes(colour=type))

To do LDA, we need the package MASS

> library(MASS)

> discrim <-

lda(type~glucArea+InsArea+SSPG+relweight+FPG,data=diabetes,na.action=

"na.omit",CV=FALSE)

> discrim

Call:

lda(type ~ glucArea + InsArea + SSPG + relweight + FPG, data =

diabetes,

CV = FALSE, na.action = "na.omit")

Prior probabilities of groups:

1 2 3

0.2275862 0.2482759 0.5241379

Group means:

glucArea InsArea SSPG relweight FPG

1 0.9839394 217.66667 1043.7576 106.0000 318.8788

2 1.0558333 99.30556 493.9444 288.0000 208.9722

3 0.9372368 91.18421 349.9737 172.6447 114.0000

8.9. WORKED EXAMPLE: DIABETES 133

Coefficients of linear discriminants:

LD1 LD2

glucArea -1.3624356881 -3.784142444

InsArea 0.0336487883 0.036633317

SSPG -0.0125763942 -0.007092017

relweight 0.0001022245 -0.006173424

FPG -0.0042431866 0.001134070

Proportion of trace:

LD1 LD2

0.8812 0.1188

Note that if we do not assign prior probabilities, it simply takes the proportion of each class in the

training set.

Here we see that there are two discriminant functions and we make a scatterplot as follows:

> discrim.lda <-predict(discrim,diabetes[,5:9])

This applies the discriminant classi�er to the data. This is (of course) unsound, because we've used

the same data to construct the classi�er as we are using to do the classi�cation!

The loadings for the discriminant functions for this data set are found under $x. We add the two

discriminant function loadings to the data frame:

> diabetes$lda1 <- discrim.lda$x[,1]

> diabetes$lda2<-discrim.lda$x[,2]

> ggplot(diabetes,aes(x=lda1,y=lda2,color=type))+geom_point()

This puts the scores of the discriminant functions as additional columns of the data frame. We can

clearly see that, using both discriminant functions, we can determine, with good precision, the type of

diabetes from these variables.

To see how well the classi�er is doing (hoping that using the same data to learn and to test doesn't

make too much di�erence):

> pred<-predict(discrim,diabetes[,5:9])

> tab <- table(diabetes$type,pred$class)

> tab

1 2 3

1 27 5 1

2 0 31 5

3 0 3 73

134 CHAPTER 8. DISCRIMINANT FUNCTION ANALYSIS

Of course, to get a more accurate idea of the performance, use CV = TRUE to ensure that, for each

observation, the observation is not used in the construction of the classi�er.

8.10. RECURSIVE PARTITIONING AND TREE-BASED METHODS 135

8.10 Recursive Partitioning and Tree-Based Methods

Recursive partitioning is the process for constructing a decision tree, where for each node we decide

to split into two child nodes, or not to split. It is the key to the nonparametric statistical method of

classi�cation and regression trees (CART) introduced by Breiman, Friedman, Olshen and Stone, 1984.

The algorithm asks a series of hierarchical Boolean questions. For a continuous variableXj , whether

or not Xj ≤ θi for some threshold value θi. For a categorical variable Xk with state space {θ1, . . . , θK},
whether or not Xk ∈ S, where S is a strict subset of {θ1, . . . , θK}.

Let Y be the variable to be predicted and X1, . . . ,Xr the collection of predictors. The output (Y)

is a class variable; Y ∈ C = {C1, . . . ,CL}. If X1, . . . ,Xr are continous variables, then the input space is

Rr and, following the answers to successive questions, the input space is partitioned into a number of

non-overlapping hyper-rectangles. To each hyper-rectangle is associated a class from C, which may be

the maximum likelihood estimator of Y based on the answers to the questions.

8.10.1 Classi�cation Trees

A classi�cation tree is the result of asking an ordered sequence of questions, where the next question

in the sequence depends on the answers to the previous questions of the sequence. The sequence

terminates in a prediction of the class.

The starting point is the root node and consists of the entire learning set L. A node is a subset

of the variables, which can be terminal or non-terminal. A non-terminal node is a node which splits

into two child nodes. The binary split is determined by a Boolean condition on the value of a single

variable, where the condition is either satis�ed (�yes�) or not satis�es (�no�) by the observed value of

the variable. A terminal node is a node that does not split.

All observations in L that have reached a particular (parent) node and satisfy the condition drop

down to one of the two child nodes; the remaining observations drop down to the other child node.

In this way, each observation in L drops down to one of the terminal nodes.

There may be more than one terminal node with the same class label. A single-split tree with only

two terminal nodes is called a stump. The set of all terminal nodes is a partition of the data; each

datum will belong to exactly one terminal node.

Example Suppose we have two input variables X1 and X2.

� Q(root): X2 ≤ θ1? yes/no

� Q(yes): X1 ≤ θ2? yes/no

� Q(no): X2 ≤ θ3? yes/no

� Q(no)(yes): X1 ≤ θ4? yes/no

DRAW PICTURE OF THE TREE - IT HAS 5 TERMINAL NODES.

136 CHAPTER 8. DISCRIMINANT FUNCTION ANALYSIS

The space is split into 5 regions: Assume (X1,X2) ∈ [0,1]2 and θi ∈ [0,1] for i = 1,2,3,4, then the 5

rectangles are R1 = [0, θ2] × [0, θ1], R2 = [θ1,1] × [0, θ1], R3 = [0, θ4] × [θ1, θ3], R4 = [θ4,1] × [θ1, θ2],
R5 = [0,1] × [θ3,1].

DRAW A PICTURE OF [0,1] × [0,1] PARTITIONED INTO RECTANGLES.

It is clear that categorical variables and ordinal variables can also be included; ordinal variables (which

take values in a set 1, . . . ,N which represent an ordering are included in exactly the same way; the

questions are of the form X ≤ θ for some value of θ. For categorical variables, if a variable has M

distinct categories represented in the data at the node, labelled l1, . . . , lM , the set S of splits is simply

the number of ways of partitioning into two non-empty subsets. There are 2M−1 − 1 ways of doing

this. For example, if M = 4, there are 23 − 1 = 7 possible splits: ({l1},{l2, l3, l4}), ({l2},{l1, l3, l4}),
({l3},{l1, l2, l4}), ({l4},{l1, l2, l3}), ({l1, l2},{l3, l4}), ({l1, l3},{l2, l4}), ({l1, l4},{l2, l3}).

Cleveland Heart Disease Data The data �le cleveland.data from the UCI repository

www.ics.uci.edu/mlearn/databases/heart-disease

contains data obtained from a heart disease study conducted by the Cleveland Clinic Foundation. The

response variable is diag (diagnosis of heart disease: buff = healthy, sick = heart disease). There

were 303 patients in the study. There are 13 input variables: age (in years), gender (male / female),

cp (chest pain type: angina = typical angina, abnang = atypical angina, notang = non-anginal pain,

asympt = asymptomatic), trestbps (resting blood pressure), etc

Choosing the Quesions Each question splits the population of the node in two. When we are

learning a classi�cation tree (i.e. a list of questions), we choose the question which gives the greatest

Kullback Leibler information.

So, if we have two classes, C = {C0,C1}, where the class index is the value of Y , p the proportion

for which Y = 1 and 1−p the proportion for which Y = 0, let p11 be the proportion of those who answer

`yes' and Y = 1, p10 those who answer `yes' and Y = 0, and p01 those who answer `no' and Y = 1, p00
those who answer `no' and Y = 0. The Shannon Information Gain is:

1

∑
i=0

1

∑
j=0

pij log
pij

pi+p+j

where pi+ = pi0 + pi1 and p+j = p0j + p1j . The question which gives the greatest Shannon Information

Gain for each node is asked, until no question will give an appreciable increase in SIG. There are other

possible criteria for choosing the question; SIG has good properties, which we'll discuss next.

8.11 Shannon Entropy and Information

We now to show how the negative of Shannon entropy gives a convincing approach to the amount of

information given by the answer to a question if we know the probability distribution and why, when

8.11. SHANNON ENTROPY AND INFORMATION 137

assessing the amount of information gained, the Kullback-Leibler divergence is a useful quantity.

In the following, we consider the parameter space Θ = C = {C1, . . . ,CL}, the set of possible classes.

De�nition 8.5 (Shannon Entropy). For a distribution with density π over a parameter space Θ, the

negative of the Shannon entropy is de�ned as:

E(π) ∶= −∫
Θ
π(θ) logπ(θ)dθ.

We follow Lindley by taking the negative of this quantity, which we call the information in the distri-

bution:

I(π) = −E(π) = ∫
Θ
π(θ) logπ(θ)dθ.

The negative sign in Shannon's de�nition is due to the fact that he is considering the opposite of

information; Shannon's entropy is a measure of disorder.

Shannon gives reasons why this is a good measure and we follow Lindley's description of Shannon's

motivational arguments.

In the discussion here, Θ is �nite and πΘ is a probability mass function. In the absence of any prior

information about classes, we can take π(θ) = 1
L (uniform distribution) for each θ ∈ {1, . . . , L} (the class

labels). A priori, I(p) = ∑Θ π(θ) logπ(θ)), then the amount of information, say I, can be measured

by the amount of additional information required before the value of θ is known.

This information could be provided in two stages:

Stage 1 Let Θ1 ⊂ Θ be a non-empty, strict subset of Θ where ∑θ∈Θ1
πΘ(θ) ≠ 0 or 1. Suppose the

experimenter is told whether θ ∈ Θ1 or θ ∈ Θ/Θ1. The prior distribution over (Θ1,Θ/Θ1) is (Π,1−Π),
where Π = ∑θ∈Θ1

πΘ(θ).
In the second stage, suppose the experimenter is told the value of θ; the information provided is I2

if θ ∈ Θ1, or I3 if θ ∈ Θ/Θ1. The distributions over Θ1 and Θ/Θ1 are
πΘ(θ)

Π and
πΘ(θ)
1−Π respectively.

Shannon requires that the information provided in the �rst stage and that the average amount in

the second stage add up to the total information; that is:

I = I1 +ΠI2 + (1 −Π)I3.

This requirement is the fundamental postulate of Shannon.

Shannon proves that (apart from arbitrary multiplicative constant) I(π) = ∑θ∈Θ πΘ(θ) logπΘ(θ) is the
only function satisfying this property (together with a mild continuity property).

We can see that I, thus de�ned, has this property;

I1 = ΠlogΠ + (1 −Π) log(1 −Π)
I2 = ∑θ∈Θ1

πΘ(θ)
Π log

πΘ(θ)
Π = 1

Π
(∑θ∈Θ1

(logπ(θ) − logΠ)
I3 = ∑θ∈Θ/Θ1

πΘ(θ)
1−Π log

πΘ(θ)
1−Π =

1
1−Π ∑Θ/Θ1

πΘ(θ) (logπΘ(θ) − log(1 −Π))

138 CHAPTER 8. DISCRIMINANT FUNCTION ANALYSIS

and the identity I = I1 + ΠI2 + (1 − Π)I3 follows directly. Shannon also shows that this is the only

function of πΘ for which this is satis�ed for arbitrary πΘ and Θ1 ⊂ Θ.

After the experiment has been performed, a result x observed and the distribution over Θ updated to

πΘ∣X(.∣x), the information is:

I(πΘ∣X(.∣x)) = ∫
Θ
πΘ∣X(θ∣x) logπΘ∣X(θ∣x)dθ

and the information gain is:

K(x) = I(πΘ∣X(.∣x)) − I(πΘ).

We assume that, given a true parameter value θ, the outcome x of an experiment is governed by a

probability distribution pX ∣Θ(.∣θ).

The information di�erence depends on the observation x. If we are choosing between di�erent ex-

periments (in this case questions to be asked), then clearly we do not know the outcome before we

carry out the experiment! We therefore average the information di�erence over all outcomes for an

experiment to get a suitable measure:

∫ K(x)pX(x)dy = ∫ pX(x)∫ (πΘ∣X(θ∣x) logπΘ∣X(θ∣x) − πΘ(θ) logπΘ(θ))dθdx

= ∫ ∫ (pX(x)
πΘ(θ)pX ∣θ(x∣θ)

pX(x)
log

πΘ∣X(θ∣x)pX(x)
pX(x)

− πΘ(θ) logπΘ(θ))dθdx

= ∫ ∫ πΘ(θ)pX ∣Θ(x∣θ) log
πΘ∣X(θ∣x)pX(x)
pY (x)πΘ(θ)

dθdx = DKL(πΘ∣XpX∥πΘpX). (8.3)

(Here πΘpX ∣Θ is the joint distribution over parameter space / state space).

This is the Kullback-Leibler divergence between the joint distribution πΘpX ∣Θ over Θ×X and the prod-

uct distribution πΘpX over Θ × X (if the parameter and observation were independent, the Kullback-

Leibler divergence would be zero; the experiment would provide no information).

The Kullback-Leibler divergence has several important properties, which indicate that it is useful

for measuring the gain of information from an experiment. Firstly, if f and g are two probability

distributions over a state space X , then DKL(f∥g) ≥ 0, where the inequality is strict if f and g di�er

on a set of positive f probability. This follows from Jensen's inequality; if ϕ is a convex function

and X a random variable with well de�ned expected value, then E[ϕ(X)] ≥ ϕ(E[X]). The function

ϕ(x) = − logx is convex. Applying this to Kullback Leibler, this gives:

DKL(f∥g) = ∫ f(x) log f(x)
g(x)

dx = −∫ f(x) log g(x)
f(x)

dx

≥ − log∫ f(x) g(x)
f(x)

dx = − log∫ f(x)dx = − log 1 = 0.

8.11. SHANNON ENTROPY AND INFORMATION 139

Another property is the additive property, which was Shannon's basic reason for introducing the entropy

functional. Let E denote an experiment which takes place in two parts, E = (E1,E2), where E2 is

performed after E1. Let KE1 denote the average information provided by the whole experiment, KE1
the information provided by the �rst part and KE2∣E1 the additional information provided by the second,

then

KE = KE1 +KE2∣E1 .

This follows quite easily; KE2∣E1 is de�ned as the average information gain from the second part. Now,

using X = (X1,X2) to denote answers to two successive questions (or more generally two parts of an

experiment) and x = (x1, x2) to denote the two outcomes:

KE2∣E1 = ∫
X1

pX1(x1)∫
X2
∫
Θ
pX2∣Θ,X1

(x2∣θ, x1)πΘ∣X1
(θ∣x1) log

pX2∣Θ,X1
(x2∣θ, x1)πΘ∣X1

(θ∣x1)
πΘ∣X1

(θ∣x1)pX2∣X1
(x2∣x1)

dθdx2dx1

= ∫
X
∫
Θ
pX ∣Θ(x∣θ)πΘ(θ) log

pX ∣Θ(x∣θ)πΘ(θ)pX1(x1)
pX1∣Θ(x1∣θ)πΘ(θ)pX(x)

dθdx.

The last line comes from taking pX ∣Θ = pX1,X2∣Θ = pX2∣X1,ΘpX1∣Θ and πΘ∣X1
= πΘpX1 ∣Θ

pX1
. From this:

KE1 +KE2∣E1 = ∫
X
∫
Θ
πΘ(θ)pX ∣Θ(x∣θ)(log

πΘ(θ)pX ∣Θ(x∣θ)pX1(x1)
πΘ(θ)pX1∣θ(x1∣θ)pX(x)

+ log
πΘ(θ)pX1∣Θ(x1∣θ)
πΘ(θ)pX1(x1)

)dθdx = KE .

We now consider the concept of independent experiments; two experiments E1 and E2, whose outcomes

are observations of random variables X1 and X2, where both distributions have the same parameter

space Θ, are said to be independent if pX1,X2∣Θ = pX1∣ΘpX2∣Θ. That is, for any given parameter value

θ, X1 and X2 are conditionally independent conditioned on the value of the parameter. Suppose

E = (E1,E2) where E1 is performed �rst and E2 is then performed. Let E2(x1) indicate the experiment

E2, given that E1 gave outcome x1; independence means that E2(x1) = E2, which does not depend on

x1.

If E1 and E2 are independent, then KE2∣E1 ≤ KE2 , with equality if and only if X1 ⊥X2 (i.e. they are

marginally independent; pX1,X2 = pX1pX2). This is seen by a simple computation:

KE2 −KE2∣E1 = ∫
Θ
∫
X
πΘ(θ)pX ∣Θ(x∣θ)(log

πΘ(θ)pX2∣Θ(x2∣θ)
πΘ(θ)pX2(x2)

− log
πΘ∣X1

(θ∣x1)pX2∣Θ,X1
(x2∣θ, x1)

pX2∣X1
(x2∣x1)πΘ∣X1

(θ∣x1)
)dxdθ

= ∫
Θ
∫
X
πΘ(θ)pX ∣Θ(x∣θ)(log

πΘ(θ)pX2∣Θ(x2∣θ)
πΘ(θ)pX2(x2)

− log
πΘ(θ)pX ∣Θ(x∣θ)pX1(x1)
pX(x)πΘ(θ)pX1∣Θ(x1∣θ)

)dxdθ

= ∫
Θ
∫
X
πΘ(θ)pX ∣Θ(x∣θ) log

pX1∣Θ(x1∣θ)pX2∣Θ(x2∣θ)
pX ∣Θ(x∣θ)

pX(x)
pX1(x1)pX2(x2)

dxdθ

= ∫
X
pX(x) log

pX(y)
pX1(x1)pX2(x2)

dx ≥ 0.

The expression in the last line is a Kullback-Leibler divergence, which is 0 if and only if pX1,X2 = pX1pX2 .

140 CHAPTER 8. DISCRIMINANT FUNCTION ANALYSIS

This tells us (among other things) that if Experiment 2 is an independent repeat of Experiment 1,

then the repetition is less informative, on average, than the original experiment.

Indeed, if we consider E1,E2, . . . a sequence of independent identical experiments and E(n) = (E1, . . . ,En),
let Kn ∶= KE(n) , then Kn is a concave increasing function of n.

8.11.1 Tree-Growing Procedure

Some basic questions have to be answered:

1. How do we choose the Boolean conditions for splitting at each node? The choice of SIG is

motivated by the fact that the sum of information gains from a sequence of questions is the same

as the information gain if the multiple question were posed. This is a versatile choice, but not

the only one.

2. Choice of criterion for when to split a parent node into two child nodes or when to decide if it is

a terminal node.

3. Assigning a class to a node.

Node Impurity Functions Ideally, we would like all elements of a terminal node to belong to the

same class, but this is not to be expected. Impurity is a measure of the amount of mixing in terminal

nodes. Suppose that Y takes values in {1, . . . ,K} (there are K possible classes). For node τ , we de�ne

the node impurity function as:

i(τ) = ϕ(p(1∣τ), . . . , p(K ∣τ))

where p(i∣τ) is the proportion of class i observations in node τ . This is an estimate of P(X ∈ Πi∣τ),
probability that the observation is in class i given that the questions thus far place the observation at

node τ .

The Shannon Information Gain is obtained by using

i(τ) = −
K

∑
k=1

p(k∣τ) log p(k∣τ)

There are other possibilities; for example,

iG(τ) = ∑
k≠k′

p(k∣τ)p(k′∣τ) = 1 −∑
k

(p(k∣τ))2.

iG is the so-called Gini index. If classi�cation is binary, then the entropy is

i(τ) = −p log p − (1 − p) log(1 − p)

and the Gini index is:

8.12. ASSIGNING CLASSES TO NODES: ESTIMATING THE MISCLASSIFICATION RATE 141

iG(τ) = 2p(1 − p).

8.12 Assigning classes to nodes: Estimating the Misclassi�cation Rate

Suppose we have reached a node τ . The misclassi�cation rate is:

R(τ) = 1 −max
k
p(k∣τ).

For two classes, this is:

R(τ) = 1 −max(p,1 − p) =min(p,1 − p).

For a tree, the mis-classi�cation is based on the terminal nodes. If T̃ denotes the set of terminal nodes,

then the true misclassi�cation rate for the tree T is:

R(T) = ∑
τ∈T̃

R(τ)P (τ)

where P (τ) is the probability that an observation is placed in (terminal) node τ . We use estimates

(based on the learning set where classi�cations are known) to estimate P (τ) and R(τ) for each terminal

node τ .

8.13 Pruning the Tree

The tree is grown according to a greedy algorithm; for each node, choose the question which gives the

greatest increase in score for that node. This can lead to a tree that is too large. For tree pruning,

we use a regularisation approach, starting at the terminal nodes and removing them if they do not

represent su�cient gain over the parents. For a node τ , which is terminal in the current tree, we

consider:

Rα(τ) = R(τ) + α

where R(τ) denotes the estimated mis-speci�cation. Then

Rα(T) = R(T) + α∣T̃ ∣.

The term α∣T̃ ∣ is a penalty on the tree size. For each α, we choose the subtree Tα which minimises

Rα(T). This gives T (α). The tree T (α) is not necessarily unique.

The chosen value of α determines the tree size. Although α ∈ [0,+∞), the number of possible sub-trees
of T is �nite. We can consider α1 the lowest value of α such that T (α) ≠ T and let T1 = T (α), α2 the

next lowest yielding T2 = T (α2) and so on. This gives a �nite sequence of trees T ⊃ T1 ⊃ T2 ⊂

142 CHAPTER 8. DISCRIMINANT FUNCTION ANALYSIS

Suppose a node τ in an optimal tree T has two terminal child nodes τL and τR, then R(τ) ≥ R(τL) +
R(τR) (we're using R to denote the estimates used to generate the tree). Now let T1,T2, . . . denote the
trees obtained by reducing T as α is increased. Let (τ1, τ2) denote the terminal nodes of T which are

not in T1 (in case of ambiguity, we take a speci�c sequence of trees) and let τ ∈ T1 denote the terminal

node in T1 which is a non-terminal node in T . For a node τ in a tree T , we denote by Tτ the subtree

with root τ , going down to the terminal nodes of T .
As long as Rα(τ) ≥ Rα(Tτ), the subtree Tτ has lower cost than terminating the tree at τ and hence

it is retained.

Therefore, when

α < R(τ) −R(Tτ)
∣T̃τ ∣ − 1

we retain Tτ . We can set

g1(τ) =
R(τ) −R(T1,τ)
∣T̃1,r ∣ − 1

τ /∈ T (α1)

where T1,τ = Tτ and g1(τ) gives the critical value for α; when g1(τ) ≥ α1 for each τ , we do not prune

the terminal nodes.

The weakest link node τ̃1 is the node in T1 that satis�es

g(τ̃1) =min
τ∈T1

g(τ).

As α increases, τ̃1 is the �rst node for which Rα(τ) = Rα(Tτ), so α2 = g1(τ̃1). Recursively,

g3(τ) =
R(τ) −R(T2,τ
∣T̃2,τ ∣ − 1

τ ∈ T (α2), τ /∈ T̃ (α2)

and so on.

8.13.1 Choosing the best pruned subtree

Choosing the subtree requires good estimates of the misclassi�cation rate. There are two approaches:

for large data sets, using an independent test set is straightforward and computationally e�cient. For

small data sets, cross validation is recommended. Randomly assign the data into two sets of equal size,

the learning set and the test set. Construct the tree using the learning set; estimate the misclassi�cation

rate using the test set.

At each stage, dropping down a level, let the chance of misclassi�cation be p∗. We can consider

each observation dropped down as a Bernoulli trial, from which we can compute the estimate of

misclassi�cation, together with a standard error.

Cross Validation Divide the data into V sets of approximately equal size, call them D1, . . . ,DV .

Create V learning sets Lv = D/Dv. Use Lv to learn the classi�cation tree T v. Fix the value of the

complexity parameter α and let T v(α) be the best pruned subtree of T v, v = 1, . . . , V . Drop each

8.13. PRUNING THE TREE 143

observation of the vth test set down the tree T v(α) and let nvij denote the number of observations

class j that are classi�ed as being of class i from test set v. Then nij(α) = ∑V
v=1 n

v
ij(α). Set

RCV /V (T (α)) = 1

n

K

∑
i=1

K

∑
j=1;j≠i

nij(α)

Examples

The R commands for the examples are found in the script 23CART.R on the course page.

Example: Iris Data

For the Iris data, construct a decision tree to predict the species of iris based on petal and sepal length

and width. You'll �nd the code in the accompanying R-script. The package rpart is useful.

Find the di�erent classi�cation rules that the tree produces.

Predict the class of a new observation with sepal length, sepal width, petal length, petal width

equal to (6.5,3.0,5.2,2.0).

Example 2: Diabetes Data

We'll use the PimaIndiansDiabetes2 data set in the mlbench package for predicting the probability

of being diabetes positive based on multiple clinical variables.

Firstly, randomly split the data into a training set (80% for building a predictive model) and test

set (20% for evaluating the model). Make sure to set seed so that the results can be reproduced.

Now create a fully grown tree showing all predictor variables in the data set.

Now use the test set to make predictions and evaluate accuracy of the model.

Now prune the tree. Check whether the pruning has made the model substantially worse for

prediction and accuracy.

Example 3: Boston Housing

Refer to the R script which accompanies the tutorial.

We �rst load the libraries which contain good scripts for constructing trees.

The data is found in the MASS package. The variable of interest is medv (median value of owner-

occupied homes in $1000's.

Carry out the diagnostics suggested in the script to get an idea of correlations between the variables

and which explanatory variables may be useful.

Now randomly split the data into training and testing (described in the script).

Run a regression. How well does the �tted model predict new data?

Regression Tree (CART method) The rpart package has good routines for this. The data are

recursively split into terminal nodes or leaves of the tree. To obtain a prediction for a new sample, we

would follow the if-then statements de�ned by the tree using values of the new sample's predictors until

reaching a terminal node. The model formula in the terminal node would then be used to generate

the prediction. In simple (traditional) trees, the model is a simple numeric value (yes/no, or a given

numeric value). In other cases, the terminal node may be de�ned by a more complex function of the

predictors (terminal nodes have models within them).

Basic implementation is done by Growing, Examining, Pruning.

144

Grow a Tree To grow a traditional tree, we can use the rpart() function in the rpart package.

tree.�t <- rpart(formula, data=, method=,control=)

where +formula is in the format outcome predictor1+predictor2+predictor3+etc. +data= speci-

�es the data frame +method= �class� for a classi�cation tree; �anova� for a regression tree +control=

optional parameters for controlling tree growth. For example, control=rpart.control(minsplit=30,cp=0.001)

requires that the minimum number of observations in a node be 30 before attempting a split and that

a split must decrease the overall lack of �t by a factor of 0.001 (cost complexity factor) before being

attempted.

Examine the Tree A collection of functions helps us evaluate and examine the model.

+printcp(tree.�t) displays table of �ts across cp (complexity parameter) values +rsq.rpart(tree.�t)

plots approximate R-squared and relative error for di�erent splits (2 plots). Labels are only ap-

propriate for the �anova� method. +plotcp(tree.�t) plots the cross-validation results across cp values

+print(tree.�t) print results +summary(tree.�t) detailed results including surrogate splits +plot(tree.�t)

plot decision tree +text(tree.�t) label the decision tree plot +post(tree.�t, �le=) create postscript plot

of decision tree (there may be better ways to get good looking tree plots)

First we look at what the error looks like across the range of complexity parameters (depth of tree).

The command is:

printcp(rtree.fit) # display the results

(as used in the script).

A detailed summary of the tree is obtained by

summary(rtree.fit)

which gives a lot of information. We can also look at the predictors used in the tree and their relative

importance in the prediction. We see speci�cally that rm (average number of rooms per dwelling) and

lstat (lower status of the population, percent) are driving much of the prediction.

This particular tree methodology can also handle missing data. When building the tree, missing

data are ignored. For each split, a variety of alternatives (called surrogate splits) are evaluated. A

surrogate split is one whose results are similar to the original split actually used in the tree. If a

surrogate split approximates the original split well, it can be used when the predictor data associated

with the original split are not available. In practice, several surrogate splits may be saved for any

particular split in the tree.

Plotting the tree may be done as follows:

plot(rtree.fit, uniform=TRUE,

main="Regression Tree for Median Home Value")

145

Prune the Tree Prune back the tree to avoid over�tting the data. Hastie et al. (2008) suggest

selecting the tree size associated with the numerically smallest error. That is, the size of the tree is

selected by examining the error using cross-validation, speci�cally the minimum of the xerror column

(cross-validation error) printed by printcp().

Pruning is easily done using the function prune(�t, cp=) by examining the cross-validated error

results from printcp(), selecting the complexity parameter associated with minimum error, and placing

it into the prune() function. Alternatively, this can be automated using

tree.fit$cptable[which.min(tree.fit\$cptable[,``xerror'']),``CP''].

In this case the pruned tree is not that much smaller than the original tree.

There are, of course other approaches for pruning. Breiman et al. (1984) suggest using the cross-

validation approach and applying a one-standard-error rule on the optimization criteria for identifying

the simplest tree. That is, �nd the smallest tree that is within one standard error of the tree with

smallest absolute error, which is the leftmost cp value for which the mean lies below the horizontal line

placed 1 SE above the minmum of the curve by the minline in the plotcp() function.

Test of Prediction Finally, for comparison with the regression model, we examine the R2 of the

original and pruned trees.

We see here the tradeo� between �over�t� to training data and potential generalisability to new

data. More formal evlauations would be done using cross-validation. But the smaller pruned tree is

still doing pretty well (almost as well as the multiple regression).

Example 4: Boston Housing: Regression Tree

Randomly split the data into training set (80% for building a predictive model) and test set (20% for

evaluating the model). Make sure to set seed for reproducibility.

Create the regression tree. Here, the best cp value is the one that minimises the prediction error

RMSE (root mean squared error).

The prediction error is measured by the RMSE, which corresponds to the average di�erence between

the observed known values of the outcome and the predicted value by the model. RMSE is computed as

RMSE =mean((observeds− predicteds)2) % > % sqrt(). The lower the RMSE, the better the model.

Plot the �nal tree model.

Example 5: Conditionnal inference tree

The conditional inference tree (ctree) uses signi�cance test methods to select and split recursively the

most related predictor variables to the outcome. This can limit over�tting compared to the classical

rpart algorithm.

At each splitting step, the algorithm stops if there is no dependence between predictor variables

and the outcome variable. Otherwise the variable that is the most associated to the outcome is selected

for splitting.

146

The conditional tree can be easily computed using the caret work�ow, which will invoke the function

ctree() available in the party package.

Use the data PimaIndiansDiabetes2. First split the data into training (80%) and test set (20%)

Build conditional trees using the tuning parameters maxdepth and mincriterion for controlling the

tree size. caret package selects automatically the optimal tuning values for your data, but here we'll

specify maxdepth and mincriterion.

Now make predictions using the test data.

147

148 CHAPTER 8. DISCRIMINANT FUNCTION ANALYSIS

Chapter 9

Choice experiments

9.1 Designing Experiments and Modelling Data

In this section, we describe the random utility model and its variants for describing data from DCEs

(Discrete Choice Experiments).

9.1.1 How are choice sets constructed and data analysed

The distinctive feature of choice experiments, compared to typical experiments in economics, namely

that we manipulate several dimensions at the same time, also has important consequences for statistical

inference. Our objective is to identify the impact of di�erent attributes, how the fact that an option

is characterised by a speci�c level of a speci�c attribute a�ects the probability that it is selected.

Because di�erent choice sets di�er in terms of several attributes, we cannot look at the simple summary

statistics, which would be informative if there were only one change. Consider the simplest possible

scenario of binary choices between a policy and the status quo. If Policy A, characterised by some

combination of levels of various attributes, is preferred over the status quo 40% of the time, and Policy

A′, which di�ers from Policy A on only one attribute, is chosen over the status quo 70% of the time,

we could conclude that the change from A to A′ made the policy more attractive. Because there is

only one di�erence between the two, it is this attribute that has made the di�erence. Such direct

inference is generally not possible in choice experiments, because several attributes are manipulated

simultaneously (and, typically, their levels change in more than one option). To estimate the e�ect of

each attribute, parametric assumptions must thus be made.

Below, we describe the mixed logit model, which is the workhorse for analysing DCE data. This

approach requires the researcher to be a bit more econometrics-savvy. Various useful software packages

make the analysis manageable. We recommend the mlogit package for R, which is versatile and

user-friendly for the random parameter model and which has proved useful for analysing discrete

choice experiment data. Naturally, experimenters often team with an expert when modelling choice-

experimental data.

It is fair to say that many experimental economists have a natural dislike of parametric methods.

One reason is that they are aware of artefacts of arbitrary modelling choices aimed at obtaining attrac-

149

150 CHAPTER 9. CHOICE EXPERIMENTS

tive publishable results. The practice of pre-registration of the methods of analysis and presentation of

several speci�cations may, to some extent, alleviate these concerns. One seemingly positive aspect of

the parametric approach is that the researcher explicitly models noise and this consideration informs

design.

9.2 Utility Models

We now describe the random utility model and some of its variants. In particular, the random param-

eters model has shown itself to be a powerful tool in experimental economics. We begin by presenting

the standard (deterministic) utility model, building up to the random utility model and then dealing

with the random parameter model and other variations.

Data for utility models concern some individuals who make one choice, or a sequence of choices,

each choice being from a set of mutually exclusive and exhaustive alternatives; exactly one of these

alternatives is chosen. These choices are in�uenced by known covariates, where the dependence can be

either

� both on the alternative and the choice situation, or

� only on the alternative or

� only on the choice situation.

Consider a family choosing a destination for their vaccation.

� Examples of choice situation speci�c variables would be: the length of vaccation and the season.

� Examples of individual speci�c variables would be: family income and family size.

� Examples of alternative speci�c variables would be: distance to destination, cost of vaccation.

The unit of observation is therefore the choice situation; it is also the individual if only one choice

situation per individual is observed. The structure of such data can therefore be characterised by three

indices: the alternative, the choice situation, and the individual. If we use a two-parameter notation,

we include the individual-speci�c variables in the choice situation.

9.2.1 Non-Random Utility Model

For the standard (non-random) utility model, one has to consider three sets of covariates at most:

� Covariates, denoted xij speci�c to the choice situation / alternative combination (i, j), with
generic coe�cients β and covariates tj speci�c to the alternative j with a generic coe�cient ν.

� Choice situation speci�c covariates zi with alternative speci�c coe�cients γj .

� Alternative and choice situation speci�c covariates wij with alternative speci�c coe�cients δj .

9.2. UTILITY MODELS 151

These covariates enter the (non-random) utility as follows: for choice situation i, alternative j it is

written as:

Vij = αj + βxij + νtj + γjzi + δjwij . (9.1)

Since comparisons are in view, the absolute value of the utility is irrelevant; only utility di�erences are

useful for modelling the choice of alternative. For two alternatives j and k,

Vij − Vik = (αj − αk) + β(xij − xik) + (γj − γk)zi + (δjwij − δkwik) + ν(tj − tk).

Clearly, the only relevant coe�cients of choice situation speci�c covariates are alternative speci�c,

otherwise they would disappear when di�erences are taken. Since only di�erences are of interest, we

can choose one parameter value as base-line (say 1) and set γ1 = 0.

9.2.2 Random Utility Models

For the random utility model, a fourth consideration needs to be included, the random component,

which we denote by ϵ. In a random utility model, the utility for subject n, choice situation i, denoted

Unij may be written as

Unij = Vnij + ϵnij

where Vnij is a function of observable covariates and unknown parameters, which are to be estimated,

taking the form of (9.1). The quantity ϵnij is a random deviation which is a function of all the

unobserved or latent variables that determine the utility together with the observed covariates.

Alternative j, in choice situation j is optimal for individual n if Unil < Unij for all l ≠ j, which means that

ϵnil < (Vnij − Vnil) + ϵnij ∀l ≠ j. Suppressing the notation (by omitting the n, i denoting individual

n in choice situation i), the probability of choosing alternative j is therefore P (⋃l≠j {ϵl < Vj − Vl + ϵj}).
Let us denote:

Pj(z) = P
⎛
⎝⋃l≠j
{ϵl < Vj − Vl + z}

RRRRRRRRRRR
ϵj = z

⎞
⎠

namely, Pj(z) is the conditional probability of choosing j given that ϵj = z. Let F−j denote the joint
cumulative density of all the ϵ's except ϵj . Then, if there are J alternatives labelled 1, . . . , J ,

Pj(z) = F−j(Vj − V1 + z, . . . , Vj − VJ + z)

(where the Vj−Vj+z term is omitted). Let us denote the marginal density of ϵj by fj . The unconditional

probability of choosing alternative j is therefore:

Pj = ∫ F−j(Vj − V1 + z, . . . , Vj − VJ + z)fj(z)dz.

152 CHAPTER 9. CHOICE EXPERIMENTS

9.2.3 Distribution of the Error Terms

The multinomial logit model was developed by McFadden. The errors for each di�erent individual,

choice situation, and alternative combination are taken to be independent, so that (suppressing the

notation for individual and choice situation and assuming J alternatives):

Pj(z) =∏
l≠j

Fl(Vj − Vl + z) Pl = ∫ ∏
l≠j

Fl(Vj − Vl + z)fj(z)dz.

Several distributions have been considered for the error. For models considered here, the errors follow

the cumulative distribution function of a Gumbel distribution, which turns out to be computationally

convenient and �exible for modelling. The mean of this distribution is not zero, but this does not

matter; the errors are i.i.d. and it is di�erences that are in view.

The c.d.f. of a Gumbel is:

F (z) = P(X ≤ z) = exp{− exp{−z − µ
θ
}}

and the density is:

f(z) = 1

θ
exp{−x − µ

θ
} exp{− exp{−x − µ

θ
}}

where µ is the location parameter and θ the scale parameter. The expectation is E[X] = µ+ θγ, where
γ is the Euler-Mascheroni constant and Var(X) = π2θ2

6 .

Because the errors are not mean zero, we may consider the Vij 's (from Equation (9.1)) to have an

intercept term ci, so that

Vij = ci + αj + βxij + νtj + γjzi + δjwij .

which (of course) disappears when the di�erence between two alternatives Vij−Vik is considered. When

the model contains such a parameter, the mean of ϵij is not identi�ed and, without the loss of generality,

we can take µij = 0 for all j = 1, . . . , Ji (where choice situation i has Ji alternatives). A natural choice

for normalisation is to impose that one of the values of θij for j ∈ {1, . . . , Ji} is equal to 1. With the

hypothesis that the errors are identically distributed, we therefore take θij = 1 for all j = 1, . . . , Ji and
all choice situations i. With these choices (and suppressing the individual / choice situation indices):

Pj(z) =∏
l≠j

exp{− exp{−(Vj − Vl + z)}} Pj = ∫
∞

−∞
∏
l≠j

exp{− exp{−(Vj − Vl + z)}}e−ze−e
−z
dz.

From this, the simple and elegant closed form may be computed which corresponds to the logit trans-

form of the deterministic part of the utility:

Pj =
eVj

∑J
l=1 e

Vl
.

Clearly, the ratio of two probabilities Pl and Pm is given by:

9.3. LOGIT MODELS: RELAXING THE I.I.D. HYPOTHESIS 153

Pl

Pm
= exp{Vl − Vm}

and depends only on the properties of the two alternatives. This is known as the IIA property;

independence of irrelevant alternatives.

Marginal E�ects Now let us return to the two-parameter notation, (i, j) denotes individual i

(presented with a choice situation) and alternative j within the choice situation. The marginal e�ects

are the derivatives of the probabilities with respect to the covariates. These can be choice situation

speci�c (zi) or alternative speci�c (xij). Straightforward computation gives:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂
∂xij

Pij = βPij(1 − Pij)
∂

∂xik
Pij = −βPijPik k ≠ j

∂
∂zi

Pij = (γj −∑Ji
l=1 γlPil)Pij

These can be written as:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂
∂xij

logPij = β(1 − Pij)
∂

∂xik
logPij = −βPik k ≠ j

∂
∂zi

logPij = (γj −∑Ji
l=1 γlPil).

9.3 Logit models: relaxing the i.i.d. hypothesis

Thus far, we assumed that the error terms are i.i.d. (identically and independently distributed), which

implies that they are uncorrelated and homoscedastic. Extensions of the basic multinomial logit model

have been proposed the idea behind which is to relax one of these two hypothesis while maintaining

the hypothesis of a Gumbel distribution.

9.3.1 Heteroscedastic logit model

The heteroskedastic logit model was proposed by Bhat (1995). The probability that Ul > Uj , condi-

tioned on ϵl is:

Pl(z) ∶= P (ϵj < Vl − Vj + z∣ϵl = z) = exp{− exp{
Vl − Vj + z

θj
}} ,

from which the following conditional and unconditional probabilities follow:

⎧⎪⎪⎨⎪⎪⎩

Pl(z) = ∏j≠l exp{− exp{
Vl−Vj+z

θj
}}

Pl = ∫
∞

−∞∏j≠l exp{− exp{
Vl−Vj+t

θj
}} 1

θl
exp{− t

θl
} exp{− exp{− t

θl
}}dt

There is no closed form for this integral, but it is one-dimensional and can be computed e�ciently by

the Gauss-Laguerre quadrature method (the method used by the mlogit package for R).

154 CHAPTER 9. CHOICE EXPERIMENTS

9.3.2 The nested logit model

The nested logit model was �rst proposed by McFadden in 1978. It is a generalisation of the multinomial

logit model that is based on the idea that some alternatives may be joined in several groups (called

nests). The error terms may then present some correlation in the same nest, whereas error terms of

di�erent nests are still uncorrelated.

Denoting the nests by m = 1, . . . ,M and Bm the set of alternatives belonging to nest m, the

cumulative distribution of the errors is:

exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

M

∑
m=1

⎛
⎝ ∑j∈Bm

e−ϵj/λm
⎞
⎠

λm⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

The marginal distributions of the ϵ's are still univariate extreme value (Gumbel), but there is now

some correlation within nests. 1−λm is a measure of the correlation, i.e. λm = 1 implies no correlation.

In the special case where λm = 1 for all m, the errors are i.i.d. Gumbel errors and the nested logit

model reduces to the multinomial logit model. It can then be shown that the probability of choosing

alternative j that belongs to nest l is:

Pj =
eVj/λl (∑k∈Bl

eVk/λl)λl−1

∑M
m=1 (∑k∈Bm

eVk/λm)λm

This model is a random utility model if λj ∈ (0,1) for each j.
Let us now write the deterministic part of the utility of alternative j as the sum of two terms: the

�rst one (Zj) being speci�c to the alternative and the second one (Wl) to the nest it belongs to:

Vj = Zj +Wl.

We can then rewrite the probabilities as:

Pj =
exp{(Zj +Wl)/λl}

∑k∈Bl
exp{(Zk +Wl)/λl}

×
(∑k∈Bl

exp{(Zk +Wl)/λl})
λl

∑M
m=1 (∑k∈Bm

exp{(Zk +Wm)λm})
λm

Let Il ∶= log∑k∈B exp{Zk/λl}, where log (as throughout) denotes natural logarithm. This is often

called the log-sum, the inclusive value or the inclusive utility. The probability of choosing alternative

j may then be written as:

Pj =
exp{Zj/λl}

∑k∈Bl
exp{Zk/λl}

× exp{Wl + λlIl}
∑M

m=1 exp{Wm + λmIm}
= Pj∣l × Pl.

The �rst term Pj∣l is the conditional probability of choosing alternative j if nest l is chosen, which is

often referred to as the lower model. The second term Pl is the marginal probability of choosing nest l

and is referred as the upper model. Wl +λlIl can be interpreted as the expected utility of choosing the

best alternative in l,Wl being the expected utility of choosing an alternative in this nest (whatever this

alternative is) and λlIl the expected extra utility gained by being able to choose the best alternative in

9.3. LOGIT MODELS: RELAXING THE I.I.D. HYPOTHESIS 155

the nest. The inclusive values link the two models. It is then straightforward to show that IIA applies

within nests, but not for two alternatives in di�erent nests.

Maximising directly the likelihood function of the nested model leads to an e�cient estimator; other

methods (for example estimating the two components separately) are less e�cient.

9.3.3 The random parameters (or mixed) logit model

As we shall see in the case studies and examples, the random utility model is often not su�ciently

�exible for the analysis of discrete choice data; the additional �exibility required is given by the Random

Parameter Logistic Model, introduced by Train (abbreviated RPL).

Derivation of the model A mixed logit model or random parameters logit model is a logit model

for which the parameters are assumed to vary from one individual to another; the parameter choices

β1, . . . , βn for n individuals are a random sample of size n from a distribution with density fθ(β).
Here {fθ ∶ θ ∈ Θ} is a suitable parametric family. The value of θ is chosen by the user, to satisfy

standard model �tting criteria. This model therefore, to some extent, can take the heterogeneity of

the population into account.

The probabilities For the standard logit model, the probability that individual i chooses alternative

l is:

Pil =
exp{β′xil}
∑j exp{β′xij}

.

where β is the parameter vector (assumed to be the same for each individual). Suppose now that these

coe�cients are individual-speci�c. The probabilities are then:

Pil =
exp{β′ixil}
∑j exp{β′ixij}

.

One idea could be to estimate the parameters for every individual. These parameters can only be

identi�ed and estimated with any degree of accuracy if a large number of choice situations per individual

is available, which does not occur very often in practice.

The random parameter model takes the βi's to be random draws from a distribution fθ(β) where
{fθ ∶ θ ∈ Θ} is a suitable parametric family. The probability that individual i will choose alternative l,

for a given value of βi is:

Pil∣βi
=

exp{β′ixil}
∑j exp{β′ixij}

. (9.2)

To get the unconditional probability, we have to integrate out this conditional probability, using the

density function of β. Suppose (for example) that Vil = α+βixil i.e., there is only one individual-speci�c
coe�cient and that the density of βi is fθ(β), θ being the vector of the parameters of the distribution

of β. The unconditional probability is then:

156 CHAPTER 9. CHOICE EXPERIMENTS

Pil = Eθ [Pil∣β] = ∫
β
Pil∣βfθ(β)dβ = ∫

β

exp{β′xil}
∑j exp{β′xij}

fθ(β)dβ. (9.3)

As before, for the one-dimensional integral, the mlogit package uses standard numerical integration

methods.

If Vil = β′xil where βi is a vector of length K and fθ(β) is the joint density of the K individual-

speci�c coe�cients, the unconditional probability is:

Pil = Eθ [Pil∣β] = ∫
β1

. . .∫
βK

Pil∣βfθ(β)dβ1 . . . dβK .

This K-dimension integral cannot, in general, be estimated easily using standard quadrature methods

and the only practical method available to date is to use simulations. More precisely, R draws of

the parameters are taken from the distribution of β, the probability, conditioned on choice of β,

is computed for every draw and the unconditional probability, which is the expected value of the

conditional probabilities is estimated by the average of these R conditional probabilities.

Individual parameters The expected value of a random coe�cient E[β] is simply estimated by

the mean of the R draws on its distribution: β = ∑R
r=1 βr. Individual parameters are obtained by �rst

computing the probabilities of the observed choice of i for every value of βr:

Pir =
∑j yije

βixij

∑j e
βixij

where yij is a dummy equal to one if i has chosen alternative j. The expected value of the parameter

for an individual is then estimated by using these probabilities to weight the R values of β:

β̂i =
∑r Pirβr

∑r Pir
.

Panel data If there are repeated observations for the same individuals, the longitudinal dimension

of the data can be taken into account in the mixed logit model, assuming that the random parameters

of individual i are the same for all his choice situations. Denoting yitl a dummy equal to 1 if i choose

alternative l for the tth choice situation, the probability of the observed choice is:

Pit =∏
j

∑j yitje
βixitl

∑j e
βixitj

.

The joint probability for the T observations of individual i is then:

Pi =∏
t
∏
j

∑j yitje
βixitj

∑j e
βixitj

and the log-likelihood is simply ∑i logPi.

9.3. LOGIT MODELS: RELAXING THE I.I.D. HYPOTHESIS 157

9.3.4 Latent Class Model

The latent class model (LCM) for discrete choice analysis is an alternative method to the RPL model.

The LCM for discrete choice analysis assumes that there are a �nite number of categories, for each

category there is a `true' parameter vector β and each individual belongs to one of these categories.

This makes it less �exible than the RPL, where each individual can have di�erent parameters, but

is clearly more useful when it is important to locate the sources of the heterogeneity for individual

preferences.

The LCM groups respondents in a �nite number of classes (the number of classes may be chosen

by analysing with di�erent numbers of classes and then using one of the standard selection criteria,

such as AIC or BIC), Membership of a speci�c class is based on the subject's answers to the DCE

questions posed and also other characteristics (e.g. socio-demographic factors). The LCM assumes

that the preferences of respondents are homogeneous within each class; they may be heterogeneous

across classes. Grouping respondents with homogeneous preferences in a �nite number of classes is

relevant for decision-makers because it helps them to understand the sources of heterogeneity between

individuals.

The LCM works as follows: We place a prior probability of Hiq, that individual i is from class q,

where q ∈ {1, . . . ,Q} and there are Q classes. The probability that individual i in choice set t chooses

option j given that the individual is from class q is Pit∣q(j) where j ∈ {1, . . . J} (choice set has J

alternatives). Here

Pit∣q(j) =
exp{x′it.jβq}

∑J
j=1 exp{x′it.jβq}

The log-likelihood function for all the respondents is:

logL =
N

∑
i=1

log

⎧⎪⎪⎨⎪⎪⎩

Q

∑
q=1

Hiq (
T

∏
t=1

Pit∣q(j))
⎫⎪⎪⎬⎪⎪⎭

A convenient and standard choice of prior H is a multinomial logit:

Hiq =
exp{z′iθq}

∑Q
p=1 exp{z′iθp}

q = 1, . . .Q, θQ = 0.

Here, zi denotes a set of observable characteristics (e.g., socio-demographics such as age, income and

sex) that enter the model for class membership.

The parameters to be estimated are now the βq parameters and also the θq parameters. Once these

have been estimated, the Bayes rule may be used to obtain respondent-speci�c (posterior) estimates

of the class probability Ĥq∣i, conditioned on their estimated choice probabilities:

Ĥq∣i =
P̂i∣qĤiq

∑Q
p=1 P̂i∣pĤip

.

158 CHAPTER 9. CHOICE EXPERIMENTS

These respondent-speci�c (posterior) estimates of the class probability may then used in a beta regres-

sion analysis to pro�le the members of each class. To determine the number of classes, the Consistent

Akaike Information Criterion (CAIC), and the Bayesian Information Criterion (BIC) may be used.

After deciding on the number of classes and classifying respondents, each class may be characterised

using, among other things, information on the attitudes and socio-demographic characteristics of re-

spondents. Those variables may then be regressed against respondent-speci�c (posterior) estimates of

the class probability Ĥq∣i. Since the dependent variable is in form of probability, a Beta regression

model for each segment may be used.

9.3.5 Estimating Willingness to Pay

The parameters β do not give directly willingness-to-pay values, since they do not have the correct

scaling, although WTP can be computed when the price coe�cient is known. WTP for an attribute is

commonly expressed as the negative ratio of the (non-price) attribute coe�cient to the price coe�cient:

WTP(non-price attribute) = −
βnon-price attribute

βprice
(9.4)

This value represents the marginal WTP of the respondents. For the attributes coded as continuous,

the calculated value represents, for a respondent with parameter vector β, the amount of increase in

the attribute for which the respondent is willing to pay one unit of money (e.g. $1). In the case of

categorical attributes, the calculated value represents the respondent's willingness to pay WTP for the

level of interest of the attribute with respect to the baseline level.

After deciding on the number of classes and classifying respondents, each class may be characterised

using, among other things, information on the attitudes and socio-demographic characteristics of re-

spondents. Those variables may then be regressed against respondent-speci�c (posterior) estimates of

the class probability Ĥq∣i. Since the dependent variable is in form of probability, a Beta regression

model for each segment may be used.

9.4 Optimal design

When considering the question of design, we simplify the utility to:

Uij = x′ijβ + ϵij

where i indexes individual / choice situation and j indexes alternative within the choice situation and

the ϵij 's are i.i.d. extreme-value (Gumbel) error terms.. Also, we consider k covariates, so that we take

each xij as a k-vector and

x′ijβ =
k

∑
l=1

xij;kβk.

9.5. IMPLEMENTATION OF RANDOM UTILITY USING MLOGIT 159

so that β is a k-vector of parameters. Let X denote a stacked choice design matrix. By this we mean

a matrix whose elements are

(x′ij)i=1,...,S;j=1,...J

where each xjs is a k × 1 vector with the attribute levels of alternative j in choice set i.

With these notations, the multinomial logit probability that alternative j in choice set i is chosen is:

Pij =
exp{∑k

l=1 xij;lβl}
∑J

s=1 exp{∑k
l=1 xis;lβl}

.

The information matrix can be computed quite easily; the parameters β are the canonical parameters

of an exponential family, hence (suppressing the notation for choice situation and using y to denote

alternative)

Iij(β) =
∂2

∂βi∂βj
log∑

y

exp{
k

∑
l=1

xylβl} = ∑
y

Pyxyjxyk −
⎛
⎝∑y

xyjPy
⎞
⎠
⎛
⎝∑y

xykPy
⎞
⎠

so that, for a single individual/choice situation,

I(β) = x′Px − x′PP′x

where P is the diagonal matrix P = diag(P(1), . . . ,P(J)), P is the vector P = (P(1), . . . ,P(J))′ of
probabilities for each alternative within the choice situation. x is the matrix with elements xyj denoting

the value of covariate j in the alternative y.

Hence, if we have n respondents (without any individual-speci�c covariates) and S choice situations,

the total information from an experiment with stacked design matrix X and parameter vector β is:

I(X, β) = n
S

∑
i=1

x′i(Pi − PiP′i)xi (9.5)

where each xi is a J ×k matrix: xij;l is the value of covariate l for alternative j within choice situation

i.

9.5 Implementation of Random Utility using mlogit

Format of Data For choice experiments, data can be given in two formats, the wide format or the

long format. The data set Train from mlogit is an example of a data set in wide format; we give the

�rst three rows of it to give an idea.

> data("Train",package="mlogit")

> Train$choiceid <- 1:nrow(Train)

> head(Train,3)

id choiceid choice price_A time_A change_A comfort_A price_B time_B change_B comfort_B

1 1 1 A 2400 150 0 1 4000 150 0 1

160 CHAPTER 9. CHOICE EXPERIMENTS

2 1 2 A 2400 150 0 1 3200 130 0 1

3 1 3 A 2400 115 0 1 4000 115 0 0

The id column gives the identity of the individual, choiceid the label of the experimental run for that

individual, choice the choice that was made, followed by a list of attributes for the two alternatives

(Alternative A and Alternative B) where for a train ride, the price, the time taken, the number of

changes and the level of comfort are given.

The data set is from a stated preference survey in the Netherlands.

The data set ModeCanada from mlogit is an example of a data set in long format;

> data("ModeCanada",package = "mlogit")

> head(ModeCanada)

case alt choice dist cost ivt ovt freq income urban noalt

1 1 train 0 83 28.25 50 66 4 45 0 2

2 1 car 1 83 15.77 61 0 0 45 0 2

3 2 train 0 83 28.25 50 66 4 25 0 2

4 2 car 1 83 15.77 61 0 0 25 0 2

5 3 train 0 83 28.25 50 66 4 70 0 2

6 3 car 1 83 15.77 61 0 0 70 0 2

In this data set, there are four modes of transport (air, train, bus, car). The variables are distance

(dist), monetary cost (cost), in-vehicle-time (ivt - amount of time spent inside the vehicle), out-

of-vehicle time (ovt - how much of the total time was not in the vehicle), frequency (freq), income

(income), whether or not the trip has a large city at the origin (urban) and number of alternatives

available (noalt). The alternative speci�c variables are cost, ivt, ovt and freq, while the choice

situation speci�c variables are dist, income, urban and noalt.

The package mlogit uses objects of class Formula from the package Formula (by Zeileis and Crois-

sant). For example, if we want to explain the choice by:

� cost, an alternative speci�c variable with a generic coe�cient,

� income and urban, choice speci�c variables,

� ivt, an alternative speci�c variable where we require alternative speci�c coe�cients

the formula is:

> library("Formula")

> f <- Formula(choice ~ cost | income + urban | ivt)

9.5. IMPLEMENTATION OF RANDOM UTILITY USING MLOGIT 161

Now suppose we're interested in a subset of the data, where noalt (number of alternatives available)

takes the value 4; i.e. all four forms of transport are available. This is done using the dfidx command,

forcing the data into an appropriate data frame, as follows:

MC = dfidx(ModeCanada, subset = noalt == 4, alt.levels = c("train","air","bus","car"))

and, the �rst 10 entries of the data frame MC are:

> head(MC)

~~~~~~~

first 10 observations out of 11116

~~~~~~~

choice dist cost ivt ovt freq income urban noalt idx

1 0 377 58.25 215 74 4 45 0 4 109:rain

2 1 377 142.80 56 85 9 45 0 4 109:air

3 0 377 27.52 301 63 8 45 0 4 109:bus

4 0 377 71.63 262 0 0 45 0 4 109:car

5 0 377 58.25 215 74 4 70 0 4 110:rain

6 1 377 142.80 56 85 9 70 0 4 110:air

7 0 377 27.52 301 63 8 70 0 4 110:bus

8 0 377 71.63 262 0 0 70 0 4 110:car

9 0 377 58.25 215 74 4 35 0 4 111:rain

10 1 377 142.80 56 85 9 35 0 4 111:air

~~~ indexes ~~~~

case alt

1 109 train

2 109 air

3 109 bus

4 109 car

5 110 train

6 110 air

7 110 bus

8 110 car

9 111 train

10 111 air

indexes: 1, 2

We may want to consider the total time, which is the sum of ivt and ovt. We can do this as follows:

> MC$time = with(MC,ivt+ovt)

Fitting the model is now very easy; we give an example here.

> m1.MC1 = mlogit(choice~cost+freq+ovt|income|ivt,MC)

> summary(m1.MC1)

Call:

mlogit(formula = choice ~ cost + freq + ovt | income | ivt, data = MC,

method = "nr")

Frequencies of alternatives:choice

train air bus car

0.1666067 0.3738755 0.0035984 0.4559194

nr method

9 iterations, 0h:0m:0s

g'(-H)^-1g = 0.00014

successive function values within tolerance limits



162 CHAPTER 9. CHOICE EXPERIMENTS

Coefficients :

Estimate Std. Error z-value Pr(>|z|)

(Intercept):air -3.2741952 0.6244152 -5.2436 1.575e-07 ***

(Intercept):bus -2.5758571 1.0845227 -2.3751 0.0175439 *

(Intercept):car -1.4300823 0.3013764 -4.7452 2.083e-06 ***

cost -0.0333389 0.0070955 -4.6986 2.620e-06 ***

freq 0.0925297 0.0050976 18.1517 < 2.2e-16 ***

ovt -0.0430036 0.0032247 -13.3356 < 2.2e-16 ***

income:air 0.0381466 0.0040831 9.3426 < 2.2e-16 ***

income:bus -0.0509401 0.0181702 -2.8035 0.0050553 **

income:car 0.0101536 0.0031648 3.2083 0.0013353 **

ivt:train -0.0014504 0.0011875 -1.2214 0.2219430

ivt:air 0.0595097 0.0100727 5.9080 3.463e-09 ***

ivt:bus -0.0067835 0.0044334 -1.5301 0.1259938

ivt:car -0.0064603 0.0018985 -3.4029 0.0006668 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Log-Likelihood: -1874.3

McFadden R^2: 0.35443

Likelihood ratio test : chisq = 2058.1 (p.value = < 2.22e-16)

9.5.1 The Random Parameters Model

We return to the Train data set. This is given in wide format and has to be coerced into a suitable

data frame in long format. The id variable with the individual index nests the choice situation variable

choiceid. We'll use dfidx to put the data into an appropriate format, which we call Tr.

Tr = dfidx(Train,shape="wide",choice="choice",varying=4:11,sep = "_",

idx = list(c("choiceid","id")),idnames=c("chid","alt"),

opposite = c("price","comfort","time","change"))

Next, price (in guilders) is converted to euros and time (in minutes) is converted to hours.

> Tr$price = Tr$price/100 * 2.20371

> Tr$time = Tr$time / 60

> head(Tr,3)

~~~~~~~

first 3 observations out of 5858

~~~~~~~

choice price time change comfort idx

1 TRUE -52.88904 -2.5 0 -1 1:A

2 FALSE -88.14840 -2.5 0 -1 1:B



9.5. IMPLEMENTATION OF RANDOM UTILITY USING MLOGIT 163

3 TRUE -52.88904 -2.5 0 -1 2:A

~~~ indexes ~~~~

chid id alt

1 1 1 A

2 1 1 B

3 2 1 A

indexes: 1, 1, 2

Firstly, we estimate the multinomial model:

> Train.ml = mlogit(choice~price+time+change+comfort|-1,Tr)

> summary(Train.ml)

Call:

mlogit(formula = choice ~ price + time + change + comfort | -1,

data = Tr, method = "nr")

Frequencies of alternatives:choice

A B

0.50324 0.49676

nr method

5 iterations, 0h:0m:0s

g'(-H)^-1g = 0.00014

successive function values within tolerance limits

Coefficients :

Estimate Std. Error z-value Pr(>|z|)

price 0.0673580 0.0033933 19.8506 < 2.2e-16 ***

time 1.7205514 0.1603517 10.7299 < 2.2e-16 ***

change 0.3263409 0.0594892 5.4857 4.118e-08 ***

comfort 0.9457256 0.0649455 14.5618 < 2.2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Log-Likelihood: -1724.2

Dividing coe�cients by the price coe�cient gives estimated monetary values that the customers put

on the various features.

> coef(Train.ml)[-1]/coef(Train.ml)[1]

time change comfort

25.54337 4.84487 14.04028

so that the values are 26 euros per hour of travelling, 5 euros for a change and 14 euros to travel in a

more comfortable class.

Let us now consider a random parameters model, with three random parameters, time, change and

comfort. The uncorrelated mixed logit model is estimated by:

> Train.mxlu = mlogit(choice~price+time+change+comfort|-1,Tr,

+ panel=TRUE,rpar=c(time="n",change="n",comfort="n"),

+ R=100,correlation=FALSE,halton=NA,method="bhhh")

> names(coef(Train.mxlu))

[1] "price" "time" "change" "comfort" "sd.time" "sd.change"

"sd.comfort"

164 CHAPTER 9. CHOICE EXPERIMENTS

There are three additional parameters, the standard deviations of the distribution of the three random

parameters.

We can introduce correlation by setting correlation = TRUE;

> Train.mxlc = mlogit(choice~price+time+change+comfort|-1,Tr,

+ panel=TRUE,rpar=c(time="n",change="n",comfort="n"),

+ R=100,correlation=TRUE,halton=NA,method="bhhh")

> names(coef(Train.mxlc))

[1] "price" "time" "change" "comfort"

"chol.time:time"

[6] "chol.time:change" "chol.change:change" "chol.time:comfort"

"chol.change:comfort" "chol.comfort:comfort"

where the additional parameters come from the Choleski decomposition of the covariance matrix of

the three random parameters;

C =
⎛
⎜⎜
⎝

c11 0 0

c12 c22 0

c13 c23 c33

⎞
⎟⎟
⎠

where CC′ is the covariance matrix.

The random parameters are obtained using rpar. For example, the marginal for the time parameter

may be summarised as follows:

> marg.ut.time = rpar(Train.mxlc,"time")

> summary(marg.ut.time)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-Inf 1.283749 4.893752 4.893752 8.503756 Inf

These parameters are in the preference space, but parameters in the WTP (willingness to pay) space

are easier to interpret. Divide the marginal utility by the price covariate, taken as a random parameter:

> wtp.time = rpar(Train.mxlc,"time",norm="price")

> summary(wtp.time)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-Inf 8.753119 33.367588 33.367588 57.982056 Inf

The standard errors of the parameters of the covariance matrix may be computed using vcov:

> vcov(Train.mxlc,what="rpar")

time change comfort

time 28.6460389 -0.2787999 5.557933

change -0.2787999 3.1047367 1.232467

comfort 5.5579334 1.2324667 7.895535

Chapter 10

Bayesian Nonparametric Models

10.1 Introduction

Let us consider two problems that have arisen so far:

� How many classes should I choose for a clustering problem?

� How many factors should I use in a factor analysis?

The answer, so far, was of the style: `for an agglomerative clustering (e.g. using the Ward algo-

rithm), look at the dendrogram; there is often a clear distance where the procedure stabilises and this

gives a reasonable clustering.'

Similarly with factor analysis; we construct the factors and then we consider their properties; how

much of the observation is explained by the factors and how much is `noise'. In many situations it

should be clear by inspection which of the factors that we constructed using PCA are important.

For Partition Around Medians (or Partition Around Means) it is advisable to run the algorithm

for k clusters for several di�erent choices of k.

Bayesian Nonparametric (BNP) models provide one approach to the problem. Rather than

comparing di�erent models with varying complexity, the BNP approach is to �t a single model that

can adapt its complexity to the data.

BNP models allow the complexity to grow as more data is observed.

Example: Clustering A model where the data naturally �ts into k di�erent clusters can be thought

of as a mixture model, where we have a mixture of k di�erent underlying populations. For pam (for

example), we need to specify the number of clusters in advance. The BNP model estimates the

number of clusters needed to model the observed data and allows future data to exhibit previously

unseen clusters.

A BNP model expresses a generative process of the data that includes hidden variables.The model

speci�es the joint probability distribution of the hidden and observed variables.

165

166 CHAPTER 10. BAYESIAN NONPARAMETRIC MODELS

Given a data set, data analysis is performed by posterior inference, computing the conditional distri-

bution of the hidden variables given the observed data. We (in some sense) `reverse' the generative

process; we �nd the distribution of the hidden variables that is likely to have generated the given data.

Its complexity, i.e. the number of mixture components, or number of factors, is part of the posterior

distribution. We do not need to specify these in advance; they are determined as part of the data

analysis.

We'll look at two Bayesian nonparametric models. In this lecture, we'll consider the Chinese

Restaurant Process which is used for cluster assignment and in the next we'll consider the Indian

Bu�et Process, which is used for Latent Factor models.

10.2 Mixture Models and Clustering

In a mixture model, each data point is assumed to belong to a cluster. In posterior inference, we infer

a grouping (or clustering) of the data. This amounts to inferring both the identities of the clusters and

the assignments of data to them.

Example: Cognitive Response Times Several cognitive processes contribute to producing be-

havioural responses. The question is how to decompose observed RT's into their underlying compo-

nents.

10.2.1 Finite Mixture Model

Assume there are K clusters, each associated with a parameter θk ∶ k = 1, . . .K. For example, a datum

from cluster k is an observation from a N(θk,Σ) population. Each observation yi is assumed to be

generated by �rst choosing a cluster ci with probability P(ci) and then choosing yi from the distribution

parametrised by θci .

Bayesian mixture models have a prior over the clusters P(ci) and a prior over cluster parameters; the

parameters for di�erent clusters are chosen independently of each other and θ ∼ G0 for a distribution

G0.

The generative process de�nes a joint distribution;

P(y, c, θ) =
K

∏
k=1

G0(θk)
N

∏
n=1

F (yN ∣θcn)P(cn).

Observations y = (y1, . . . , yN), cluster assignments c = (c1, . . . , cN), cluster parameters θ = (θ1, . . . , θK).

Given a data set, we are usually interested in the cluster assignments, to be inferred from the obser-

vations y and we can get this by Bayes rule:

10.2. MIXTURE MODELS AND CLUSTERING 167

P(A∣B) = P(B∣A)P(A)
P(B)

which gives:

P(c∣y) =
P(y∣c)P(c)
∑c P(y∣c)P(c)

.

The likelihood is obtained by marginalising over the settings of θ

P(y∣c) = ∫
θ
(

N

∏
n=1

F (yn∣θcn)
K

∏
k=1

G0(θk))dθ

We would like to be able to calculate this explicitly. If G0 is conjugate to F , then we can do this.

For example, we could take G0 as a Gaussian distribution; when new clusters are established, their

cluster means are drawn independently from a Gaussian distribution. If F (.∣θ) (the distribution of the

observation given the cluster parameters θ) is also Gaussian, the expression may be computed.

The denominator cannot be computed, since this involves summing over every single partition of the

data into K groups. Approximate methods (such as Markov chain Monte Carlo) are therefore used to

establish properties of the posterior distribution and hence discover good clusterings.

10.2.2 The Chinese Restaurant Process

The Chinese Restaurant Process is a method for generating clusters and cluster memberships. The

term is attributable to Jim Pitman from Berkeley. He always found in San Fransisco that (a) no matter

how busy it was, his favourite Chinese Restaurant could always accommodate new customers and that

(b) tables could always be expanded to accommodate new customers who wanted to sit at a table

which contained their friends and colleagues who were already in the restaurant.

Let cn denote the table assignment of customer n and let c1∶n−1 = (c1, . . . , cn−1). Suppose that Kn

denotes the number of tables occupied after the nth customer has arrived. Then

P(cn = k∣c1∶n−1) =
⎧⎪⎪⎨⎪⎪⎩

mk

n−1+α k ≤Kn−1

α
n−1+α k =KN

where mk denotes the number of customers sitting at table k when there are n − 1 customers.

Now,

p(c1, . . . , cN) = p(c1)p(c2∣c1) . . . p(cN ∣c1, . . . , cN−1)

so that

p(c1, . . . , cN) =
αKN ∏KN

j=1 (mj,N − 1)!

∏N
n=1(α − 1 + n)

where mj,N denotes the total number of customers at table j after N arrivals.

168 CHAPTER 10. BAYESIAN NONPARAMETRIC MODELS

If we only observe di�erent tables and we do not examine the order in which tables were occupied, this

distribution is exchangeable.

The RT Example The CRP allows us to place a prior distribution over partitions of RTs into the

hypothetical cognitive processes that generated them, without committing in advance to the number

of such processes.

Each process k is associated with a set of parameters θk specifying the distribution over the RTs

obtained from the posterior, which may be obtained by Gibbs sampling.

Data Analysis using CRP When we analyse data with a CRP, we form an approximation of the

joint posterior over the (hidden) class variables and the distributional parameters for each cluster. In

practise, there are two uses for this posterior.

1. Examine the likely partitioning of the data. This gives us a sense of how the data are grouped

and how many groups the CRP model chooses.

2. Form predictions with the posterior predictive distribution. With the CRP, the posterior predic-

tive distribution is:

P(yn+1∣y1, . . . , yn) = ∑
c1,...,cn+1

P(yn+1∣cn+1, θ)P(cn+1∣c1, . . . , cn)P(c1, . . . , cn, θ∣y1, . . . , yn)dθ.

10.3 Implementation in R

There is a package dirichletprocess which is useful.

>install.packages("dirichletprocess",dependencies=TRUE)

>library(dirichletprocess)

and now let us try it out.

We'll consider the data set faithful, which is contained in the basic R installation. There are 272

bi-variate observations. The variables are the time between eruptions and the length of the eruption

for the geyser `Old Faithful'.

Making a plot of the waiting times might suggest that there are two clusters and that each cluster may

be Gaussian, so the data could arise as a mixture of two Gaussians. We'll see how this is recovered.

?faithful

On the right you will see a description of the data.

10.4. BINOMIAL CLUSTERS: DIFFERENT `SUCCESS' PROBABILITIES 169

its <- 500

faithfulTransformed <- scale(faithful$waiting)

dp <- DirichletProcessGaussian(faithfulTransformed)

dp <- Fit(dp, its)

plot(dp)

On the right hand side, you see the plot. Clearly, it has estimated two clusters from the data. The

density is therefore estimated as the composition of two Gaussians. It has estimated the cluster sizes

and has assigned data to two clusters. From this, it has computed the sample mean and sample variance

of each cluster, the Gaussian density for each cluster and has �tted the corresponding population

density.

Now let us try a multivariate example; let us use both variables in the faithful data set.

faithfulTrans <- scale(faithful)

dp <- DirichletProcessMvnormal(faithfulTrans)

dp <- Fit(dp, 1000)

plot(dp)

The Fit command may take a long time to execute.

The plot shows the clustering that the CRP Gauss model has assigned; points from one cluster in red

and the other in blue.

10.4 Binomial Clusters: di�erent `success' probabilities

We now consider data that is either `success' or `failure'. A Bernoulli trial Be(θ) is a random variable

X which takes the value 1 (`success') or 0 (`failure') and P(X = 1) = θ, P(X = 0) = 1 − θ.
Suppose we have n independent identically distributed Be(θ) variables and Y =X1+ . . .+Xn is the

total number of `success', then

P(Y = k) = (n
k
)θk(1 − θ)n−k k = 0,1, . . . , n.

We now consider a situation where the `success' probability θ is unknown. One way of modelling

the uncertainty is to place a prior distribution over θ and one of the most convenient families of

distributions is the Beta distribution. A random variable Θ has Beta(α,β) distribution if its density

is

fΘ(θ) =
Γ(α + β)
Γ(α)Γ(β)

θα−1(1 − θ)β−11[0,1](θ).

Here

E[Θ] = α

α + β
, Var(Θ) = αβ

(α + β)2(α + β + 1)

170 CHAPTER 10. BAYESIAN NONPARAMETRIC MODELS

so that prior information can be modelled. The parameters α and β are chosen such that the `guess'

for θ is α
α+β and the more certainty the user has concerning this guess, the larger the choice of α + β.

The Update If we have a prior distribution Beta(α,β) over the parameter θ and we observe y from

Binomial(n, θ), the posterior distribution over θ is given by Beta(y + α,n − y + β).
Note that its expected value is: y+α

n+α+β .

We can envisage situations where the data comes from several di�erent populations, each with its own

`success' probability. Suppose that Yi ∼ Binomial(ni, θi) for i = 1, . . . ,N .

A model could be

θ1, . . . , θN ∼ i.i.d.Beta(α,β)
Yi∣θi ∼ Binomial(ni, θi)

In the example below, the θis do not seem to be i.i.d. beta(α,β). They would appear to come from a

bimodal distribution, which is not the pattern of a Beta. The Beta is either unimodal, or else takes its

maxima at the end points of 1 and / or 0.

A Dirichlet Process model could be:

F ∼ DP(α,G0)
αi, βi ∼ F
θi ∼ Beta(αi, βi)
yi ∼ Binomial(ni, θi)

where there are K di�erent (αi, βi) values, each corresponding to a cluster; the clusters generated by

the Chinese Restaurant Process with parameter α and the distribution from which the (αi, βi) values
for each cluster are chosen is F , determined by sampling parameters from G0.

Example: Tumour risk in rats The data set rats is contained in the package dirichletprocess

and the data is from Gelman, Carlin, Stern, and Rubin (2014). In this example, there are 71 di�erent

experiments, and during each experiment a number of rats are inspected for tumours, with the number

of rats which have tumours in each experiment being the observed data. The �rst column is the

number of rats which have tumours in each experiment, and the second is the number of rats. A naive

approach would model each experiment as a Binomial draw with unknown θi (the `success' probability)

and known Ni. A Beta distribution is the conjugate prior for the Binomial distribution and would be

used as the prior on θ:

yi∣θi,Ni ∼ Binomial(Ni, θi)
θi ∼ Beta(α,β).

The empirical distribution of However, Figure 4a shows the empirical distribution of θ̂i ∶= yi
Ni

would

suggest otherwise; the empirical distribution suggests bi-modality, something that a single Beta distri-

bution cannot capture. Hence this choice of prior over θi is dubious. An alternative procedure is to

10.4. BINOMIAL CLUSTERS: DIFFERENT `SUCCESS' PROBABILITIES 171

instead use a nonparametric prior, which is a mixture of Beta distributions. Since these parameters

are constrained to lie between 0 and 1, a Dirichlet process mixture of Beta distributions might be

reasonable. This leads to the following model:

yi∣θi,Ni ∼ Binomial(Ni, θi),
θi ∼ Beta(αi, βi)
αi, βi ∼ F,
F ∼DP (α,G0)

for some parameters α and G0. These can follow the default implementations in the package dirich-

letprocess; for reasonable choices, the results should not depend heavily on these. This can be

implemented as follows:

> library(dirichletprocess)

> numSamples = 200

> thetaDirichlet <- matrix(nrow=numSamples, ncol=nrow(rats))

> dpobj <- DirichletProcessBeta(rats$y/rats$N,maxY=1,g0Priors = c(2,

150),mhStep=c(0.25, 0.25),hyperPriorParameters = c(1, 1/150))

> dpobj <- Fit(dpobj, 10)

> clusters <- dpobj$clusterParameters

> a <- clusters[[1]] * clusters[[2]]

> b <- (1 - clusters[[1]]) * clusters[[2]]

> for(i in seq_len(numSamples)){

+ posteriorA <- a[dpobj$clusterLabels] + rats$y

+ posteriorB <- b[dpobj$clusterLabels] + rats$N - rats$y

+ thetaDirichlet[i,] <- rbeta(nrow(rats), posteriorA, posteriorB)

+ dpobj <- ChangeObservations(dpobj, thetaDirichlet[i,])

+ dpobj <- Fit(dpobj, 5)

+ clusters <- dpobj$clusterParameters

+ a <- clusters[[1]] * clusters[[2]]

+ b <- (1 - clusters[[1]]) * clusters[[2]]

+ }

Note the reason why the observations are changing is because the DP mixture model is applied to the

θi parameters, which are resampled (and hence have di�erent values) during each MCMC iteration.

> library(ggplot2)

> ggplot(rats, aes(x=y/N)) +

+ geom_density(fill="black") #Plot the emperical distribution

> ggplot(rats, aes(x=y/N)) +

+ geom_density(fill="black") #Plot the emperical distribution

> posteriorFrame <- PosteriorFrame(dpobj, ppoints(1000))

172 CHAPTER 10. BAYESIAN NONPARAMETRIC MODELS

> ggplot() +

+ geom_ribbon(data=posteriorFrame,aes(x=x,

ymin=X5.,ymax=X95.),alpha=0.2) +

+ geom_line(data=posteriorFrame, aes(x=x, y=Mean)) +

+ xlim(c(0, 0.35)) #Plot the resulting prior distribution

Plotting the resulting estimation reveals that the DP is a more suitable prior than the Beta distri-

bution. This con�rms what we saw from the empirical distribution that the data is bi-modal.

Inconsistency The CRP method for clustering has its uses and, as we have seen can give greater

accuracy in modelling. There are, though, problems with it. Miller and Harrison (JMLR volume

15 (2014) pp 3333 - 3370) point to inconsistency; let N(n) denote the number of clusters chosen to

maximise the posterior, then this does not necessarily converge to the true value.

10.5 Latent Factor Models and Dimensionality Reduction

Mixture models assume that each observation is assigned to one of K components. Latent factor

models weaken this assumption; each observation is in�uenced by each of K components in a di�erent

way.

Latent factor models provide dimensionality reduction; the number of components is usually smaller

than the dimension of the data. Each observation is associated with a vector of component activations

(latent factors) that describe how much the each component contributes to it.

The most popular of these models, Factor Analysis (FA), Principal Component Analysis (PCA)

and Independent Component Analysis (ICA) all assume that the number of factors (K) is known. The

Bayesian Nonparametric approach described here allows the number of factors to grow as more data

is added.

As with the BNP mixture model, the posterior distribution provides both the properties of the

latent factors and how many are exhibited in the data.

In classical factor analysis, the data matrix x is an N ×M matrix; N M-variate observations.

Observation yn is expressed as

yn = Gxn + ϵn

where yn is the observed M -vector for observation n, xn is an M ×K factor loading matrix expressing

how the latent factor k in�uences observation dimension m, xn is a K-dimensional vector expressing

the activity of each latent factor and ϵn is a vector of independent Gaussian noise terms.

The factor loadings can be decomposed as Gmk = zmkwmk where zmk is a binary `mask' variable, equal

to 1 if factor k is `on' and equal to 0 if factor k is `o�'. wmk is a continuous weight variable.

Now let us consider the Bayesian approach to inferring the latent factors, mask variables and weights.

We place priors over them and use Bayes rule to compute the posterior P(X,Z,W ∣Y).

10.5. LATENT FACTOR MODELS AND DIMENSIONALITY REDUCTION 173

Just as the CPR, the in�nite-capacity distribution over Z has been furnished with a similarly colourful

culinary metaphor, the Indian Bu�et Process.

A customer (a dimension) enters a bu�et which has an in�nite number of dishes to choose from,

arranged in a line. The probability that customer m samples dish k (i.e. zmk = 1) is proportional to its
popularity hk (the number of previous customers who have sampled dish k). When the customer has

considered all previous sampled dishes, he chooses an additional Poisson(α/N) dishes that have never

been sampled before. When all M customers have navigated the bu�et, the resulting binary matrix Z

is a draw from the IBP.

The IBP plays the same role for latent factor models as the CRP plays for mixture models; it functions

as an in�nite capacity prior over the space of latent variables allowing an unbounded number of latent

factors.

We then proceed with

P(X,W,Z ∣Y) = P(Y ∣X,W,Z)P(X)P(W)P(Z).

Exact inference is (of course) impossible; Markov chain Monte Carlo methods have to be used.

	Geometrical Representation and Distances
	The Data Matrix
	One Way Representations of Data Matrices: Andrews Curves
	Subspace Projections
	Distances and Proximity Matrices
	Measuring and Testing Multivariate Distances
	Penrose and Mahalanobis Distance
	The Mantel Randomisation Test

	Principal Component and Factor Analysis
	Introduction
	Principal Component Analysis
	How to do a Principal Component Analysis
	Confidence Intervals for PCA Eigenvalues and Eigenvectors
	Implementation in R
	Sparrow Data
	Bootstrap for Confidence Intervals
	Using the Principal Components

	Weighted Projection Methods
	Factor Analysis
	Example: Country Employment Profiles

	Cluster Analysis
	Introduction
	Distance and Dissimilarity Measures
	Clustering Techniques
	Hierarchic Methods
	Divisive Analysis (diana)
	Non-hierarchical Clustering Methods
	K-means method
	K-medoids
	Partitioning Around Medoids (pam)
	Silhouette Plot

	Self Organising Maps (SOM)
	On-Line Version

	Implementation in R

	Conditional Independence and Graphical Models
	Conditional Independence and Factorisation
	Definition of a Bayesian Network
	Connections in a Directed Acyclic Graph and Conditional Independence
	Separation within a DAG
	Bayes Ball

	D-Separation and Conditional Independence
	Queries
	Bayesian Networks in R
	Introduction
	Graphs in R
	Example: `Asia' by Lauritzen
	Building the Network
	Compilation
	Absorbing Evidence and Answering Queries

	Intervention Calculus
	Causal Models and Bayesian Networks
	Conditioning by Observation and by Intervention
	The Intervention Calculus for a Bayesian Network
	Causal Models
	Establishing a Causal Model via a Controlled Experiment

	Confounding, The `Sure Thing' Principle and Simpson's Paradox
	Confounding
	Simpson's Paradox
	The Sure Thing Principle

	Identifiability: Back-Door and Front-Door Criteria
	Back Door Criterion
	Front Door Criterion
	Non-Indentifiability

	Time Series
	Introduction
	Stationarity
	Trends and Seasonal Components
	No Seasonal Component
	Trend and Seasonality

	Autocovariance and Spectral Density of a stationary time series
	Extracting Trend, Seasonal and Noise in R
	Holt Winters Filtering
	Illustration

	Linear Time Series Models
	Definitions and first properties
	The Spectral Density

	MA(q), AR(p) and ARMA(p,q) Processes
	Linear filters
	The ARIMA Process
	Testing for Unit Roots

	SARIMA Processes

	Dynamic Bayesian Networks
	Introduction
	Multivariate Time Series
	Lasso Learning
	Implementation

	Inference for Dynamic Bayesian Networks
	Exercises

	Discriminant Function Analysis
	The Maximum Likelihood Discriminant Rule
	The Bayes Discriminant Rule

	The Linear Discriminant Function
	Misclassification Probability
	Fisher's Discriminant Function
	Quadratic Discrimination
	Canonical Discriminant Functions
	LDA using Multiple Regression Techniques
	Logistic Discrimination

	Implementation in R
	Worked Example: Diabetes
	Recursive Partitioning and Tree-Based Methods
	Classification Trees

	Shannon Entropy and Information
	Tree-Growing Procedure

	Assigning classes to nodes: Estimating the Misclassification Rate
	Pruning the Tree
	Choosing the best pruned subtree

	Choice experiments
	Designing Experiments and Modelling Data
	How are choice sets constructed and data analysed

	Utility Models
	Non-Random Utility Model
	Random Utility Models
	Distribution of the Error Terms

	Logit models: relaxing the i.i.d. hypothesis
	Heteroscedastic logit model
	The nested logit model
	The random parameters (or mixed) logit model
	Latent Class Model
	Estimating Willingness to Pay

	Optimal design
	Implementation of Random Utility using mlogit
	The Random Parameters Model

	Bayesian Nonparametric Models
	Introduction
	Mixture Models and Clustering
	Finite Mixture Model
	The Chinese Restaurant Process

	Implementation in R
	Binomial Clusters: different `success' probabilities
	Latent Factor Models and Dimensionality Reduction

