
Chapter 14

Model Selection Criteria

14.1 Introduction and Examples

We now consider criteria for choosing the best statistical model, from a selection of models available,

to describe data. Consider the following examples:

Example 14.1.

Consider a survival analysis problem, where Y1, . . . , Yn are the ages at death of n individuals. The aim

is to model the survival distribution, from which Y1, . . . , Yn is considered as an i.i.d. sample. Some

popular models are:

1. M1: the suvival times are an observed exponential random sample; density p(y; θ) = θe−θy
1[0,+∞).

2. M2: the survival times are from a Gamma distribution; p(y;α, β) = ba

Γ(a)y
a−1e−by.

3. M3; the survival times are from a log-normal distribution; log Y ∼ N(µ, σ2).

Note that for this example, M1 ⊂ M2; if θ is the parameter for Model 1, this corresponds to

(a, b) = (1, θ) in Model 2. Model 3, however, is an entirely different two-parameter model.

Example 14.2.

Suppose that Y1, Y2, . . . , Yn is data from a stationary time series, which is modelled by an AR(p)

process, where p is unknown; that is:

Yt − φ1Yt−1 − . . .− φpYt−p = ǫt

where (ǫt)t∈Z are uncorrelated, each with the same variance σ2. The parameters are: (φ1, . . . , φp;σ
2).

Here, the models are nested and the aim is to choose p.

Example 14.3.
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Gaussian-mixture models:

p(y) =
n∑

j=1

πjφ(y;µ,Σj)

where φ(.;µ,Σ) is the multivariate Gaussian kernel with mean vector µ and covariance matrix Σ;∑n
j=1 πj = 1, πj ≥ 0 for each j, the number n, the quantities π1, . . . , πn, µ1, . . . , µn and Σ1, . . . ,Σn are

unknown and have to be chosen to give the best model.

In some situations, we have a sequence of models M1 ⊆ M2 ⊆ M3 ⊆ . . ., where the parameter space

for model Mi is a subspace of the parameter space for model Mi+1. The aim of model selection is

simply to choose which parameters, from a selection of parameters available, gives the best model.

In other cases, we are comparing models that are completely different.

14.2 Nested Models: Multiple Linear Regression

Recall that in ‘Statistics’, we considered Gaussian models of the form

Y = Xβ + ǫ

where Y is an n-vector, X is an n×r design matrix of (known) covariates, β is an r vector of (unknown)

parameters and ǫ ∼ N(0, σ2In) is a vector of i.i.d. Gaussian errors, each with (unknown) variance σ2.

Recall that β̂OLS = β̂ML = (X ′X)−1X ′Y , and that β̂ ∼ N(β, (X ′X)−1σ2).

The fitted values are given by the vector Ŷ = Xβ̂ and the residuals (or errors) are R := Y − Ŷ . The

error sum of squares is

Qres := R′R.

Suppose there are p + q covariates to choose from and we would like to decide whether to take all of

them, or only the first q covariates. We then compare two models:

{
I Yi = β0 +

∑p
j=1 xijβj + ǫj

II Yi = β0 +
∑p

j=1 xijβj +
∑q

j=p+1 xijβj + ǫj

Are the additional parameters necessary?

For model I, r = 1 + p and X1 (the design matrix) is an n × p + 1 matrix; the first column (which

corresponds to the parameter β0) is 1n. Let X̃1 denote the n× p matrix with entries xij for 1 ≤ i ≤ n,

1 ≤ j ≤ p and X̃2 the n × q matrix with entries xij+p for 1 ≤ i ≤ n and 1 ≤ j ≤ q. Then the design

matrix for Model I is X1 = (1n|X̃1) while the design matrix for Model II is X2 = (1n|X̃1|X̃2).
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In ‘Statistics’ we showed that if H0 : βp+1 = . . . = βp+q = 0 is true, then

F :=
(Qres,I −Qres,II)/q

Qres,II
∼ Fp,n−(p+q+1).

This gives a model selection criterion; for significance level α, we include variables βp+1, . . . , βp+q if

F > Fp,n−(p+q+1);α and we do not include them if F < Fp,n−(p+q+1);α.

In this situation, we have a nested model where it is known that the errors are i.i.d. normal.

14.3 Asymptotic Log Likelihood Ratio and Wald Test

A standard test statistic is the likelihood ratio test statistic:

Λ(x) =
supθ∈Θ0

L(θ;x)

supθ∈Θ L(θ, x)
.

For i.i.d. sampling, if Θ ⊆ Rk and Θ0 ⊆ Rp, with Θ0 ⊂ Θ, then under broad hypotheses (covered in

the course Statistics), we have the asymptotic result:

−2 lim
n→+∞

log Λ(x) ≃ χ2
k−p.

The important result for multivariate analysis is the multi-dimensional setting:

Theorem 14.4. Let X = (X1, . . . , Xn) be a random sample from a regular parametric family with

p.d.f. or p.m.f. p(x, θ) where θ ∈ Θ ⊆ R
k is a k-dimensional parameter vector (that is, there are

p free parameters) where the parametrisation is identifiable. Let logL(θ, x) = log p(x, θ) denote the

log likelihood function for a single observation and logL(θ, x) =
∑n

j=1 logL(θ, xj) the log likelihood

function for an observed random sample (x1, . . . , xn). Let θ̂n denote the MLE based on (X1, . . . , Xn).

Assume that the following conditions hold:

1. θ̂n is consistent,

2. logL(θ, x) is twice differentiable in θ,

3.

Eθ

[
∂

∂θj
logL(θ,X)

]
= 0 j = 1, . . . , p,

4.

Eθ

[
|∇θ logL(θ,X)|2

]
< +∞

5.
∑

ij Eθ

[∣∣∣ ∂2

∂θi∂θj
logL(θ,X)

∣∣∣
]
< +∞

6. the information matrix I(θ) is non singular for each θ ∈ Θ.
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Let Θ0 denote a specification of the first k − p parameters, where 0 ≤ p ≤ k. For θ ∈ Θ0, the

distribution of the statistic

−2 log λ(X)
n→+∞−→ χ2

k−p.

14.4 Wald Test and Rao Test

Theorem 14.4, applied to the problem of determining whether a reduced model may be appropriate,

givs rise to two variants that are frequently found in software; the Wald test and the Rao test.

The Wald Test Let kp,α denote the value such that P(V > kp,α) = α for V ∼ χ2
p. For a p dimensional

parameter space Θ ⊆ R
p and a parameter vector vector θ ∈ Θ, assume that

√
n
(
θ̂n − θ

)
n→+∞−→ (d)

N(0, I−1(θ)) where I(θ) denotes the Fisher information matrix for a single observation. Wald’s test

rejects H0 : θ = θ0 (θ0 ∈ R
p - a single point) in favour of H1 : θ 6= θ0 when

Wn(θ0) := n(θ̂ − θ0)
tI(θ0)(θ̂ − θ0) ≥ kp,α.

This test has asymptotic level α.

This may be extended to subsets of the parameter space. The following is left as an exercise: Let

θ =
(θ(1)
θ(2)

)
where θ(1) is a p− r vector and θ(2) an r vector. Let

I−1 =

(
I11− I12−
I21− I22−

)
.

Let

W̃n(θ
(1)
0 ) = n(θ̂

(1) − θ̂
(1)

)t(I11− )−1(θ̂
(1) − θ̂

(1)
).

Then, under the null hypothesis H0 : θ
(1) = θ

(1)
0 (a specification of p− r parameters)

W̃n(θ
(1)
0 )

n→+∞−→ (d) χ
2
p−r.

The Rao Score Test Let W be a k-random vector satisfying W ∼ N(0,Σ) where Σ is of rank k

then W tΣ−1W ∼ χ2
k. Let

ψ
n
(θ) := ∇ρn(θ) =

1

n

n∑

j=1

∇θ logL(θ,Xj)

where logL is the log likelihood function for a single observation. Then, provided the likelihood satisfies

the assumptions of Theorem 14.4, if θ = θ0,

√
nψ

n
(θ0) −→(d) N(0, I(θ0)).
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It follows that if I(θ0) is p× p and positive definite, then

Rn(θ0) := nψ(θ0)
tI−1(θ0)ψn

(θ0) −→(d) χ
2
p.

Furthermore, if θ =
(
θ(1)

θ(2)

)
where θ(1) and θ(2) are p − r and r vectors respectively, let θ̂0 denote the

maximum likelihood estimate of θ under the constraint that θ(1) = θ
(1)
0 , then

Rn(θ̂0) := nψ(θ̂0)
tI−1(θ̂0)ψn

(θ̂0) −→(d) χ
2
p−r.

Here p− r is the number of parameters specified by the null hypothesis.

The test that rejects H0 when Rn > kd.f.,α, where d.f. denotes the degrees of freedom, is known as

the Rao score test.

14.5 Gaussian Linear Model and Wald Test

Consider a Gaussian linear model Y = Xβ + ǫ, with n observations. If 1
n(X

tX)
n→+∞−→ Σ for some

deterministic value Σ, then it is relatively straightforward to show that β̂ is consistent; β̂
n→+∞−→(P ) β.

Furthermore, if 1
n(X

tX)
n→+∞−→ Σ, then under the relaxed assumption that errors are mean zero, each

with variance σ2 and independent, a central limit result can be proved, that

√
n(β̂ − β)

n→+∞−→(d) N(0,Σ−1).

The Wald Test The Wald test for H0 : Rβ = q assumes asymptotic normality as n→ +∞ and, in

this case,

(β̂ − β)tRt(R(XtX)−1Rt)−1R(β̂ − β)

S2

n→+∞−→ χ2
J .

14.6 Criteria for Model Selection

The most common model selection methods are:

1. AIC (Akaike Information Criterion), AICc (corrected AIC) and related methods such as Mallow’s

Cp criterion;

2. Cross Validation;

3. BIC (Bayesian Information Criterion) and related methods such as MDL (minimum description

length) and Bayesian Model Selection.

It is important to distinguish between two different, but related, goals for model selection:
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1. Finding the model that gives the best prediction (without any assumptions that any of the

proposed models are correct);

2. Assume that one of the proposed models is the ‘true’ model and find it.

Generally speaking, AIC (and the strongly related Cp criterion) and cross validation are used for

1., while BIC is used for 2..

14.7 The Akaike Information Criterion (AIC)

Consider a selection of k possible models, M1, . . . ,Mk where each model is a set of densities:

Mj = {p(y; θj) : θj ∈ Θj}

and there is data Y1, . . . , Yn drawn from a density f .

Note: For AIC, no assumption is made that f is in any of the models.

For example, for a regression problem, think of ǫj = Yj −
∑p

k=0 βkxk, where θj = (β0, . . . , βp) is the

unknown parameter vector and 1, x1, . . . , xp are known; ǫ1, . . . , ǫn is the observed random sample from

f (hypothesised to be N(0, σ2) when normal errors are assumed).

Let θ̂j denote the MLE of model j. An estimate of f , based on model j is p̂j where p̂j(y) = p(y; θ̂j).

The quality of p̂j as an estimator of f may be measured by the Kullback Leibler Divergence

DKL(f ; g) =

∫
f(x) log

f(x)

g(x)
dx.

(Note that DKL(f ; g) ≥ 0 for any densities f and g - this is an easy consequence of Jensen’s inequality

- and DKL(f ; f) = 0). Here:

DKL(f ; p̂j) =

∫
f(y) log

(
f(y)

p̂j(y)

)
dy =

∫
f(y) log f(y)dy −

∫
f(y) log p̂j(y)dy.

The first term does not depend on j; therefore minimising the Kullback-Leibler divergence is the same

as maximising

Kj :=

∫
f(y) log p(y; θ̂j)dy.

The aim of the Akaike Information Criterion is to obtain, at least approximately, the model j and

Maximum Likelihood Estimates θ̂j which minimise DKL(f ; p(θ̂j)) from the candidate models.

The quantity Kj has to be estimated. Let us drop the subscript j. The aim is therefore to estimate
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K =

∫
f(y) log p(y; θ̂)dy.

If θ were fixed, then
∫
f(y) log p(y; θ)dy = Ef [log p(Y ; θ)]. Therefore, the first thing one would think

of for estimating K would be K = 1
n

∑n
j=1 log p(Yj , θ̂). Unfortunately, a bias is introduced with this

estimate, since the estimator θ̂ is based on the random sample Y1, . . . , Yn. The following lemma shows

the size of the bias and is the basis of the AIC criterion.

Lemma 14.5. Let

K =
1

n

n∑

i=1

log p(Yi, θ̂)

in other words, K is the sample average of log p(Y, θ̂). Then

n(K −K)
n→+∞−→ d

where d is the dimension of the parameter vector θ.

Proof At the end of the lecture.

This leads to the definition of the Akaike Information Criterion:

Definition 14.6 (Akaike Information Criterion). The AIC for a model with d parameters, based on n

observations is defined as:

AIC = 2nK̂ = 2nl(θ̂)− 2d.

where K̂ is the estimate of K, l is the log likelihood function, θ̂ is the maximum likelihood estimate for

the model parameter vector θ and d is the dimension of the parameter space.

It is clear from the proof of the lemma that there are rather many approximations and assumptions

used here; the AIC is a very crude tool.

The AICc (Akaike Information Criterion corrected) The AIC is an asymptotic result and the

AIC often tends to overestimate the number of parameters. The AICc is a modification to accommodate

this;

AICc = 2nl(θ̂)− 2d− 2d(d+ 1)

n− d− 1
.

Under the assumption that the model is a Gaussian linear model, it can be shown that this is equivalent

to minimising the Kullback Leibler distance. This is left as an exercise.
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14.8 Mallow’s Cp Statistic

For the specific problem of linear regression, consider a model:

Y = β0 + β1x1 + . . .+ βkxk + ǫ

where the errors are mean zero, each with the same variance Var(ǫ) = σ2. The problem is to select a

subset of p regressor variables, where p ≤ k. If p regressors are selected from k, the Cp tatistic is:

Cp =
SSEp

S2
− n+ 2p

where n is the number of observations, SSEp is the error sum of squares for the model with p covariates

and S2 is the error sum of squares for the full model (with all k covariates). This is derived from

the following consideration: for a model Y = Xβ + ǫ, where β = (β0, β1, . . . , βp;βp+1, . . . , βp+q)
t and

ǫ ∼ N(0, σ2I), suppose we include the first p parameters. Then:

Ŷ = Xp(X
t
pXp)

−1Xt
pY

where Xp denotes the design matrix with p parameters included. Then:

SSE = (Y − Ŷ )t(Y − Ŷ ) = Y t(I −Xp(X
t
pXp)

−1Xt
p)Y

It turns out that (this is left as an exercise, the computations are similar to those in examples from

‘Statistics’):

E[SSE] = |E[β̂]− β|2 + σ2(n− p)

where β denotes the parameter vector with the first p parameters. S2 is an approximation for σ2. If

we have the true model and sufficient data so that S2 ≃ σ2, then

E[Cp] ≃ p.

14.9 Cross Validation

Cross validation turns out to be a more reliable tool than AIC and the Mallow Cp statistic, although

it has, in general, far larger computational cost. There are various flavours of cross validation. The

data are split into a training set and a test set. The models are fitted to the training set and are used

to predict the test set. Usually, many such splits are used and the results are averaged over the splits.

To keep things simple, consider a single split.

Consider models M1, . . . ,Mk. Assume that there are 2n data points. Split the data randomly

into two halves, denoted D = (Y1, . . . , Yn) and T = (Y ∗
1 , . . . , Y

∗
n ). Use D to find the MLEs θ̂j . define:
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K̂j =
1

n

n∑

i=1

log p(Y ∗
i , θ̂j).

Note that E[K̂j ] = Kj ; there is no bias, since θ̂j is independent of Y ∗
i . Assume that | log p(y; θ)| ≤ B <

+∞. Hoeffding’s inequality tates that if X1, . . . , Xn are independent random variables, Xi strictly

bounded by the interval [ai, bi] and X = 1
n(X1 + . . .+Xn), then:

P(X − E[X] ≥ t) ≤ exp

{
− 2n2t2∑n

i=1(bi − ai)2

}

and

P
(∣∣X − E[X]

∣∣ ≥ t
)
≤ 2 exp

{
− 2n2t2∑n

i=1(bi − ai)2

}
.

By Hoeffding’s inequality,

P

(
max

j

∣∣∣K̂j −Kj

∣∣∣ > ǫ

)
≤ 2ke−2nǫ2/(2B2)

Let

ǫn =

√
2B2 log(2k/α)

n

then

P

(
max

j

∣∣∣K̂j −Kj

∣∣∣ > ǫn

)
≤ α.

If we choose ĵ = argmaxjK̂j , then, with probability at least 1− α,

Kĵ ≥ max
j
Kj − 2

√
2B2 log(2k/α)

n
= max

j
Kj −O

(
log k

n

)
.

The best model is chosen with high probability. The loss function is different for different problems.

For ordinary least squares regression, for example, the loss function is E[|Y − µ(X)|2] and the cross

validation score function is:

1

n

n∑

j=1

(Y ∗
i − µ(X∗

i ))
2.

14.10 Bayesian Information Criterion (BIC)

The BIC for a model is defined as

BIC = l(θ̂)− d

2
log n
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where n is the number of data points, θ̂ is the MLE of the parameter vector θ, the parameter space

is d dimensional. It is virtually the same as the Minimum Description Length (MDL) criterion. The

penalty is harsher than the AIC and hence the BIC chooses models with fewer parameters. A sketch

of the derivation is given here:

Put a prior πj(θj) over parameter vector θj , given that model j is correct. Put a prior pj on model

j. Then, by Bayes rule,

P(Mj |Y1, . . . , Yn) ∝ p(Y1, . . . , Yn|Mj)pj .

Also,

p(Y1, . . . , Yn|Mj) =

∫
p(Y1, . . . , Yn|Mj , θj)πj(θj)dθj =

∫
L(θj)πj(θj)dθj .

The model j is chosen to maximise P(Mj |Y1, . . . , Yn). This is equivalent to choosing j to maximise

log

∫
L(θj)πj(θj)dθj + log pj .

For a log-likelihood l, based on n independent observations Y1, . . . , Yn and a parameter vector θ =

(θ1, . . . , θd)
t, we have a Taylor expansion:

l(θ) ≃ l(θ̂ML) +
1

2

∑

i,j

(
∂2

∂θi∂θj

n∑

k=1

log p(Xk, θ̂ML)

)
(θi − θ̂i)(θj − θ̂j)

By the law of large numbers, limn→+∞
1
n

∑n
k=1 log p(Yk, θ0) = E[log p(Y, θ0)]. Similarly,

lim
n→+∞

− 1

n

n∑

k=1

∂2

∂θi∂θj
log p(Yk, θ0) → Iij(θ0)

where I is the Fisher information. The posterior distribution will be asymptotically N(θ̂, 1nI(θ̂)
−1).

From this,

log

∫
L(θj)πj(θj)dθj + log pj

≃ log

∫
el(θ̂j)−

n
2
(θ−θ̂j)

tI(θ̂j)(θ−θ̂j)πj(θ)dθ + log pj

≃ lj(θ̂j)−
dj
2
log n+

1

2
log |I(θ̂)|+ dj

2
log(2π) + log pj

≃ lj(θ̂j)−
dj
2
log n = BICj .

where, to go from second last to last line, the terms of order 1 have been removed. (the terms involving

the prior are of a lower order, so they do not appear in the final formula).
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BIC behaves quite differently from AIC and cross validation, since it is based on an entirely different

set of principles. BIC assumes that, among the collection of models, there is a ‘correct’ model and that

the aim is to find the model most likely to be true in the Bayesian sense.

AIC and cross-validation are trying to find the model from the collection which will give the best

prediction, and make no assumptions about existence of a ‘correct’ model in the class being considered.

Model Averaging with BIC Suppose we want to predict a new observation Y . LetD = (Y1, . . . , Yn)

be the observed data. Then

p(y|D) =
∑

j

p(y|D,Mj)P(Mj |D)

where

P(Mj |D) =

∫
L(θj)πj(θj)dθj∑

s

∫
L(θs)πs(θs)dθs

≃ eBICj

∑
s e

BICs
.

14.11 Example: Normal Observations

Suppose Y1, . . . , Yn are i.i.d. N(µ, 1) and we want to compare two models:

M0 : N(0, 1) M1 : N(µ, 1).

We consider three approaches: hypothesis testing, AIC and BIC.

Hypothesis Testing H0 : µ = 0 versus H1 : µ 6= 0. The test statistic is:

Z =
√
nY

which has N(0, 1) distribution if H0 is true. H0 is rejected if |Z| ≥ zα/2.

AIC The likelihood is proportional to:

L(µ) =
n∏

i=1

e−(yi−µ)2/2 = e−n(y−µ)2/2e−nS2/2

where S2 =
∑n

i=1(Yi − Y )2. It follows that:

l(µ) = −n
2
(Y − µ)2 − nS2

2
.

The AIC scores are:

{
1
2AIC0 = l(0)− 0 = −n

2Y
2 − nS2

2
1
2AIC1 = l(µ̂)− 1 = −nS2

2 − 1
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since µ̂ = Y . It follows that Model 1 is chosen if and only if AIC1 > AIC0; in other words, if and only

if

|Y | ≥
√
2√
n
.

If the hypothesis test were carried out at α = 0.05, then it would give |Y | ≥ 1.96√
n

.

BIC Here,

{
BIC0 = l(0) = −nY

2

2 − nS2

2

BIC1 = l(µ̂)− 1
2 log n = −nS2

2 − 1
2 log n

which leads to model 1 being chosen if

|Y | >
√

log n

n
.

Proof of Lemma 14.5

Suppose that θ0 minimises DKL(f, p(., θ)), so that (under Kullback-Leibler divergence) p(., θ0) is the

closest density to f in the model to the true density. Let

l(y, θ) = log p(y, θ)

and let

sn(θ) =
1

n

n∑

j=1

∇θ log p(Yj , θ)

be the score; θ̂ satisfies s(θ̂) = 0. Let H(θ) the matrix defined by: Hjk(θ) = ∂2

∂θj∂θk
Ef [log p(Y, θ)]

and let Ĥjk(θ) = ∂2

∂θj∂θk
1
n

∑n
i=1 log p(Yi, θ), so that Ĥ(θ) → H(θ) in probability (by the law of large

numbers).

Let Zn =
√
n(θ̂ − θ0) and let

Jjk(θ) = Ef [sj(Y, θ)sk(Y, θ)].

Since θ̂ is the value such that sn(θ̂n) = 0, it follows by the central limit theorem that if θ̂
n→+∞−→ θ0,

then
√
nsn(θ̂)

n→+∞−→ N(0, J).

By Taylor’s expansion theorem,

sj(θ0) = sj(θ̂) +
d∑

k=1

Ĥjk(θ
∗)(θ̂k − θ0k)
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where |θ∗ − θ0| ≤ |θ̂ − θ0|. Since sj(θ̂) = 0 (by definition of θ̂), it follows that, provided θ̂
n→∞−→ θ0 in

probability,

Zn
n→+∞−→ N(0, J−1HJ−1).

Now let M(y, θ) denote the matrix such that Mjk(y, θ) =
∂2

∂θj∂θk
log p(y, θ), so that

∫
f(y)M(y, θ)dy =

H(θ). Then Taylor’s expansion theorem gives (ignoring third and higher order terms):

K ≃
∫
f(y)

(
log p(y; θ0)− (θ̂ − θ0)

ts(y, θ0) +
1

2
(θ̂ − θ0)

tM(y, θ0)(θ̂ − θ0)

)
dy

= K0 −
1

2n
Zt
nHZn

where

K0 =

∫
f(y) log p(y, θ0)dy.

The second term drops out because it has mean 0. A Taylor expansion of K gives:

K ≃ 1

n

n∑

i=1

(
log p(Yi, θ0) + (θ̂ − θ0)

ts(Yi, θ0) +
1

2
(θ̂ − θ0)

tM(Yi, θ0)(θ̂ − θ0)

)

= K0 +An + (θ̂ − θ0)
tSn − 1

2n
Zt
nĤnZt

≃ K0 +An +
1√
n
Zt
nSn − 1

2n
Zt
nHZn

where

Ĥn =
1

n

n∑

i=1

M(Yi, θ0)
P−→ H

and

An =
1

n

n∑

i=1

(l(Yi, θ0)−K0)

so that

n(K −K) ≃ nAn +
√
nZt

nSn ≃ nAn + Zt
nJZn.

For any random vector ǫ with E[ǫ] = µ and Var(ǫ) = Σ and a symmetric matrix A,

E[ǫtAǫ] = trace(AΣ) + µtAµ.

Therefore:
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nE[K −K] ≃ nE[An] + E
[
Zt
nHZn

]
= 0 + trace(HJ−1HJ−1) = trace((HJ−1)2)

from which:

n(K −K) = −trace((HJ−1)2).

If the model is correct, then H = J so that trace((HJ−1)2) = trace(I) = d and hence

n(K −K) = −d.


