
Chapter 13

Generalised Linear Models for Count Data

13.1 Introduction

We now specifically consider Generalise Linear Models for count data. We consider two models:

1. The Poisson Model

2. The Negative Binomial model.

13.1.1 Poisson

For the first, the model is: Y1, . . . , Yn are independent where Yi ∼ P (λi) (Poisson with E[Yi] = λi).

Recall that, for Y ∼ Poiss(λ),

P(Y = y) =
λy

y!
e−λ = exp {y log λ− λ− log y!}

so this is an exponential family, with sufficient statistic T (y) = y and canonical parameter η = log λ,

with log partition function A(η) = λ = eη.

We restrict attention to the canonical link:

log λi =

p∑

j=1

xijβj

where there are p known covariates; for observation Yj , the values of the covariates are xi1, . . . , xip and

the parameters β1, . . . , βp are unknown.

If Y ∼ P (λ) then E[Y ] = Var(Y ) = λ. The variance function for Poisson is therefore V (λ) = λ. If

there is sufficient data, then the variance function may be estimated and it may turn out that V̂ (λ̂)

λ̂
> 1.

If the variance is larger than the mean, then the data is overdispersed and the Poisson model is not a

good model.
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13.1.2 Negative Binomial

The negative binomial distribution introduces an additional parameter, which enables modelling of

data that is overdispersed. The accuracy of the parameter estimates decreases as more parameters are

added; the negative binomial introduces only one extra parameter. The probability function is:

P(Y = y|λ, θ) =
Γ(θ + y)

Γ(θ)

1

y!

(
λ

θ + λ

)y (
θ

θ + λ

)θ

y = 0, 1, 2, . . .

This is a generalisation of the distribution

P(Y = y|k, p) =

(
y + k − 1

k − 1

)
(1− p)ypk y = 0, 1, 2, . . .

which represents the number of failures before success k, with a sequence of independent Bernoulli

trials, with success probability p.

Replacing (y + k− 1)! by Γ(y + k) and (k− 1)! by Γ(k), noting that the resulting expressions are well

defined for non-integer k, reparametrising (by setting k = θ and λ = E[Y ]k(1−p)
p = λ), the probability

function in terms of λ and θ is obtained. We write this as: NB(λ, θ). The mean and variance are:

E[Y ] = λ Var(Y ) = λ+
λ2

θ

Note here that the overdispersion takes a particular form. When searching for a model, let V (λ)

denote the variance function. To estimate the θ parameter for a negative binomial, we estimate α in

the expression V̂ (λ) = λ+ α̂λ2. If 0 lies within a suitable confidence interval for α, then the Negative

Binomial model does not give advantage over the Poisson model.

Rewriting,

P(Y = y|λ, θ) =
Γ(θ + y)

Γ(θ)y!
exp

{
−y log

(
1 +

θ

λ

)
− θ log

(
1 +

λ

θ

)}
.

Note that this model is not an exponential family and not of the required form for a Generalised Linear

Model if θ is taken as a dispersion parameter; it only falls into the framework of a GLM if θ is fixed

and known. Nevertheless, it falls within the framework of a regular parametric family and, for i.i.d.

sampling, satisfies conditions such that
(λ̂
θ̂

)
is consistent and asymptotically normal.

For Y1, . . . , Yn independent, we consider Yi ∼ NB(λi, θ) (i.e. each with the same θ parameter). We

consider

g(λi) := log λi =

p∑

j=0

xijβj

and specialise to the setting xi0 = 1 so that we may consider
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λi = λ0ti

where log λ0 = β0 and ti = exp
{∑p

j=1 xijβj

}
.

The log likelihood function is:

logL(β, θ; y1, . . . , yn) =




n∑

j=1

log Γ(θ + yj)− n log Γ(θ)−
n∑

j=1

log yj !




−

n∑

i=1

yi log


1 +

θ

λ0 exp
{∑p

j=1 xijβj

}


− θ

n∑

i=1

log


1 +

λ0

θ
exp





p∑

j=1

xijβj






 .

Negative binomial modelling is left to the computer lab exercises. The family falls into the GLM

framework for a fixed θ, but does not fall into the GLM framework if θ is a free parameter. Nevertheless,

the parameter estimators for (θ, β) can be shown to be asymptotically normal and consistent. The

Fisher information and hence the asymptotic covariance can also be computed.

13.2 The Log-linear Model

Consider data which comes from a Poisson distribution with true rate λ. The rate λ may depend on

a number of factors. We’ll consider linear models, where all factors exert their influence linearly. For

example, let Y denote the number of days absent from work during the year. This could be related

to a number of factors, such as gender, type of work, etc ..... Then it could be reasonable to model

Y ∼ P (λ) where λ = λ(x1, . . . , xp). For n independent observations Y = (Y1, . . . , Yn)
t

where λi = E[Yi], and λ = (λ1, . . . , λn)
t, where

λi = g(xi,1, . . . , xi,p).

We consider only the canonical link;

ηi = log λi =

p∑

j=1

xijβj .

In this model, an additive increase in the independent variables will lead to a multiplicative increase

in λ.

The likelihood is given by

L =
k∏

i=1

λ
yi
i

yi!
exp{−λi}
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logL = C +

k∑

i=1

(yi log λi − λi).

The saturated model is obtained by estimating each mean by what you observe, or setting λ̃i = yi (λ̃i

denotes the ML parameter estimate for the saturated model).

logLfull = c+

k∑

i=1

(yi log yi − yi)

logLmax = c+
k∑

i=1

(yi log λ̂i − λ̂i)

where, for example, λ̂i = α̂+ β̂xi (this is the MLE for the current model).

deviance = −2 log
Lmax
Lfull

= 2
k∑

i=1

yi{log
yi

λ̂i

+ (yi − λ̂i)}.

The following proposition is useful for any linear model connected with Poisson rates.

Proposition 13.1. If the linear predictor ηi =
∑p

i=1 xijβj contains a constant term so that

η = β0 +
∑

j

xjβj ,

then the second term in the expression for deviance disappears.

Proof

logL = c+
k∑

i=1

(yi log λi − λi)

so that

∂

∂βj
logL =

k∑

i=1

(
yi

λi
− 1

)
∂λi

∂βj

=

k∑

i=1

(
yi

λi
− 1

)
∂λi

∂ηi

∂ηi

∂βj

=
k∑

i=1

(yi − λi)xij

so that
∑k

i=1(yi− λ̂i)xij = 0 for all j. Considering the constant term β0 is equivalent to the case where

x0j = 1 and this gives the result.

If the model contains a constant term, then

deviance = 2
k∑

i=1

yi log
yi

λi
= 2

k∑

i=1

Oi log
Oi

Ei
.
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13.3 Loglinear Model: Variance of Parameter Estimator

Loglinear models, like logistic regression models, are generalised linear models using the canonical link

ηi = log λi where λi = E[Yi] and ηi =
∑

j xijβj , β = (β1, . . . , βp)
t is a vector of unknown parameters.

For independent Poisson sampling, the log likelihood involves the parameters of the loglinear model

log λi =
∑

j xijβj through

logL(λ) =
∑

i

yi log λi −
∑

i

λi =
∑

i

yi(
∑

j

xijβj)−
∑

i

exp




∑

j

xijβj





using λi = exp{
∑

j xijβj}. Hence:

∂

∂βj
logL(λ) =

∑

i

yixij −
∑

i

λixij

so that, when we equate these derivatives equal to zero, using X to denote the matrix with entries xij ,

Xty = Xtλ̂.

The matrix of second partial derivatives of the loglikelihood has elements

∂2

∂βj∂βk
logL(λ) = −

∑

i

xij
∂λi

∂βk
= −

∑

i

xij

{
∂

∂βk
exp

{
∑

h

xihβh

}}
= −

∑

i

xijxikλi

so that (since this is a canonical exponential family) the Fisher information is:

I(β) = −∇β∇β logL(β) = XtDiag(λ)X.

This is estimated by:

XtDiag(λ̂)X,

where Diag(λ̂) has the elements of λ̂ on the diagonal.

Since this is an exponential family with canonical parametrisation, therefore, asymptotically:

I1/2(β)
(
β̂ML − β

)
n→+∞
−→ (d) N(0, J)

where J is the p× p identity matrix. This is shown later in the lecture.

The estimated covariance matrix of β̂ is

Cov(β̂ML) = (XtDiag(λ̂)X)−1.
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13.4 Huber Sandwich Estimators

This section gives an informal account of the so-called ‘Huber Sandwich Estimator’. We discuss the

algorithm, and mention some of the ways in which it is applied. In brief, under rather stringent

conditions, the algorithm can be used to estimate the variance of the MLE when the underlying model

is incorrect. However, the algorithm ignores bias, which may be appreciable. Thus, results are liable

to be misleading.

Let i index observations whose values are yi . Let θ ∈ R
p be a p-vector of parameters. Let

y 7→ pi(y|θ) be a positive density (or mass) function. For example, suppose that y takes only values

0 or 1 (the case dealt with most fully here) and pi(0|θ) > 0, pi(1|θ) > 0 and pi(0|θ) + pi(1|θ) = 1.

Assume θ 7→ pi(y|θ) is smooth. Let Yi be independent with density pi(.|θ) (so they are not identically

distributed). The data are modelled as observed values of Yi : i = 1, . . . , n. The likelihood function is

therefore

L(θ; y1, . . . , yn) =

n∏

i=1

pi(Yi|θ).

The log likelihood function is therefore

logL(θ) =
n∑

i=1

log pi(Yi|θ).

We can write the vector of first derivatives and matrix of second derivatives as:

∇θ logL(θ) =
n∑

i=1

gi(Yi|θ) ∇θ∇θ logL(θ) =
n∑

i=1

hi(Yi|θ)

where gi(y|θ) is the vector ∇θ log pi(y|θ) and hi(y|θ) is the matrix with components ∇θ∇θ log pi(y|θ).

Expanding a Taylor series around θ0,

logL(θ) = logL(θ0) + (θ − θ0)
t∇θ logL(θ0) +

1

2
(θ − θ0)

t∇θ∇θ logL(θ0)(θ − θ0) + . . .

We consider asymptotic results, where we ignore higher order terms. The maximum likelihood estima-

tor satisfies ∇θ logL(θ) = 0, which is (if θ0 is close to θ̂ML and taking Taylor expansion of ∇ logL(θ))

∇θ logL(θ0) +∇θ∇θ logL(θ0)(θ̂ML − θ0) = 0

giving:

θ̂ML − θ0 = (−∇θ∇θ logL(θ0))
−1∇θ logL(θ0).

Assuming the quantity − 1
n∇θ∇θ logL(θ0) can be approximated by:
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−
1

n
∇θ∇θ logL(θ0) =

1

n

n∑

i=1

hi(Yi|θ0) ≃
1

n

n∑

i=1

Eθ0 [hi(Yi|θ0)]

(which, under mild assumptions, is simply a law of large numbers)

and using

1

n
Covθ0(∇θ logL(θ0)) =

1

n

n∑

i=1

E[gi(Yi|θ0)g
t
i(Yi|θ0)]

then:

nCovθ0(θ̂ML) ≃

(
−
1

n
∇θ∇θ logL(θ0)

)
−1( 1

n
Covθ0(∇θ logL(θ0)

)(
−
1

n
∇θ∇θ logL(θ0)

)
−1

.

The covariance Covθ0(θ̂) is then estimated as

V̂ = (−A)−1B(−A)−1

where

A = ∇θ∇θ logL(θ̂) B =
n∑

i=1

gi(Yi|θ̂)g
t
i(Yi|θ̂).

The quantity V̂ is the Huber Sandwich Estimator and the square roots of the diagonal elements of V̂

are the robust standard errors or Huber-White standard errors.

13.5 Generalised Linear Models: Residuals and Diagnostics

In linear regression, diagnostics are built around residuals and residual sums of squares. For generalised

linear models, we look for quantities that can provide similar information. For generalised linear models,

there are several different kinds of residuals and hence different qwuantities that are analagous to the

residual sum of squares in linear regression analysis.

Pearson Residuals The Pearson residual is based on the idea of subtracting the mean and dividing

through by the standard deviation;

ri =
yi − µ̂i√
V (µ̂i)

.

For Bernoulli data, µ̂i = π̂i, the estimated ‘success’ probability for yi and V (π̂i) = π̂i(1− π̂i).
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Deviance Residuals The deviance residual di is based on the contribution to the log likelihood. For

example, for regression on binary data,

logLmodel =
n∑

i=1

yi log π̂i + (1− yi) log(1− π̂i).

By analogy with linear regression, each term in the sum should be equal to −1
2d

2
i . Therefore, the

deviance residual is defined as:

di = si
√
−2(yi log π̂i + (1− yi) log(1− π̂i))

where

si =

{
1 yi = 1

−1 yi = 0.

Adding the squares of the Pearson residuals gives the Pearson statistic

X2 =
n∑

i=1

r2i

while

D =
n∑

i=1

d2i = −2 logLmodel.

For a model with p fitted parameters, these could in principle be compared with χ2
n−p, but this test

does not work well in practise.

13.6 Model Checking

Model checking mimics linear regression; recall the algorithm for parameter estimation. For Gaussian

linear regression with ǫ ∼ N(0, σ2In), we used the residuals Y − µ̂ Instead of the vector Y and µ̂

considered for linear regression, we consider the adjusted dependent variate z and the linear predictor

η̂. The residual variance is replaced by an estimate of the dispersion parameter φ and the crucial hat

matrix is the hat matrix from the weighted linear regression;

H = W 1/2X(XtWX)−1XtW 1/2

where W 1/2 = diag(W
1/2
1 , . . . ,W

1/2
n ). This is simply equivalent to replacing X by W 1/2X in linear

regression. To close approximation, the vector of Pearson residuals satisfies:

V −1/2(µ̂− µ) ≃ HV −1/2(Y − µ),

where V = diag(V (µi)).
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Residual Checks Standardised deviance residuals are recommended, plotted against some function

of the fitted values. The transform should be to a constant-information scale of the error distribution.

This is the variance stabilising transform discussed in Statistics (there was an exercise in the tutorials).

For example, 2
√

µ̂ for Poisson errors and 2 sin−1(
√
µ̂) for Bernoulli errors. On this scale, the errors

should appear i.i.d..

Variance Function A plot of the absolute value of the residuals against the fitted values gives an

informal check on the adequacy of the assumed variance function. To make a formal test, the variance

function can be embedded in a suitable family. For example for Poisson, V (µ) = µ, so consider the

family µα and test H0 : α = 1 versus H1 : α 6= 1.

Link Function An informal check involves examining the plot of the adjusted dependent variable z

against η̂, the estimated linear predictor. If the link function is correct, then these points should lie,

at least approximately, on a straight line.

13.7 Asymptotic Normality of Parameter Estimators

In many situations (all that we deal with in this course), the parameter estimators are asymptotically

normal, under some minor conditions on the Fisher information. We show this for canonical link

functions. When the link is canonical,

−∇∇ logL(β) = I(β).

For the non-canonical case, −∇∇ logL(β) = I(β) +H(β), where E[H(β)] = 0. Additional conditions

are needed to establish asymptotic Gaussianity of the parameter estimators; such a condition is that

there is an α > 0 such that I(β) + H(β) − αI(β) is positive definite for all β. This is (of course)

difficult to verify in practise.

For canonical links, the conditions we require are:

1. Let In(β) denote the Fisher information of the parameter vector β based on n observations and

let λmin,n denote the smallest eigenvalue of In(β0) where β0 is the true parameter value, then

λmin,n
n→+∞
−→ +∞.

2. Let β0 denote the true parameter value. For a symmetric non-negative matrix A with decompo-

sition A = PDP t where D is diagonal, let A1/2 = PD1/2P t. where the entries of D1/2 are the

non-negative square roots of the entries of D. Let

Nn(δ) = {β : ‖I1/2n (β0)(β − β0)‖ ≤ δ}
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Then we require that, for all δ > 0:

max
β∈Nn(δ)

‖Vn(β)− I‖ −→ 0

where Vn(β) = I
−1/2
n (β0)In(β)I

−1/2
n (β0).

Note: Comparison with i.i.d. sampling In ‘Statistics’, we showed asymptotic normality for the

ML estimator of the parameter vector when the sampling was i.i.d. under general conditions, which

included canonical exponential families. In this setting, the two conditions are clearly satisfied for a

family of full rank; if I1(η) denotes the Fisher information for a single observation, then In(η) = nI1(η)

where In(η) denotes the Fisher information for n i.i.d. observations. Hence, λmin,n = nλmin,1 and,

since the family is of full rank (so that λmin,1 > 0, the first condition is clearly satisfied.

The second follows in the same way; if I1(β) is continuous in β, then Vn(β) = I
−1/2
1 (β0)I1(β)I

−1/2
1 (β0),

which does not depend on n and the continuity condition is satisfied. These two conditions are therefore

satisfied for i.i.d. sampling from a canonical exponential family of full rank.

Recall the definition of the score function, the gradient of the log-likelihood, which is zero at β̂ML. Let

Ui(β) :=
1

a(φ)V (µi)g′(µi)

then the score funtion may be written as:

sn(β) = ∇β logLn(β) =

n∑

i=1

Ui(β)(yi − µi(β))xi.

Theorem 13.2. Under the conditions above:

1.

I−1/2
n (β0)sn(β0) −→ N(0, I).

2.

I1/2n (β0)(β̂ML,n − β0) −→ N(0, I).

Proof For statement 1., we consider the moment generating function and show that it converges to

the N(0, I) moment generating function. Let v denote any unit vector; v′v = 1. Consider

Mn(δ) = E

[
exp

{
δv′I−1/2

n (β0)sn(β0)
}]

Now use a Taylor expansion and let
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βn := β0 + δI−1/2
n v.

Clearly, under the condition that λn,min → +∞, βn → β0. The Taylor expansion gives:

logLn(βn) = logLn(β0) + (βn − β0)
′s(β0) +

1

2
(βn − β0)

′In(β
∗

n)(βn − β0)

for suitable β∗

n. Taking exponentials gives:

Ln(βn) = Ln(β0) exp{δv
′I−1/2′
nr s(β0)} exp{

1

2
δ2v′Vn(β

∗

n)v}

The conditions now imply that β∗

n → β0 and Vn(β
∗

n) → I, so that:

Eβ0

[
exp

{
δv′I−1/2

n Sn(β0)
}]

−→ exp

{
1

2
δ2
}

This is the m.g.f. of a N(0, 1), hence 1. follows.

The second part (asymptotic normality of β̂) follows simply from the Taylor expansion:

0 = s(β̂n,ML) = s(β0) + In(β
∗)(β̂n,ML − β0)

for suitable β∗. Therefore

I−1/2
n (β∗)s(β0) = I1/2n (β∗)(β̂n,ML − β0)

and, after some details, the result follows.


