
Tutorial 4: Principal Component Analysis

Exercise 1: Sparrow Data

In 1898, H.C. Bumpus collected data from 49 female sparrows, which he picked up after a severe storm.

Birds 1 to 21 survived; birds 22 to 49 died. The variables measured were X1 total length, X2 alar

extent X3 length of beak and head, X4 length of humerus, X5 length of keel of sternum, X6 returns a

1 if the bird survived and a 0 otherwise. This data set is found in sparrow.dat on the course home

page.

www<-"https://www.mimuw.edu.pl/~noble/courses/MultivariateStatistics/data/spar

row.dat"

sparrow <- read.table(www,header=T,quote="\"")

View(sparrow)

A principal component analysis can be carried out quite simply using the command prcomp.

pca <- prcomp(sparrow[,-6],scale=TRUE)

print(pca)

Interpret the output.

The correlation matrix may be obtained in the following way:

> cormat <- cor(sparrow[,-6])

> cormat

The eigenvalues and eigenvectors from the correlation matrix can be obtained in the following way:

> ev <- eigen(cor(sparrow[,-6]))

> ev

Note that λ1 + λ2 + λ3 + λ4 + λ5 = 5, the sum of the trace.

The first component accounts for 3.5475
5

× 100 = 70.95% of the total variance. The other principal

components account for 10.95%, 7.70%, 6.63% and 3.77% respectively of the total variance.

Another way of looking at it is as follows: after standardisation, all the original variables have

variance 1. Therefore, the first principal component has a variance 3.616 times as much as one of the

original variables, while the second only accounts for half as much as any of the original variables. The

first principal component is clearly by far the most important.

The first principal component, in terms of the standardised variables, is

Y1 = 0.4529Z1 + 0.4481Z2 + 0.4559Z3 + 0.4749Z4 + 0.4008Z5.
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The coefficients are all nearly equal, so Y1 is an index of the size of the sparrows. Therefore, about

72.3% of the variation in the data is due to differences in the size of the sparrows.

The second principal component is

Y2 = −0.0819Z1 + 0.4020Z2 + 0.2694Z3 + 0.1627Z4 − 0.8560Z5.

This contrasts Z2, Z3 and Z4 on the one hand, with the length of the keel of the sternum Z5 on the

other. Here Y2 represents a shape difference between the sparrows.

Now let us make a scatter plot of the first two principal components. A nice package for plots and

visualisation is ggplot2. Firstly, we add the first two principal components to the ‘sparrow’ data frame

as follows:

spa <- sparrow

spa$pc1 <- pca$x[,1]

spa$pc2 <- pca$x[,2]

Using the plotting command from ggplot2:

qplot(pc2,pc1,colour=SURVIVE,data=spa)

gives a scatterplot, which illustrates that the population of birds that did not survive has more ‘extreme’

values than the population that did survive for the first two PCs.

Make a scree plot indicating the amount of the total variation explained by each PC.

Bootstrap for Confidence Intervals

We can use bootstrap methods to estimate confidence intervals. Consider the Fisher Iris data (found

in the data iris, which comes with R). Suppose we want a 95% confidence interval for the loading of

the first principal component with respect to Sepal length.

library(boot)

getPrcStat <- function (samdf,vname,pcnum){

prcs <- prcomp(samdf[1:4]) # returns matrix

return(prcs$rotation[ vname,pcnum ]) # pick out the thing we need

}

bootEst <- function(df,d){

sampledDf <- df[ d, ] # resample dataframe

return(getPrcStat(sampledDf,"Sepal.Length",1))
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}

bootOut <- boot(iris,bootEst,R=10000)

boot.ci(bootOut,type=c("basic"))

Interpret the output.

Exercise 2: Employment Country Profile Data

This example considers the percentages of people employed in nine industry sectos in various European

countries in the years from 1989 to 1995. 30 countries are considered and 9 different industry sectors

(X1 = AGR: agriculture forestry and fishing, X2 = MIN: mining and quarrying, X3 = MAN: manu-

facturing, X4 = PS: power and water supplies, X5 = CON: construction, X6 = SER: services, X7 =

FIN: finance, X8 = SPS: social and personal services and X9 = TC: transport and communications.

In addition, the countries were classified as to whether they belonged to the EU, or EFTA, or were

Eastern European, or ‘other’. The data is from 1995 and uses the classifications that were appropriate

then. For ‘USSR’ read ‘former USSR’, for ‘Yugoslavia’ read ‘former Yugoslavia’, etc ... The data set

is found on the course home page under employment.csv.

www<-"https://www.mimuw.edu.pl/~noble/courses/MultivariateStatistics/data/empl

oyment.csv"

employment <- read.csv(www)

Firstly, the sample correlation matrix for the standardised variables for the nine industries may be

obtained:

> cormat2 <- cor(employment[,3:11])

> cormat2

The eigenvalues and eigenvectors may be obtained by:

> ev2 <- eigen(cormat2)

> ev2

The eigenvalues, with the percentages of the total of nine in parentheses, are

3.112(34.6%), 1.809(20.1%), 1.496(16.6%),

1.063(11.8%), 0.710(7.9%), 0.311(3.5%), 0.293(3.3%), 0.204(2.3%), 0.000(0.0%).

The last value is necessarily zero, because the data is percentages of the workforce, which necessarily

adds up to 100. Therefore, although there are 9 variables, there are only 8 free variables. This

information may be obtained as follows:
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> pca2 <- prcomp(employment[,3:11],scale = TRUE)

> summary(pca2)

It is a matter of judgement whether or not to use 4 or 5 components. The first 4 components account

for 83% of the variation; the first 5 account for over 90% of the variation. From the eigenvectors,

Z1 = 0.51(AGR) + 0.37(MIN)

−0.25(MAN)− 0.31(PS)− 0.22(CON)− 0.38(SER)− 0.13(FIN)− 0.42(SPS)− 0.21(TC),

Z2 = −0.02(AGR) + 0.00(MIN)

+0.43(MAN) + 0.11(PS)− 0.24(CON)− 0.41(SER)− 0.55(FIN) + 0.05(SPS) + 0.52(TC).

and the others similarly.

The first component contrasts (AGR) and (MIN) on the one hand with (MAN), (PS), (CON), (SER),

(FIN), (SPS) and (TC) on the other hand.

The second component gives little or no weight to (AGR), (MIN), (SPS) and constrasts (MAN), (PS),

(TC) with (CON), (SER), (FIN).

Interpretations for the other components may be derived similarly.

While PC1 and PC2 are uncorrelated when taken with respect to the whole data set, ignoring the

classifications, it is interesting to plot PC1 against PC2, using different symbols for the four categories

(Western EU, EFTA, Eastern European, Other). When prcomp is used and the results stored in pca,

the principal component values are stored under pca$x. They may be added to the data frame in the

following way:

> emp <- employment

> emp$pc1 <- pca2$x[,1]

> emp$pc2 <- pca2$x[,2]

> library("ggplot2")

> qplot(pc2,pc1,colour=group,data=emp)

The package GPArotation can make a varimax rotation.

> fit <- principal(emp[,3:11], nfactors=4, rotate="varimax")

> fit

Verify the results and the interpretation found in the lecture.
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Exercise 3

Generate a random sample of size 100 from a three-dimensional Gaussian distribution, where one

variable has a very large variance compared with the other two. Carry out a PCA on the data using

the covariance matrix and then using the correlation matrix. In each case, find the eigenvalues and

eigenvectors, draw the scree plot, compute the PC scores and plot all pairwise PC scores in a matrix

plot. Compare results.

The GGally package enables the pairwise plots of principal components; the ggpairs. You’ll get an

idea of how it works here:

library(GGally)

library(ggplot2)

data(flea)

ggpairs(flea, columns = 2:4, ggplot2::aes(colour=species))

Exercise 4

Carry out a PCA on Fisher’s iris data. The data consists of 50 observations on each of three species

of iris: Iris setosa, Iris versicolor and Iris virginica. The four measured variables are sepal length, sepal

width, petal length and petal width. Ignore the species labels. Compute the PC scores and plot all

pairwise sets of PC scores in a matrix plot. Explain your results, taking into consideration the species

labels.

Canonical Correlation

Exercise 5: Butterfly Data Work through the butterfly example in the lecture note (where the

two sets of variables are geographical and genetic). The R code is in the script accompanying the

tutorial. The data in the butterfly file can be used to illustrate the procedure. There are 16 colonies

of the butterfly Euphydryas editha in California and Oregon. These vary with respect to four environ-

mental variables (altitude, annual precipitation, annual maximum temperature and annual minimum

temperature) and six genetic variables (percentages of six phosphoglucose-isomerase (Pgi) genes as

determined by electrophoresis). The data may be found in butterfly.dat on the course home page.

Significant relationships are of interest, because they may indicate that the butterfly has adapted to

local environments.

Since there are fewer environment variables, the environmental variables have to be treated as X

and the gene variables as Y . But all the gene frequencies cannot be used, since they are percentages

and add up to 100.
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Therefore, the 1.30 gene frequency may be omitted. It also seemed a good idea to combine the 0.40

and 0.60 gene fequencies. Thus the X variables considered are X1 altitude, X2 annual precipitation,

X3 annual maximum temperature, X4 annual minimum temperature and the Y variables considered

are Y1 frequency of 0.4 and 0.6 gene, Y2 frequency of 0.8 gene, Y3 frequency of 1.0 gene, Y4 frequency

of the 1.16 gene.

FIRST these columns are standardised, because it is only correlations that are of interest here, and

the rest of the analysis is performed using the standardised variables.

NEXT the correlation matrix C for the standardised variables is obtained (which is the same as

the correlation matrix for the raw variables) and is partitioned into C11, C22, C12 as described earlier.

NEXT find the eigenvalues λ1, λ2, λ3, λ4 and eigenvectors b1, b2, b3, b4 which solve the eigenvalue

problem

(C
−1/2
22

C21C
−1

11
C12C

−1/2
22

− λjI4)bj = 0

where I4 denotes the 4× 4 identity matrix. Then

C−1

22
Qt = Lt

2 = (b1, b2, b3, b4).

Here λj = ρ2j .

The canonical correlations are given by:

> canon$corr

The canonical variables U = HC
−1/2
11

X and V = QC
−1/2
22

Y are found by:

> canon

The correlations are between observed variables and canonical variables are known as the canonical

loadings.

To perform tests of the significance of Canonical Correlation, try:

> canon$chisq

To ‘look up’ the chi squared table,

> pchisq(canon$chisq,canon$df,ncp=0)

Although the canonical correlations seem quite large, Bartlett’s test does not reject the null hypothesis

(that they are insignificant) because the sample size is rather small. It is found that X2 = 18.41 with

16df . The probability of obtaining a value greater than this is 0.30. This is not sufficiently small to

reject the null hypothesis.
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Nevertheless, the canonical correlation provides useful pointers at a descriptive level. U1 is mainly

a contrst between the maximum and minimum temperatures on the one hand and precipitation on the

other. V1 has moderate to large coefficients for Y1, Y2 and Y4, with a small negative coefficient for Y3.

It appears that the 0.4, 0.6, 0.8 and 1.16 genes tend to be frequent in colonies with high temperatures

and low precipitation.

Exercise 6: Penguin Data Start by loading tidyverse. We’ll use this for plots. We’ll illustrate

canonical correlation using the cancor() function in the base R stat package. The data is found in

palmer_penguins.csv in the course data directory.

From this data set, prepare two datasets for CCA. Omit species/island (we’ll see later how the

canonical variables can be used for classification). Prepare two data sets for Canonical Correlation

Analysis (CCA). Let X (the first data set) be bill_depth_mm and bill_length_mm and Y (the second

data set) be flipper_length_mm and body_mass_g.

Perform a CCA. What are the coefficients (loadings) for the CCA? What are the correlations

between the canonical variables in each pair? Remember to use scaled variables for the CCA. The

relevant library is CCA and the function for canonical correlation is cancor().

Now separate the pairs of canonical variates for each species. Verify that the correlation between

each pair is the same when we take it species by species as when we take it overall.

The mutate command keeps the current columns of a data frame the same and adds new columns.

Hence the mutate command used in the script adds columns we have created to the data frame.

Make a scatter plot of the first pair of canonical covariates.

Plot the first canonical variate of X against species.

Plot the first canonical variate of Y against species.

Make a scatter plot of the first pair of canonical variates, coloured by species.

Make a scatter plot of the second pair of canonical variates, coloured by species.

What are the correlations between the pairs of canonical variables?

Exercise 7: Psychological Traits and Academic Features The data in mmreg.csv on the course

page contains 8 variables. The first three measure psychological features, while the remaining 5 relate

to academic ability. We want to see how these two sets are related.

Perform a canonical correiation analysis.

Now test to see how many of the canonical correlations are significant. This does not seem to be

available in any package, hence the test has to be programmed by hands. A script is available in the

script to go with the tutorial. Perform and report the significance tests.

Finally, standardize the canonical coefficients for psych and acad.
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