
Tutorial 1: Kernel Density Estimation: Lab

The command density (which is contained in the basic stats package and does not need further

installation). Computation of UCV, BCV, SJ window width estimators is found in the MASS package:

> install.packages("MASS")

if you haven’t already done this.

Exercise 1: Old Faithful Geyser Data The Old Faithful geyser data comes with the R installa-

tion. The various window widths are computed as follows (activate MASS first).

ucv(geyser$duration)

bcv(geyser$duration)

width.SJ(geyser$duration)

width.SJ(geyser$duration, method = "dpi")

Here ‘dpi’ stands for ‘direct plug in’. The default method is ‘ste’ which stands for ‘solve the equation’.

To get a density estimate plot for geyser$durations, use (for example):

d <- density(geyser$duration, ucv(geyser$duration))

plot(d)

• Make a histogram of the duration variable.

• Now try kernel density estimation, using a gaussian kernel. Which of the methods (UCV, BCV,

Sheather-Jones plug in) gives the largest magnitude of the left hand mode compared with the

right?

Exercise 2: Claw Density This is a good practical test of the efficiency of density estimators. We

generate random numbers from a density with spikes - and find out the size of sample that is necessary

to detect the spikes.

Generate n observations from the claw density

p(x) = 0.5N(0, 1) + (0.1)
4∑

k=0

N

(
k

2
− 1, (0.1)2

)

and estimate that density using a kernel density estimator. Take n = 100, 200, 300 and 1000. Compare

performances of UCV, BCV, SJPI window-width estimators for each simulation. Which window-width

estimation best fits the claws?
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Notes rnorm generates samples of normal observations (check it using help). sample generates a

random sample from a defined set of values. Check the syntax and see how to generate numbers

from 0, 1, 2, 3, 4, 5 with probabilities 0.1, 0.1, 0.1, 0.1, 0.1, 0.5 respectively. The ifelse command may

be useful for generating from the claw density.

R Commands Recall that normal random numbers are generated by rnorm; look it up by typing

?rnorm. You can (for example) generate 50 observations from a N(0, 1) and put them into column x

by typing

x<-rnorm(50,0,1)

For the exercise, generate n random numbers from {0.1, 2, 3, 4, 5} with probabilities (0.1, 0.1, 0.1, 0.1, 0.1, 0.5).

This may be done as follows:

> x<-c(0,1,2,3,4,5)

> y<-sample(x,50,replace=TRUE,c(0.1,0.1,0.1,0.1,0.1,0.5))

x is the vector of values to be sampled from, we want a sample size of 50, the probabilities are listed

in the last argument (look up ?sample). One way to get the claw density is:

> z<-rnorm(50,0,1)

> z1<-ifelse(y<5,(y/2)-1+0.1*z,z)

Here z is a sample of 50 N(0, 1) observations; the ifelse gives two options. Firstly, the random

number for y is 0, 1, 2, 3 or 4 on the ‘if’ side and if y = 5 on the ‘else’ side.

For k = 0, 1, 2, 3, 4, you generate an observation from N(k2 − 1, (0.1)2) (standard deviation is 0.1) and

for k = 5 you generate an observation from N(0, 1).

Exercise 3: Hidalgo Stamp Data Apply the kernel density estimator with kernel corresponding

to Rosenblatt’s density estimator to the 1872 Hialgo Stamp Data. (This is the rectangular kernel;

K(x) = 1[− 1

2
, 1
2
](x)). The data is found in Hidalgo1872.xls in the course data directory. Alternatively,

it is in the Hidalgo1872.rda file, which is an R file.

What do you notice about the smoothness of the resulting density estimate?

Exercise 4: U.S. Highway Data The ushighways data (found in ushighways.txt in the course

data directory) consists of the approximate length (in miles) of all 212 U.S. 3-digit interstate highways

(spurs and connectors). Compare the kernel density estimates for these data using UCV, BCV and

SJPI window-width estimators.
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Projection Pursuit Density Estimation Exercise 5: Kernel regression

In the standard formulation of the regression problem, the mean of a response variable Y is related

to one or more covariates X1, . . . , Xd through some function f(.), which needs to be estimated. That

is,

Y = f(X) + ǫ

where f is a systematic component and ǫ a random error.

Generating Data We generate data in which the underlying regression function is given by

f(x) = 3 sin(2x) + 10(x− 5)1(x > 5),

where 1 is the indicator function. This is a sine function, with a kink at the point x = 5, after which

a steep linear component is added.

We take the error or residual distribution as:

T + (G− 1)(X − 5)2 + 3)

where T ∼ t3 and G ∼ Γ(2, 2). We sample 5000 pairs where X
10 ∼ Beta(2, 2).

This can be done using the following code. The package FKSUM is very useful for projection pursuit.

Install this package and see what it does. In particular, look up the fk_sum command. Here fk stands

for fast kernel.

library("FKSUM")

set.seed(1)

n <- 5000

x <- rbeta(n, 2, 2) * 10

fx <- 3 * sin(2 * x) + 10 * (x > 5) * (x - 5)

y <- fx + rt(n, 3) + (rgamma(n, 2, 2) - 1) * ((x - 5)^2 + 3)

xeval <- seq(0, 10, length = 1000)

par(mfrow = c(1, 2))

for (h in c(0.25, 0.05)) {

plot(x, y, xlab = "x", ylab = "y")

fhat <- fk_sum(x, y, h, x_eval = xeval) / fk_sum(x, rep(1, n),

h, x_eval =

xeval)

lines(xeval, fhat, col = 2, lwd = 2)

lines(xeval, 3 * sin(2 * xeval) + 10 * (xeval > 5) * (xeval -
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5),

col = 3, lwd = 2)

}

The true function is shown in green, and the estimates in red. The larger bandwidth oversmooths

and does not accurately capture the local extrema of the function (left). On the other hand, the smaller

bandwidth is accurate over much of the range, but exhibits increased variation in the tails,

Now we apply the fk_regression function and see what it does. We take two choices of bandwidth -

both of which give better estimators. The routine used is the Nadaraya-Watson estimator.

par(mfrow = c(1, 2))

plot(fk_regression(x, y, type = "NW"))

lines(xeval, 3 * sin(2 * xeval) + 10 * (xeval > 5) * (xeval - 5),

+ col = 3, lwd = 2)

plot(fk_regression(x, y, type = "NW", h = "cv"))

lines(xeval, 3 * sin(2 * xeval) + 10 * (xeval > 5) * (xeval - 5),

+ col = 3, lwd = 2)

Exercise 6: Projection Pursuit, Components of a Density We start with an n×d data matrix

x, which consists of n independent instantiations of a d-variate random vector. We’ll take d = 4 and

n = 2000.

Recall the idea of projection pursuit is to find interesting directions, were ‘interest’ is measured in

terms of a projection index I(p).

We’ll use the implementation in the package FKSUM where FK stands for ‘fast kernel’. The

projection index here will be entropy (so we’re looking for directions as close as possible to Gaussian

- which maximises entropy).

We take successive rays orthogonal to each other.

As indicated in the lecture, we start by ‘whitening’ the data matrix (i.e. make it mean 0 with

covariance matrix I by:

x← (x− µ̂1′)Λ̂−1/2Û

where µ̂ denotes the column averages, Λ̂ is the diagonal matrix containing the estimated eigenvalues of

the covariance matrix (listed from highest to lowest) and Û is the orthonormal matrix of eigenvectors

of the covariance matrix.

The routine we follow does not use the iterative fitting sequence described in the lectures. Rather, the

one-dimensional marginals along a direction p = xw (where w is a unit d-vector) is:

fp(x) =
1

nh

n∑

j=1

K

(
pi − x

h

)
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for x ∈ R, pi =
∑d

j=1 xijwj .

The aim is to find a suitable d×d′ projection matrix W, where d′ represents the number of components

of interest. The first component maximises the entropy.

Subsequent components maximise the entropy subject to the constraint of being orthogonal to the

components that have already been computed. We restrict the projection matrix W to matrices of

the form W = Λ−1/2UQ where Λ is diagonal, with the eigenvalues of the sample covariance matrix

(so that Λ = I after whitening), U is a d× d′ matrix whose columns are the first d′ eigenvectors of CZ

(so that U = I after whitening) and Q is d′ × d′ orthonormal. Effectively, after whitening, we look for

W in the space of orthonormal matrices.

The ProDenICA package conveniently gives functions for simulating data from some standard den-

sities and also computes the Amari distance.

We consider the following formulation of projection pursuit. Let x be an n× d data matrix, which

is considered to be n instantiations of a random d-vector. We are trying to find the projection matrix

W

Generate a set of data with independent components. Next, apply a randomly generated linear

transformation to the data and apply various ICA (independent component analysis) methods.

Sample 2000 points with 4 components. Within each experiment, take a random combination of the

18 densities produced by the rjordan() function, which are listed according to the letters a to r.

The following produces a data set where,

• Firstly, we generate 2000 independent random 4-vectors. Each component from the 4-vector

comes from a different probability distribution. These are the 4 components which we try to

estimate. This is the 2000× 4 matrix X.

• We then randomly mix them, using a 4 × 4 mixing matrix, which we denote R. to obtain

Xx = XR. The matrix Xx is our data matrix. The independent components are in the matrix

X.

• We now try to recover these components.

We use the function fk_ICA() (fast kernel Independent Component Analysis) to estimate the inde-

pendent components.

library(ProDenICA)

set.seed(1)

X <- matrix(0, 2000, 4)
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densities <- sample(letters[1:18], 4)

for (i in 1:4) X[,i] <- rjordan(densities[i], 2000)

R <- mixmat(4)

Xx <- X %*% R

model <- fk_ICA(Xx, 4)

par(mfrow = c(4, 3), mar = c(0, 0, 3, 0))

for (i in 1:4) {

plot(fk_density(Xx[,i]), main = paste("Mixed component", i),

xaxt = "n", yaxt = "n")

plot(fk_density(model$S[,i]), main = paste("Estimated component",

i),

xaxt = "n", yaxt = "n")

plot(fk_density(X[,i]), main = paste("True component", i),

xaxt = "n", yaxt = "n")

}

You should find that under ‘mixed component’ there doesn’t seem to be much that is discernible. The

observations for ‘mixed component’ are the mixtures.

You should also find that the four estimated components do correspond quite well to the four true

components, although they won’t appear in the order listed (so that, for example, the first estimated

component may correspond to the third true component).

Find out which densities are available under rjordan; you can try this with several choices of input

densities, do a mixture and see how well the routine recovers the true components.
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