Chapter 8

Support Vector Machines

Assume we have a learning set $\mathcal{L}=\left\{\left(x_{i}, y_{i}\right): i=1, \ldots, n\right\}$ where $x_{i} \in \mathbb{R}^{r}$ (and r-variate observation, r real valued random variables) and $y_{i} \in\{-1,1\}$. Here y_{i} is a class variable, two classes, which we label +1 and -1 . We would like to construct a function $f: \mathbb{R}^{r} \rightarrow \mathbb{R}$ such that $C(x)=\operatorname{sign}(f(x))$ is a classifier. The separating function f then classifies a test set \mathcal{T} into two classes, Π_{+}and Π_{-}depending on whether $f(x)$ is positive or negative.

8.1 Linear Separability

The learning set \mathcal{L} is linearly separable if and only if there is a $\beta_{0} \in \mathbb{R}$ and a $\beta \in \mathbb{R}^{r}$ such that $f(x)=\beta_{0}+x^{\prime} \beta$ separates \mathcal{L}; for each $\left(y_{i}, x_{i}\right) \in \mathcal{L}, f\left(x_{i}\right)>0$ if $y_{i}=1$ and $f\left(x_{i}\right)<0$ if $y_{i}=-1$. The hyperplane $f(x)=0$ is said to separate \mathcal{L}.

If such a f exists then, by rescaling, we can find β_{0} and β such that

$$
\begin{cases}\beta_{0}+x_{i}^{\prime} \beta \geq+1 & y_{i}=+1 \\ \beta_{0}+x_{i}^{\prime} \beta \leq-1 & y_{i}=-1\end{cases}
$$

Now consider the two hyperplanes $H_{+1}:\left(\beta_{0}-1\right)+x^{\prime} \beta=0$ and $H_{-1}:\left(\beta_{0}+1\right)+x^{\prime} \beta=0$. Points of \mathcal{L} that lie in either H_{+1} or H_{-1} are said to be support vectors.

If x_{-1} lies on H_{-1} and x_{+1} lies on H_{+1} then

$$
\left\{\begin{array}{l}
\left(x_{+1}^{\prime}-x_{-1}^{\prime}\right) \beta=2 \\
\beta_{0}=-\frac{1}{2}\left(x_{+1}^{\prime}+x_{-1}^{\prime}\right) \beta .
\end{array}\right.
$$

The perpendicular distances of the hyperplane $\beta_{0}+x^{\prime} \beta=0$ to the points x_{-1} and x_{+1} are:

$$
d_{-}=\frac{\left|\beta_{0}+x_{-1}^{\prime} \beta\right|}{\|\beta\|}=\frac{1}{\|\beta\|} \quad d_{+}=\frac{\left|\beta_{0}+x_{+1}^{\prime} \beta\right|}{\|\beta\|}=\frac{1}{\|\beta\|} .
$$

The margin of the separating hyperplanes is: $d=\frac{2}{\|\beta\|}$. Note that:

$$
y_{i}\left(\beta_{0}+x_{i}^{\prime} \beta\right) \geq+1, \quad i=1, \ldots, n
$$

The problem is to find the optimal separating hyperplane, i.e. maximise the margin. That is:

$$
\begin{array}{ll}
\operatorname{minimise} & \frac{1}{2}\|\beta\|^{2} \\
\text { subject to } & y_{i}\left(\beta_{0}+x_{i}^{\prime} \beta\right) \geq 1 \quad i=1, \ldots, n
\end{array}
$$

This is a convex optimisation problem, hence we have a global minimum. The problem is solved using the Lagrange multiplier technique: set

$$
\begin{aligned}
& F_{p}\left(\beta_{0}, \beta, \alpha\right)=\frac{1}{2}\|\beta\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\beta_{0}+x_{i}^{\prime} \beta\right)-1\right) \\
& \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \quad \alpha_{i} \geq 0
\end{aligned}
$$

where α is the n-vector of Lagrange coeffficients. The Lagrange method is to find a global minimium for fixed α and then choose the value of α such that the constraint is satisfied. This boils down to:

$$
\left\{\begin{array}{l}
\frac{\partial F_{P}}{\partial \beta_{0}}=-\sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
\frac{\partial F_{P}}{\partial \beta}=\beta-\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}=0 \\
y_{i}\left(\beta_{0}+x_{i}^{\prime} \beta\right)-1 \geq 0 \\
\alpha_{i} \geq 0 \\
\alpha_{i}\left(y_{i}\left(\beta_{0}+x_{i}^{\prime} \beta\right)-1\right)=0
\end{array}\right.
$$

for $i=1, \ldots, n$.
This may be expressed in the dual form; the minimiser $\left(\beta_{0}^{*}, \beta\right)$ satisfies:

$$
\sum_{i=1}^{n} \alpha_{i} y_{i}=0 \quad \beta^{*}=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}
$$

and, putting this into so the equation for F_{P} gives the dual:

$$
\begin{aligned}
F_{D}(\alpha) & =\frac{1}{2}\left\|\beta^{*}\right\|-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\beta_{0}^{*}+x_{i}^{\prime} \beta^{*}\right)-1\right) \\
& =\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(x_{i}^{\prime} x_{j}\right) .
\end{aligned}
$$

The primal variables have been removed from the problem; F_{D} is referred to as the dual functional of the optimisation problem. The problem may therefore be expressed as:

$$
\begin{array}{ll}
\text { maximise } & F_{D}(\alpha)=\mathbf{1}_{n}^{\prime} \alpha-\frac{1}{2} \alpha^{\prime} H \alpha \\
\text { subject to } & \alpha \geq 0, \quad \alpha^{\prime} y=0
\end{array}
$$

where $y=\left(y_{1}, \ldots, y_{n}\right)^{\prime}, H$ is an $n \times n$ matrix with entries: $H_{i j} y_{i} y_{j}\left(x_{i}^{\prime} x_{j}\right)$. Let $\widehat{\alpha}$ solve the optimisation problem, then

$$
\widehat{\beta}=\sum_{i=1}^{n} \widehat{\alpha}_{i} y_{i} x_{i}
$$

gives the optimal vector of weights. For $\widehat{\alpha}_{i}>0$, we have $y_{i}\left(\beta_{0}^{*}+x_{i}^{\prime} \beta^{*}\right)=1$ and x_{i} is a support vector; for all observations that are not support vectors, $\widehat{\alpha}_{i}=0$. Let $s v \subset\{1, \ldots, n\}$ be the subset of indices that identify support vectors, then any optimal β is:

$$
\widehat{\beta}=\sum_{i \in s v} \widehat{\alpha}_{i} y_{i} x_{i} .
$$

The primal and dual optimisation problems yield the same solution, the dual is easier to compute. The optimal bias $\widehat{\beta}_{0}$ is not determined explicitly from the optimisation problem, but is computed from $\alpha_{i}\left(y_{i}\left(\beta_{0}+x_{i}^{\prime} \beta\right)-1\right)=0$ for each support vector and averaging the results.

$$
\widehat{\beta}_{0}=\frac{1}{|s v|} \sum_{i \in s v}\left(\frac{1-y_{i} x_{i}^{\prime} \widehat{\beta}}{y_{i}}\right)
$$

Hence the optimal hyperplane is:

$$
\widehat{f}(x)=\widehat{\beta}_{0}+x^{\prime} \widehat{\beta}=\widehat{\beta}_{0}+\sum_{i \in s v} \widehat{\alpha}_{i} y_{i}\left(x_{i}^{\prime} x_{i}\right)
$$

The classification rule is:

$$
C(x)=\operatorname{sign}(\widehat{f}(x))
$$

For $j \in s v$,

$$
y_{j} \widehat{f}\left(x_{j}\right)=y_{j} \widehat{\beta}_{0}+\sum_{i \in s v} \widehat{\alpha}_{i} y_{i} y_{j}\left(x_{j}^{\prime} x_{i}\right)=1
$$

so that the squared-norm of the weight vector $\widehat{\beta}$ satisfies:

$$
\|\widehat{\beta}\|^{2}=\sum_{i \in s v} \sum_{j \in s v} \widehat{\alpha}_{i} \widehat{\alpha}_{j} y_{i} y_{j}\left(x_{i}^{\prime} x_{j}\right)=\sum_{j \in s v} \widehat{\alpha}_{j} y_{j} \sum_{i \in s v} \widehat{\alpha}_{i} y_{i}\left(x_{i}^{\prime} x_{j}\right)=\sum_{j \in s v} \widehat{\alpha}_{j}\left(1-y_{j} \widehat{\beta}_{0}\right)=\sum_{j \in s v} \widehat{\alpha}_{j}
$$

8.2 Linearly Non-Separable

Now suppose that observations are noisy, so that they do not necessarily split into two distinct classes; there is some overlap. We introduce the concept of a non-negative slack variable ξ_{i} for each observation $\left(x_{i}, y_{i}\right)$. Let $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)^{\prime}$. The constraint now becomes:

$$
y_{i}\left(\beta_{0}+x_{i}^{\prime} \beta\right)+\xi_{i} \geq 1 \quad i=1,2, \ldots, n
$$

We now find the optimal hyperplane that controls both the margin $\frac{2}{\|\beta\|}$ and some computationally simple function of the slack variables such as

$$
g_{\sigma}(\xi)=\sum_{j=1}^{n} \xi_{j}^{\sigma}
$$

The usual values are either $\sigma=1$ or $\sigma=2$. We consider $\sigma=1$ (the other case can be done as an exercise). The 1-norm soft-margin optimisation problem is to find β_{0}, β and ξ to:

$$
\begin{array}{lc}
\operatorname{minimise} & \frac{1}{2}\|\beta\|^{2}+C \sum_{j=1}^{n} \xi_{i} \\
\text { subject to } & \xi_{i} \geq 0, \quad y_{i}\left(\beta_{0}+x_{i}^{\prime} \beta\right) \geq 1-\xi_{i} \quad i=1, \ldots, n
\end{array}
$$

where C is a cost parameter, the cost of misclassification. The primal function for the Lagrange multiplier problem is:

$$
F_{P}\left(\beta_{0}, \beta, \xi, \alpha, \eta\right)=\frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\beta_{0}+x_{i}^{\prime} \beta\right)-\left(1-\xi_{i}\right)\right)-\sum_{i=1}^{n} \eta_{i} \xi_{i}
$$

where $\alpha \geq 0$ and $\eta \geq 0$. For fixed α and η, differentiating with respect to β_{0}, β and ξ gives:

$$
\left\{\begin{array}{l}
\frac{\partial F_{P}}{\partial \beta_{0}}=-\sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
\frac{\partial F_{P}}{\partial \beta}=\beta-\sum_{i=1} \alpha_{i} y_{i} x_{i}=0 \\
\frac{\partial F_{P}}{\partial \xi_{i}}=C-\alpha_{i}-\eta_{i}=0 \quad i=1, \ldots, n
\end{array}\right.
$$

so that

$$
\sum_{i=1}^{n} \alpha_{i} y_{i}=0 \quad \beta^{*}=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} \quad \eta_{i}=C-\alpha_{i}
$$

The solution to the optimisation problem is obtained by fixing α and η so that the constraints are satisfied.

The dual functional may be obtained by plugging in appropriately:

$$
F_{D}(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(x_{i}^{\prime} x_{j}\right)
$$

which is the same as for linear separated.

We now have the Karush-Kuhn-Tucker conditions:

$$
\begin{aligned}
y_{i}\left(\beta_{0}+x_{i}^{\prime} \beta\right)-\left(1-\xi_{i}\right) & \geq 0 \\
\xi_{i} & \geq 0 \\
\alpha_{i} & \geq 0 \\
\eta_{i} & \geq 0 \\
\alpha_{i}\left(y_{i}\left(\beta_{0}+x_{i}^{\prime} \beta\right)-\left(1-\xi_{i}\right)\right) & =0 \\
\xi_{i}\left(\alpha_{i}-C\right) & =0
\end{aligned}
$$

A slack variable ξ_{i} can be zero if and only if $\alpha_{i}=C$. The last two equations are used to compute the optimal bias β_{0}.

As before, the dual problem can be written as: find α to:

$$
\begin{array}{ll}
\text { maximise } & F_{D}(\alpha)=\mathbf{1}_{n}^{\prime} \alpha-\frac{1}{2} \alpha^{\prime} H \alpha \\
\text { subject to } & \alpha^{\prime} y=0, \quad 0 \leq \alpha \leq C \mathbf{1}_{n} .
\end{array}
$$

The feasible region is the intersection of $\alpha^{\prime} y=0$ with the box constraint $0 \leq \alpha \leq C \mathbf{1}_{n}$. As before, if $\widehat{\alpha}$ solves the optimisation problem, then

$$
\widehat{\beta}=\sum_{i \in s v} \widehat{\alpha}_{i} y_{i} x_{i} .
$$

8.3 NonLinear Support Vector Machines

The observations x_{i} only enter into the dual problem via their inner products $\left\langle x_{i}, x_{j}\right\rangle=x_{i}^{\prime} x_{j}$ and this observation is the crux of extending to nonlinear SVMs.

Let $\Phi: \mathbb{R}^{r} \rightarrow \mathcal{H}$ be a linear mapping from observation space to a space known as feature space. This may be a Hilbert space, which is what we will use. Let

$$
\Phi\left(x_{i}\right)=\left(\phi_{1}\left(x_{1}\right), \ldots, \phi_{N(\mathcal{H})}\left(x_{1}\right)\right)
$$

where $N(\mathcal{H})$ is the dimension of \mathcal{H}. The transformed sample is $\left(\Phi\left(x_{i}\right), y_{i}\right), i=1, \ldots, n$. If we substitute $\Phi\left(x_{i}\right)$ for x_{i}, we need the inner products $\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle$.

8.3.1 The Kernel Trick

We compute these inner products using a non-linear kernel function $K\left(x_{i}, x_{j}\right)=\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle$. We require a kernel to satisfy:

- $K(x, y)=K(y, x)$ (symmetry)
- $|K(x, y)|^{2} \leq K(x, x) K(y, y)$ (derived from Cauchy Schwartz inequality)

We would like a reproducing kernel; that is, for any function $f \in \mathcal{H}$

$$
\langle f(.), K(x, .)\rangle=f(x)
$$

Note, if K is a reproducing kernel, then $\langle K(x,),. K(y,)\rangle=.K(x, y)$.

8.3.2 Examples of Kernels

Some standard exaimples are:

- Polynomial of degree $d: K(x, y)=(\langle x, y\rangle+c)^{d}$
- Gaussian radial: $K(x, y)=\exp \left\{-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right\}$
- Laplace $K(x, y)=\exp \left\{-\frac{1}{\sigma}\|x-y\|\right\}$
- Thin-plate spline $K(x, y)=\left(\frac{\|x-y\|}{\sigma}\right)^{2} \log \left(\frac{\|x-y\|}{\sigma}\right)$
- Sigmoid $K(x, y)=\tanh (a\langle x, y\rangle+b)$

For example, consider $r=2$ and $d=2, x=\left(x_{1}, x_{2}\right)^{\prime}, y=\left(y_{1}, y_{2}\right)^{\prime}$ and

$$
K(x, y)=(\langle x, y\rangle+c)^{2}=\left(x_{1} y_{1}+x_{2} y_{2}+c\right)^{2}=\langle\Phi(x), \Phi(y)\rangle
$$

Here

$$
\Phi(x)=\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1}, x_{2}, \sqrt{2 c} x_{1}, \sqrt{2 c} x_{2}, c\right)^{\prime}
$$

The function $\Phi(x)$ consists of six features and $\mathcal{H}=\mathbb{R}^{6}$.

Let K be a kernel and suppose that the observations of \mathcal{L} are linearly separable in the feature space corresponding to kernel K. Then the dual optimisation problem is as before, but with the matrix H :

$$
H_{i j}=y_{i} y_{j} K\left(x_{i}, x_{j}\right)=y_{i} y_{j} K_{i j}
$$

Since K is a kernel, the matrix K defined by entries $K_{i j}$ is non-negative definite so that the optimisation problem can be solved as before.

The non-separable setting (for the dual problem) also follows through as before.

Grid search for parameters A reproducing kernel Hilbert space is a Hilbert space such that there is a Kernel K satisfying $f(x)=\left\langle f, K_{x}\right\rangle$. Consider the Gaussian reproducing kernel. We need to determine two parameters: C, the cost of violating the constraints and the parameter $\gamma=\frac{1}{\sigma^{2}}$. The parameter C for the box constraints is usually chosen by searching through a wide range of possible values using cross validation (usually 10 -fold) on \mathcal{L} An initial grid rather crude grid of possible values for γ, say $0.00001,0.001,0.01,0.1,1$ can be used to get a 'ball park' figure and then refined. In this way, we make a two-way grid for (C, γ).

8.3.3 SVM as a Regularisation Method

Let $f \in \mathcal{H}_{K}$, the reproducing Hilbert space associated with K. Let $\|f\|_{\mathcal{H}_{K}}^{2}$ denote the squared norm of f in \mathcal{H}_{K}. We consider the hinge loss function:

$$
L=\left(1-y_{i} f\left(x_{i}\right)\right)_{+}
$$

Note that $L=0$ if $y_{i} f\left(x_{i}\right) \geq 1$. That is, $L=0$ for $y_{i}=1$ and $f\left(x_{i}\right) \geq 1$ or $y_{i}=-1$ and $f\left(x_{i}\right)<-1$ (the situations where $f\left(x_{i}\right)$ gives the correct classification).

Consider the problem of finding $f \in \mathcal{H}_{K}$ to:

$$
\text { minimise } \quad \frac{1}{n} \sum_{i=1}^{n}\left(1-y_{i} f\left(x_{i}\right)\right)_{+}+\lambda\|f\|_{\mathcal{H}_{K}}^{2}
$$

where $\lambda>0$. The first term measures the distance of the data from separability, while the second penalises overfitting. THe tuning parameter λ balances the trade-off.

The optimisation criterion is not differentiable, but we can consider it as follows:

$$
f(.)=f^{\|}(.)+f^{\perp}(.)=\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, .\right)+f^{\perp}(.)
$$

where $f^{\|}$denotes the projection of f onto the subspace of \mathcal{H}_{K} generated by $\left(K\left(x_{1},.\right), \ldots, K\left(x_{n},.\right)\right)$ and f^{\perp} is the part perpendicular to this; i.e. $\left\langle f^{\perp}(),. K\left(x_{i},.\right)\right\rangle=0$ for $i=1, \ldots, n$. Since

$$
f\left(x_{i}\right)=\left\langle f(.), K\left(x_{i}, .\right)\right\rangle=\left\langle f^{\|}(.), K\left(x_{i}, .\right)\right\rangle+\left\langle f^{\perp}(.), K\left(x_{i}, .\right)\right\rangle
$$

and the second term vanishes, we have:

$$
f^{\|}(x)=\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, x\right)
$$

independent of f^{\perp} and hence

$$
\|f\|_{\mathcal{H}_{K}}^{2}=\left\|\sum_{i} \alpha_{i} \alpha_{i} K\left(x_{i}, .\right)\right\|_{\mathcal{H}_{K}}^{2}+\left\|f^{\perp}\right\|_{\mathcal{H}_{K}}^{2} \geq\left\|\sum_{i} \alpha_{i} K\left(x_{i}, .\right)\right\|_{\mathcal{H}_{K}}^{2}
$$

with equality if and only if $f^{\perp}=0$.
Therefore

$$
\left\|f^{\|}\right\|_{\mathcal{H}_{K}}^{2}=\sum_{i, j} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right)=\|\beta\|^{2}
$$

where $\beta=\sum_{i=1}^{n} \alpha_{i} \Phi\left(x_{i}\right)$.
If the space \mathcal{H}_{K} consists of linear functions of the form $f(x)=\beta_{0}+\Phi(x)^{\prime} \beta$, with $\|f\|_{\mathcal{H}_{k}}^{2}=\|\beta\|^{2}$, then the problem of finding f is equivalent ot finding β_{0}, β which solves:

$$
\text { minimise } \quad \frac{1}{n} \sum_{i=1}^{n}\left(1-y_{i}\left(\beta_{0}+\Phi\left(x_{i}\right)^{\prime} \beta\right)\right)_{+}+\lambda\|\beta\|^{2}
$$

so that the problem with non-differentiability due to the hinge loss function can be reformulated in terms of the 1 -norm soft-margin optimisation problem.

