
Chapter 4

Principal Component and Factor Analysis

4.1 Introduction

Let x denote an n × p data matrix of n p-variate observations. Principal Component Analysis is

a technique applied when some of the variables are highly correlated. The aim is to find m linear

combinations of the variables, where m < p, which describe the sample covariance or correlation

structure of the data set.

PCA may be carried out on either S, the sample covariance matrix, or R, the sample correlation

matrix. The sample correlation matrix is preferable if the p variables in the data set have widely

varying scales.

The aim is

• data reduction (reducing p variables to m linear combinations of the variables)

• interpretation (we examine which variables influence the principal components and, from this,

try to determine hidden factors; the principal components are factors).

4.2 Principal Component Analysis

Since PCA is concerned with the covariance / correlation structure of the variables, the data matrix

is first centred, so that the columns are all mean zero. Let

H = In − 1

n
1n1

t
n (4.1)

where In denotes the n× n identity matrix and 1n denotes the n-vector with each entry 1. Let

z = Hx,

then the entries of the n× p matrix z are

zij = xij − x.j .
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The sample covariance matrix S of x is given by:

S =
1

n− 1

n∑

k=1

(xki − x.i)(xkj − x.j) =
1

n− 1
ztz. (4.2)

A principal component analysis simply finds the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λp of the sample

covariance matrix S and the corresponding eigenvectors P.j : j = 1, . . . , p. The principal components

are the uncorrelated linear combinations; y = zP , where y.1 has the largest possible statistical variance

among orthonormal transformations of z and y.q has the largest statistical variance under the constraint

that it is uncorrelated with (y.1, . . . ,y.,q−1).

Lemma 4.1. Let S be the sample covariance matrix defined by Equation (4.2) and let λ1 be the largest

eigenvalue of S and let γ denote the corresponding normalised eigenvector; namely,

Sγ = λ1γ,

p∑

j=1

γ2j = 1.

Let zij = xij − x̄.j. Then, for any p- vector a, with
∑p

j=1 a
2
j = 1,

n∑

i=1




p∑

j=1

ajzij




2

≤
n∑

i=1




p∑

j=1

γjzij




2

.

Proof

n∑

i=1




p∑

j=1

ajzij




2

=

n∑

i=1

p∑

jk=1

ajakzijzik

= (n− 1)
∑

jk

ajakSjk = (n− 1)atSa = (n− 1)atP tDPa = (n− 1)btDb,

where b = Pa. Note that btb = atP tPa = ata = 1, so b is a unit vector. Since D = diag(λ1, . . . , λp)

where λ1 ≥ . . . ≥ λp, it follows that the expression is maximised if b = (1, 0, . . . , 0), so

n∑

i=1




p∑

j=1

ajzij




2

≤ (n− 1)λ1.

Meanwhile, since γ is a unit eigenvector of S with eigenvalue λ1, it follows that

n∑

i=1




p∑

j=1

γjzij




2

= (n− 1)γtSγ = (n− 1)λ1γ
tγ = (n− 1)λ1

and the result follows.
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Notation λk will be used to denote the kth largest eigenvalue.

Definition 4.2 (Principal Component, Loading Vector). Let x denote the n× p data matrix, n multi-

variate observations on p variables. Let P denote the orthonormal matrix and D the diagonal matrix

with elements arranged in decreasing order such that S = PDP t. Let H be the n × n matrix defined

by Equation (4.1). The columns of the matrix

y = HxP (4.3)

are called the sample principal components. The ith element of the kth column represents the score of

the kth principal component for the ith observation. The kth column of the orthonormal matrix P is

the loading vector for the kth principal component.

The following theorem is stated without proof; it is left as an exercise.

Theorem 4.3. Let x be an n×p data matrix; n p-variate observations. Let P denote the orthonormal

matrix and D the diagonal matrix with elements from highest to lowest such that S = PDP t, where S

is the unbiased sample covariance matrix. Let

y = HxP

where

H = In − 1

n
11t.

Let

S(y) =
1

n− 1
yty.

Then

1.

S(y) = D

2. Let zk = (z1,k, . . . , zn,k)
t where zjk = xjk − 1

n

∑n
i=1 xik. Then the linear combinations

P1mz1 + . . .+ Ppmzp, m = 1, . . . , q ≤ p

span the parallelepiped with the largest volume among all parallelepipeds spanned by standardised

linear combinations of x in variable space.

3. Let c
(Y )
kl =

∑n
i=1 yikyil. The largest volume is given by

√
det
(
(c

(Y )
kl )(k,l)∈{1,...,q}2

)
= (n− 1)q/2

√
d11 . . . dmm.

4.

tr(S(x)) = tr(S(y)) = λ1 + . . .+ λp.
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Recall For a symmetric p× p matrix, the sum of the trace is equal to the sum of the eigenvalues. It

follows that tr(S) =
∑p

j=1 λj = tr(D).

Interpretation

• Plotting y.,1, . . . ,y.,q for q < p in object space gives the ‘best’ q dimensional summary of x if one

is looking for the parallelepiped of largest volume spanned by standardised linear combinations

of x in variable space (recall that the point xt := (x.,1, . . . , x.,p) is the origin in variable space.

• It often turns out that all the loadings for the first principal component are positive. If this is the

case, then it can be interpreted as a measurement of size. If this is the case, then it necessarily

follows that all the other principal components have both positive and negative loadings and are

therefore interpreted in terms of shape. Since the general idea is to reduce the data and to only

use m principal components where m < p, they will not cover all possibilities for shape.

• The sum of the unbiased sample variances, that is tr(S) is also called the total sample variation

of x. If only m principal components are used, then

λ1 + . . .+ λm

λ1 + . . .+ λp

represents the proportion of the variance explained by the first m sample principal components.

There are two usual criteria for deciding how many to use:

1. The m sample prinicipal components explain 90% of the variation.

2. (Kaiser’s criterion) The variances of the sample principal components beyond the mth prin-

cipal components account for less than the average 1
ptr(S).

When p ≤ 20, the second of these tends to include too few components.

• After deciding on the number of principal components m to include, the data is represented only

using the first m principal components: using

y = HxP = zP,

it follows that

x = 1nx
t + yP t

the components m+ 1, . . . , p are estimated by 0, giving x̂, the estimate of x as:

x̂ = 1x̄t + (y.,1| . . . |y.,m)




P11 . . . Pp1

...
. . .

...

P1m . . . Ppm


 .
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Recall that the vector (P1k, . . . , Pp,k)
t is the kth loading vector.

• A PCA on the correlation is equivalent to using standardised variables, which is preferable if

variables on a smaller scale give significant information, which can be lost if the raw data is used.

Note The analysis is not scale invariant; while covariance and correlation give the same eigen-

vectors, the order of their corresponding eigenvalues may change, the loadings will change and

their interpretation may change.

• It may be possible to decide that some of the p variables are redundant, based on the PCA analysis

on the correlation matrix. This is done by considering the last sample principal component and

discarding the variable assigned to the loading with largest absolute value. Then continue with

the loadings of the second last principal component, and so on. Stop discarding if certain criteria

are satisfied: for example,

1. the eigenvalue corresponding to the loadings is greater than 0.7 (this seems to work in

practice)

2. the sample principal components corresponding to the loadings you have not yet considered

explain less than 80% of the variation.

Using either criterion, at least four variables should always be retained.

The columns of the matrix P are often called the coefficients.

Prinipal component analysis is only useful as a tool if some of the eigenvalues of the statistical corre-

lation matrix are very small. Absolutely nothing is achieved by a principal component analysis if all

the eigenvalues of the correlation matrix are significant.

4.3 How to do a Principal Component Analysis

Throughout this discussion, variance refers to statistical variance, covariance to statistical covariance

and correlation to statistical correlation. Firstly, suppose that the PCA is being carried out on the co-

variance. The procedure is as follows: suppose there are n independent observations from (X1, . . . , Xp).

Firstly, the data is centralised:

z = Hx

and the statistical covariance is computed;

S =
1

n− 1
ztz.
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The first principal component is

y.1 = P11z.1 + . . .+ Pp1z.p,

where P11, . . . , Pp1 are chosen to maximise Var(y.1) subject to the constraint that
∑p

k=1 P
2
k1 = 1. That

is, to maximise

P t
.1SP.1

where P.1 is taken as a column vector, subject to the constraint. Once the first component has been

established, the second component

y.2 = P12z.1 + . . .+ Pp2z.p

is established by finding (P12, . . . , Pp2) that maximises Var(y.2) subject to the constraints

p∑

k=1

P 2
k2 = 1,

P t
.2SP.2 = 0.

That is, P.2 is chosen to ensure that the statistical correlation is zero. Inductively, once P.j have been

established for j = 1, . . . , k − 1, P.k are established by maximising the estimate of Var(yk),

P t
.kSP.k

subject to the constraints that
p∑

l=1

P 2
lk = 1

and the statistical covariances Cov(y.,j ,y.,k) are zero for j = 1, . . . , k − 1. That is

P t
.jSP.k = 0, j = 1, . . . , k − 1.

Note that the statistical variances of the principal components are the eigenvalues of the sample

covariance matrix and that the columns P.k are the eigenvectors.

Recall that, for a symmetric m×m matrix C, with eigenvalue λ1, . . . , λm,

tr(C) =
m∑

j=1

λj .

Let λj denote the estimates of Var(Zj). It follows that

p∑

j=1

Sjj =

p∑

j=1

λj .
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Since principal component analysis considers dependence and independence, it is usual to code the

variables x.1, . . . ,x.p so that they each have mean 0 and variance 1 at the beginning of the analysis.

The procedure with this modification is therefore as follows:

1. Compute x̄.k for k = 1, . . . , p and Skl =
1

n−1

∑n
j=1(xjk − x̄.k)(xjl − x̄.l), the sample means and

sample covariance matrix.

2. Compute the coded variables, yjk =
xjk−x̄.k√

Skk
.

3. Compute the correlation matrix

Rkl =
Skl√
SkkSll

.

This is the covariance matrix for the coded variables.

4. Find the eigenvalues λ1, . . . , λp and the corresponding eigenvectors P.1, . . . , P.p in the way de-

scribed above.

5. Discard any principal components that do not account for a significant variation in the data.

This means that y.k, . . . ,y.p are discarded for k such that
∑p

j=k+1 λj ≤ α ≤
∑p

j=k λj where α is

the level of the variation that is to be ignored. Usually, this is roughly 20% or, when the data is

standardised, components corresponding to eigenvalues less than 1 are ignored.

4.4 Confidence Intervals for PCA Eigenvalues and Eigenvectors

There exists some results in the literature. The proofs of these are long and technical. Much more

seriously, they all rely on the assumption that the data comes from i.i.d. p-variate Gaussian variables

and that n is large.

Theorem 4.4 (Lawley (1956)). If λi is a distinct eigenvalue of the covariance (correlation) matrix,

then

E[λ̂i] = λi +
λi

n

∑

j 6=i

λj

λi − λj
+O(n−2)

so that the estimate is asymptotically unbiased and:

V(λ̂i) =
2λ2

i

n


1 +

1

n

∑

j 6=i

(
λi

λi − λj

)2

+O(n−3).

Also, let ĥi denote the estimate of the ith eigenvector hi with λi the ith eigenvalue, then

1. √
n(λ̂− λ) −→(d) Np(0, 2Λ

2)

where Λ = diag(λ1, . . . , λp)
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2.
√
n(ĥi − hi) −→(d) Np(0, Ei)

where

Ei = λi

∑

k 6=i

λk

(λi − λk)2
hkh

t
k.

3. For each i = 1, . . . , p, λ̂i ⊥ ĥi.

Since the ‘normality’ assumption for these results is not usually satisfied and size of the data set is often

insufficient for a ‘central limit theorem effect’, these results are of limited value. To find confidence

intervals for eigenvalues, bootstrap methods may be used.

If we have an n×p data matrix, a bootstrap method takes randomly chosen subsets of size m, were

m ≤ n and performs the PCA on the subset of size m. By taking M such randomly chosen subsets,

an empirical distribution for the estimate of the eigenvalue λi may be constructed.

4.4.1 Using the Principal Components

In the first example in the Lab (the ‘Sparrow’ data set), we see that by far the most of the variation

is accounted for by the first two principal components, so these two components should be useful for

most analysis of the data; the other three components should not add much.

In the lab, we consider the question of whether all 5 quantitative variables are required to show

differences between the two groups of birds.

4.5 Weighted Projection Methods

Let x be the n × p data matrix, corresponding to n p-variate observations x1, . . . , xn. Let y
1
, . . . , y

n

denote the corresponding n points obtained by projecting onto a q dimensional subspace of the object

space. The following properties characterise the q dimensional subspace found by PCA.

1. The points x1, . . . , xn are projected perpendicularly onto y
1
, . . . , y

n
.

2. The data points y
1
, . . . , y

n
have the greatest variance among standardised q dimensional subspace

projections.

The points are those in the q dimensional space that minimise:

n∑

i=1

n∑

j=1

(dij − d̂ij)
2

where
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dij =

√√√√
p∑

k=1

(xik − xjk)2, d̂ij =

√√√√
p∑

k=1

(yik − yjk)2.

A disadvantage of the constraint that y
1
, . . . , y

n
have the largest possible variation is that observations

close to the centre in the projected space may be far from the centre in the higher dimensional space.

A better quantity to minimise is
n∑

i=1

n∑

j=1

ωij(dij − d̂ij)
2

where ωij controls the accuracy of the comparisons. For example, take ωij = dij if accurate repre-

sentation of large distances is required and ωij = 1
dij

if accurate representation of small distances is

required.

4.6 Factor Analysis

As usual with descriptive statistics, ‘Var’ represents a statistical variance and ‘Cov’ represents statistical

covariance; the terms refer to the statistics computed from the data and not to any features of the

population distribution.

Factor analysis may be seen as an extension of Principal Component Analysis. Given p variables

X1, . . . , Xp, it is hoped that they can be expressed, or mostly expressed, by a reduced number of

factors, which are linear combinations of the variables. Based on the original variables, it is hoped

that these factors may have an interpretation.

Suppose there are n observations, (xj1, . . . , xjp)
n
j=1 of the p variables. One starts by applying

a principal component analysis on the correlation (that is, on the standardised data). A suitable

value of m is chosen and principal components after level m are neglected. Let Y1, . . . , Yp denote the

principal components, with corresponding eigenvalues λ1 ≥ . . . ≥ λp. Suppose that the data has been

standardised. Then Y = P tX. In co-ordinates,

Yk = P1kX1 + . . .+ PpkXp, k = 1, . . . , p.

These linear combinations of the variables, as discussed earlier, are statistically uncorrelated. Now,

choose m, the number of factors in the model. As discussed earlier, there are two usual methods;

either let m equal the number of eigenvalues greater than or equal to 1 (Kaiser’s method) or else let

m denote the lowest number of eigenvalues that account for more than 80% of the variation.

Recall that P is orthonormal and hence P−1 = P t. It follows that X = PY . In co-ordinates,

Xj = Pj1Y1 + . . . PjpYp, j = 1, . . . , p.
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Set Fj =
Yj√
λj

for j = 1, . . . ,m, then the (Fj)
m
j=1 are uncorrelated and Var(Fj) = 1 for each j =

1, . . . ,m.

Let

Ajk =
√
λkPjk j = 1, . . . , p, k = 1, . . .m.

Let ǫa =
∑p

k=m+1AakYk. Then, for j = 1, . . . , p,

Xj = Aj1F1 + . . .+AjmFm + ǫj , j = 1, . . . , p.

The F1, . . . , Fm are uncorrelated factors with Var(Fj) = 1 for all j = 1, . . . ,m.

Definition 4.5 (Specificity). The quantity Var(ǫa) is known as the specificity of Xa, the part of the

variance that is unrelated to the common factors.

The elements Aa1, . . . , Aam are known as the provisional factor loadings for variable a.

Definition 4.6 (Factor Loadings). Once the errors ǫ1, . . . , ǫp have been determined, along with the

factors F1, . . . , Fm to be used, the factor loadings for the factor a are the coefficients Aa1, . . . , Aam such

that

Xa =

m∑

j=1

AajFj + ǫa.

Definition 4.7 (Communality). The communality of a variable Xj in a factor analysis is defined as∑m
k=1A

2
jk, where m is the number of factors. It gives the correlation between Xj and the part of Xj

explained by the factors.

An orthonormal transformation of uncorrelated variables yields uncorrelated variables. Therefore, any

orthonormal transformation D yielding factors F ∗ given by

F∗ = DF

will produce a suitable decomposition of X into uncorrelated factors. The second stage of the analysis

is to find a rotation matrix D that produces rotated factors that are most convenient.

The last stage is to calculate the factor scores (F ∗
j1, . . . , F

∗
jm) for each observation j = 1, . . . , n.

Note that the factors produced by a principal component analysis are orthogonal (i.e. uncorrelated).

In the second stage, an orthonormal transformation will preserve this feature. If other transformations

are used, the factors will not be independent.
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The Varimax Rotation This is the transformation taken from the orthogonal transforms that

maximises the variance of the squared loadings; that is, choose D to maximise

V :=
1

p

k∑

l=1




p∑

j=1

A4
jl −


1

p

p∑

j=1

A2
jl




2
 .

The logic behind this is that if this is large, then each values of Ajk is close to either 0 or 1, so that

the variable is explained as much as possible by a single factor.

Note that, by standardisation, Var(Fj) = 1 for all j and Cov(Fj , Fk) = 0 for j 6= k. If ǫ is small

(as it should be if the variables are properly explained by m factors), then the correlation structure of

X (where the variables have been standardised) is given by

Cov(Xj , Xk) = Cov

(
m∑

a=1

AjaFa,

m∑

b=1

AkbFb

)
=

m∑

a=1

AjaAka.

The Value of Factor Analysis

Factor analysis is often useful for gaining qualitative insight into the structure of multivariate data,

but it should be regarded purely as a piece of descriptive statistics; it has no value whatsoever for

formal inferential statistics. It is not appropriate if it is carried out on a single small sample that

cannot be replicated and then assuming that the factors obtained must represent underlying variables.

Simulations have shown that even if a postulated factor model is correct, the chance of recovering it

using the available methods is not very high.

4.7 Example: Country Employment Profiles

The second exercise in the Lab is analysis of the country employment profile data. Firstly a PCA is

carried out and the anlysis is continued to give a factor analysis.

In that example, for the standardised variables, there are four eigenvalues greater than 1 in the

principal component analysis, so the ‘rule of thumb’ suggests that four factors are appropriate using

(initially) Fj =
Zj√
λj

, giving

Xj = Aj1F1 +Aj2F2 +Aj3F3 +Aj4F4 + ǫj , . . . j = 1, . . . , 9.

It is useful if each variable can be expressed in terms of as few factors as possible. The next step is

therefore to try a rotation, which keeps the factors uncorrelated. That is, F∗ = ΘF, where Θ is a

rotation matrix, which tries to ensure that for each variable the loading is weighted as much as possible

towards one predominant factor. The varimax seems to work quite well.

For the employment data, this yields the model (where the communality is indicated on the right)

X1 = −0.85F ∗
1 − 0.10F ∗

2 − 0.27F ∗
3 − 0.36F ∗

4 + ǫ1 0.93
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X2 = −0.11F ∗
1 − 0.30F ∗

2 − 0.86F ∗
3 − 0.10F ∗

4 + ǫ2 0.85

X3 = 0.03F ∗
1 − 0.32F ∗

2 + 0.89F ∗
3 − 0.09F ∗

4 + ǫ3 0.91

X4 = 0.19F ∗
1 + 0.04F ∗

2 0.64F
∗
3 + 0.14F ∗

4 + ǫ4 0.46

X5 = 0.02F ∗
1 − 0.08F ∗

2 + 0.04F ∗
3 + 0.95F ∗

4 + ǫ5 0.92

X6 = 0.35F ∗
1 + 0.48F ∗

2 + 0.15F ∗
3 + 0.65F ∗

4 + ǫ6 0.79

X7 = 0.08F ∗
1+0.93F ∗

2 + 0.00F ∗
3 − 0.01F ∗

4 + ǫ7 0.87

X8 = 0.91F ∗
1 + 0.18F ∗

2 + 0.12F ∗
3 + 0.04F ∗

4 + ǫ8 0.88

X9 = 0.73F ∗
1 − 0.57F ∗

2 + 0.03F ∗
3 − 0.14F ∗

4 + ǫ9 0.87.

The ‘varimax’ rotation has conveniently expressed each variable in terms of a predominant factor plus

other less important factors for that variable. The only variable that seems to have two predominant

factors is X9.

Following the varimax rotation, the results are interpreted by considering the four factors in terms

of the variables. From that, it may be possible to give useful labels to each factor.

Here, it is clear that F ∗
1 has high positive loadings for X1 (agriculture, forestry and fishing) and

high negative loadings for X8 ( social and personal services) and X9 (transport and communications).

Therefore, F ∗
1 measures the extent to which people are employed in agriculture rather than services and

communications. It could be labelled ‘rural industries rather than social service and communication’.

Factor F ∗
2 turns out to have a high negative loading for X7 (finance). The loading for X9 (transport

and communication) seems to be higher than the others. A possible labelling could be ‘lack of finance

industries’.


