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Applications of Bayesian network 
models in predicting types of 
hematological malignancies
Rupesh Agrahari1, Amir Foroushani1, T. Roderick Docking  2, Linda Chang2, Gerben Duns2, 
Monika Hudoba3, Aly Karsan2 & Habil Zare  1,4

Network analysis is the preferred approach for the detection of subtle but coordinated changes in 
expression of an interacting and related set of genes. We introduce a novel method based on the 
analyses of coexpression networks and Bayesian networks, and we use this new method to classify 
two types of hematological malignancies; namely, acute myeloid leukemia (AML) and myelodysplastic 
syndrome (MDS). Our classifier has an accuracy of 93%, a precision of 98%, and a recall of 90% on 
the training dataset (n = 366); which outperforms the results reported by other scholars on the same 
dataset. Although our training dataset consists of microarray data, our model has a remarkable 
performance on the RNA-Seq test dataset (n = 74, accuracy = 89%, precision = 88%, recall = 98%), 
which confirms that eigengenes are robust with respect to expression profiling technology. These 
signatures are useful in classification and correctly predicting the diagnosis. They might also provide 
valuable information about the underlying biology of diseases. Our network analysis approach is 
generalizable and can be useful for classifying other diseases based on gene expression profiles. Our 
previously published Pigengene package is publicly available through Bioconductor, which can be used 
to conveniently fit a Bayesian network to gene expression data.

Acute Myeloid Leukemia (AML) is a cancer of the myeloid blood cells in which bone marrow produces abnormal 
white blood cells, abnormal red blood cells, or abnormal platelets. It primarily affects the elderly, and it is the most 
common acute leukemia among adults. It is an aggressive type of blood cancer, which accounts for about 1.2% of 
the total cancer deaths in the U.S.1.

Myelodysplastic Syndrome (MDS) is a disease that affects myeloid cells in the bone marrow and the blood. 
MDS is characterized by abnormal hematopoiesis, which is the ineffective production of blood cells and platelets 
in the bone marrow2. In contrast to AML, MDS is relatively mild and has a low mortality risk, but it can progress 
over time and 30% of all MDS cases will ultimately develop into AML3,4. Therefore, it is important to compare 
these two diseases and provide biological insights into their similarities and differences at the molecular level.

Accordingly, we compared the gene expression profiles of AML and MDS using network analysis. The goal of 
this study was to improve the classification of these two hematological malignancies solely based on gene expres-
sion data. This study is inspired by, and builds upon, the coexpression network analysis and Bayesian network 
(BN) model. Figure 1 shows the schematic overview of our methodology.

We used weighted gene coexpression network analysis weighted gene coexpression network analysis 
(WGCNA)5 to group related genes into gene modules (clusters) based on their coexpression patterns in AML. 
WGCNA uses the average linkage hierarchical algorithm to cluster the genes6. For each gene module, WGCNA 
computes one eigengene, which summarizes the biological information in that module into one value per sam-
ple7. We used these eigengenes to train a Bayesian network (BN) in which nodes (random variables) represent 
gene modules, and the directed edges (arcs) represent the conditional dependencies between the eigengenes.

Bayesian networks have been used to model gene expression data8–15 and gene regulatory networks16–20. A BN 
consists of a directed acyclic graph (DAG)21,22 and a set of corresponding conditional probability density functions. 
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The structure of a DAG is defined by two sets: the set of nodes (vertices), which represent random variables, and 
the set of directed edges. In a DAG, if a directed edge extends from node X to another node Y, then X is designated 
a parent node of Y, and Y becomes a child node of X. The directed edges in a BN structure model the dependencies 
between the variables (nodes)23. In particular, the joint probability density function of the random variables in a 
BN can be written as a product of the individual density functions, conditional on their parent variables24.

Different variations of the BN model have been used to analyze gene expression data8, including the naïve 
Bayes classifier (NB)25,26, the Bayesian network augmented naïve Bayesian classifier (BAN)27, the k-dependence 
Bayesian classifier (KDB)28, and the general Bayesian network model29. In this study, we use a general Bayesian 
network in which each node is an observed random variable that models the expression value of an eigengene.

Results
The majority of the 33 inferred eigengenes are differentially expressed in AML versus MDS in the MILE dataset 
(Fig. 2). We hypothesized that these eigengenes are important biological signatures that can predict disease types 
solely based on gene expression. To validate this hypothesis, we modeled the probabilistic dependencies between 
the eigengenes using a BN (Fig. 3). We used Bayesian networks as probabilistic predictive models to determine 
the type of the disease.

The performance of the predictive model on the MILE (training) dataset. We considered AML 
cases as positive samples and considered MDS cases as negative samples, and computed the performance of the 
predictions in both training (MILE) and test (BCCA) datasets. Supplementary File S4 shows the confusion matri-
ces and performance of all 5 models obtained from our subsampling. On the MILE dataset, the accuracy of pre-
dictions on the training partitions is in the range of 88%–97%, with an average accuracy of 93.2%. The accuracy 
on the validation partition is in the range of 78.5%–94.6%, with an average accuracy of 88% (Table 1). The average 
performance on the training partitions (i.e., accuracy = 93%, precision = 90%, recall = 95%) is comparable to the 
performance of majority vote of the models (i.e., accuracy = 93%, precision = 98%, recall = 90%). Both of these 
predictions are better than the predictions achieved by Mills et al.30. on the same MILE dataset (i.e., accuracy = 
74%, precision = 70%, recall = 93%), which were predictions based on margin trees31,32.

Figure 1. Schematic view of the methodology. (A) The input is the gene expression profile (matrix). (B) 
We applied WGCNA to build the coexpression network and to identify gene modules (clusters). (C) PCA is 
used to summarize the biological information of each gene module into an eigengene. (D) A BN is fitted to 
the eigengenes to delineate the relationships between modules. We also used the fitted BN as a probabilistic 
predictive model. The tools used for each step are highlighted in red.
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The performance of the predictive model on the BCCA (test) dataset. The MILE dataset, which 
was used to train the predictive model in this study, was assayed using microarrays. To rigidly evaluate our predic-
tive model, we measured its performance on the BCCA dataset, which was assayed using RNA-Seq. The following 
results indicate that our predictive model is robust and accurate, although the profiling technologies that were 
used to measure the gene expressions in the MILE and BCCA datasets are different.

We inferred the 33 eigengenes in the BCCA dataset (Methods) and used them to infer the disease types of the 
74 test samples (Table 2). We used the BN models that were trained on the MILE dataset without changing any 
parameter. Also, the BCCA dataset did not have any contribution in learning the BN structures and the coex-
pression network. Out of 52 AML and 22 MDS cases, majority voting misclassified 7 MDS samples as AML and 
only 1 AML sample as MDS, which results in an accuracy of 89%, a precision of 88% and a recall of 98% on the 
test dataset. This performance shows that our predictive model was not overfitted to MILE (the training) dataset.

Comparison with the SVM. We compared the performance of our predictive model versus a support vector 
machine (SVM)33–35. From the common kernels (i.e., linear, polynomial, and Gaussian radial base functions), we 
chose Gaussian radial, which was shown by Brown et al.36 to be appropriate for analyzing gene expression data. 
First, instead of the 33 eigengenes, we used the top 33 differentially expressed genes (Supplementary Fig. S4) as 
features to fit an SVM to the MILE dataset (R package e1071 Version 1.6–737,38). While the resulting classifier 
showed a high accuracy of 98% on the training dataset, it performed poorly on the test, as it predicted all samples 
in the BCCA dataset to be AML. We obtained the same results on the test dataset when we increased the number 
of features to 600 genes, although the accuracy on the training dataset increased to 99%. This indicates that the 
SVM was already overfitted to the training data and including more genes would not be useful. Although using 
more features (genes) provides the model with more information, SVM cannot efficiently use this information 
because the degree of freedom (i.e., the number of parameters that must be learned from the data) also increases. 
This is a well-studied phenomenon, often referred to as “the curse of dimensionality” in the machine learning 
community39–41.

In contrast, by using the 33 eigengenes (i.e., the first principal components of every module) as features, we 
obtained an SVM with much higher performance on the test dataset; it reached an accuracy of 89%, a precision of 
92%, a recall of 92% (Table 3), and an AUC of 0.95 (Fig. 4).

The SVM model misclassified only 8 (11%) samples, and it demonstrated a similar accuracy to the majority 
vote of the five BNs. The dramatic improvement in the performance of the SVM classifier, from 68% when using 
single genes to 89% using eigengenes, shows that eigengenes are informative and robust biological signatures. 
Interestingly, the AUC of a simple logistic model based on eigengenes is better than that of an SVM that uses the 
expression of individual genes as features (0.82 vs. 0.5, Fig. 4). These results suggest that eigengenes are preferable 

Figure 2. Expression of eigengenes in the MILE dataset. Each row corresponds to a sample. Modules (columns) 
are clustered based on the similarity of expression in the MILE dataset. The majority of eigengenes show a 
different pattern of expression in the two diseases. The green strip at the top shows the adjusted p-values of 
Welch’s t-tests in logarithmic scale (base 10). The adjusted p–values are in the order of 10−60 to 10−10, which 
indicates that the eigengenes are highly discriminative features.
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Figure 3. Consensus BN structures. Each yellow node represents an eigengene. The Effect node is a binary 
variable that models the disease type. Its parents are denoted by red circles. The directed edges (arcs) model the 
probabilistic dependencies between nodes. Although these consensus networks are obtained from 500 (A) and 
5, 000 (B) BNs, they have fairly similar structures.

Model

Training partition Validation partition

Accuracy
(%)

Precision
(%)

Recall
(%)

Accuracy
(%)

Precision
(%)

Recall
(%)

Model 1 96.9 95.7 98.7 78.4 71.8 84.8

Model 2 92.8 89.6 97.3 89.2 84.2 94.1

Model 3 91.5 88.8 87.4 86.5 80.1 94.5

Model 4 88.0 83.1 94.3 94.6 95.2 95.2

Model 5 96.6 96.9 96.9 91.5 95.1 90.1

Mean 93.2 90.8 94.9 88.0 85.2 91.8

Table 1. Performance of predictions made by individual models on the training and validation partitions of the 
MILE dataset, which has 202 positive (AML) and 164 negative (MDS) samples. Each model was trained using a 
subsample from the MILE dataset, which consists of four fifth of training cases (Supplementary File S2).
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to individual differentially expressed genes for the analysis and comparison of the MILE and BCCA gene expres-
sion profiles.

Analyzing the BN structures. We obtained five BN models from our subsampling approach 
(Supplementary File S2). Because of the Markov property of the Bayesian networks (Methods), the parents of the 
Effect node are the modules most related to, and predictive of, the disease type. Nine modules were among the 
parents of the Effect node in at least one BN (Table 4). The most frequent were Modules 4 and 12, which contain 
332 and 113 genes, respectively. These modules were the parents of the Effect node in four BNs; therefore, they 
should be enriched with the genes that are associated with AML or MDS. Future pathway and functional analyses 
can determine the specific role of these genes in myeloid malignancies and explain how they differentiate between 
the two diseases.

Generalizability to studying other diseases. The described methodology could also be applied to ana-
lyze other cancers. To demonstrate this, we analyzed 1,173 ER+ cases from the METABRIC42 breast cancer data-
sets. Specifically, we used 640 ER+ cases from the METABRIC discovery dataset for training a BN. We evaluated 

Model
Accuracy
(%)

Precision
(%)

Recall
(%)

Model 1 90.5 92.5 94.2

Model 2 71.6 84.4 73.1

Model 3 86.5 86.2 96.2

Model 4 87.8 85.3 100

Model 5 83.8 85.7 92.3

Mean 84.0 86.8 91.2

Majority vote 89.2 87.9 98.1

Table 2. Performance of predictions on the BCCA dataset, which has 52 positive (AML) and 22 negative 
(MDS) samples. The majority vote performs better than the individual BN models. Each model was trained 
using a subsample from the MILE dataset, which consists of four fifth of training cases (Supplementary File S2).

Classifier
Accuracy
(%)

Precision
(%)

Recall
(%)

Radial using 33 genes 67.7 67.7 100

Radial using 600 genes 67.7 67.7 100

Linear using eigengenes 77 84.6 83

Polynomial using eigengenes 75.7 94.2 76.6

Radial using eigengenes 89.2 92.3 92.3

Majority vote of BNs 89.2 87.9 98.1

Table 3. Performance of SVM classifiers. These SVM classifiers were trained using the 336 samples in the MILE 
dataset and were tested using the 52 AML and 22 MDS samples from the BCCA dataset. Among all kernels 
used on eigengenes, the Gaussian radial has the best performance as expected36, which is comparable with the 
majority vote of BN models. We used the polynomial kernel with degree 3 (e1071’s default value).

Figure 4. ROC curves. The predictions from the Bayesian network approach (red) leads to the highest AUC. 
The curve corresponding to the SVM predictions (green) is close to the best curve when eigengenes are used as 
features.
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the resulting model on 533 different cases from the METABRIC validation dataset (Methods). We considered the 
cases who died due to breast cancer as positive samples. On the training dataset, the accuracy of predictions is 
78%, where the precision is 91% and the recall is 81% (Supplementary File S6). On the test dataset, the accuracy of 
predictions is 70%, where the precision is 78% and the recall is 78%. The performance of the BN analysis is slightly 
better compared to SVM (i.e., accuracy = 68%, precision = 80%, recall = 76%). While SMV predictions are more 
precise by 2%, the recall of the BN approach is 2% higher than SVM.

In all the five BNs that were fitted to a portion of the training data, a module with 408 genes is the only parent 
of the Effect node (Supplementary Table S2). This module has a significant overlap with the Interleukin (IL) 9 
signaling pathway. The overlap includes the following five genes: IRS1, IRS2, STAT1, STAT5A, and VCP (adjusted 
p–value of the hypergeometric test <0.0443), which are among the 24 genes that are annotated to be part of the 
IL–9 pathway according to NetPath44. Other groups have reported that the IL–9 signaling pathway can have a 
role in breast cancer progression45–47. This module has also a significant overlap with the IL–2 signaling pathway. 
Specifically, eight genes (i.e., CRKL, HSP90AA1, IRS1, IRS2, SGK1, SHB, STAT1, and STAT5A) are among the 
81 genes that are annotated to be part of the IL–2 pathway (adjusted p–value of the hypergeometric test <0.04). 
Other studies have shown that the activation of the IL–2 signaling pathway is associated with proliferation of 
breast cancer cells48,49. Zaman et al. performed an integrative network analysis on 11 breast cancer cell lines, and 
identified 2,003 genes as potential driver–mutating genes50. The module of 408 genes that we identified in the 
current study has insignificant overlap with these 2,003 cancer hallmarks (i.e., 39 genes are in common, p-value 
of the hypergeometric test >0.3).

Discussion
Significance of network analysis. Biological processes in a cell often require coordination between mul-
tiple genes. Network analysis can detect subtle but coordinated changes in a set of interacting and functionally 
related genes51–53. Therefore, network analysis has advantages over conventional approaches that are based on a 
list of differentially expressed genes54,55. In particular, a coexpression network models the interaction between a 
large number of genes based on their coexpression pattern5,56. The resulting eigengenes, the features that summa-
rize the biological information of modules, are robust with respect to noise and the profiling platform53,57. This is 
evident from our experiment that compared the performance of SVMs learned using eigengenes as opposed to 
differentially expressed genes (Table 3).

We combined coexpression network analysis with Bayesian networks to model the interactions between thou-
sands of genes in one network. Our model delineates the association between gene modules and the disease type 
(Fig. 3, Supplementary File S2, and Table 4).

Comparison with other predictive models. We used the learned Bayesian network as a predictive 
model. Our results show that this model outperforms the margin tree classifier that Mills et al. fitted to the MILE 
microarray dataset30. To the best of our knowledge, Mills et al. is the only other group that has performed a similar 
study on this dataset. Their study involved a more complicated task, because it aimed at classifying 18 types of 
myeloid malignancies. Among all these types, they reported that their classifier had the least recall for MDS (i.e., 
50%). Because the performance of margin trees on microarray data is similar to the nearest centroids32, we expect 
that our predictive model will also outperform the nearest centroids. Furthermore, evaluating our predictive 
model in an independent RNA-Seq dataset (BCCA) ensured that our network analysis is robust with respect to 
the underlying profiling technology (Table 2)58.

The accuracy of the SVM model substantially increases from 68% to 89% when, instead of individual genes, 
we use the eigengenes obtained from the gene network (Table 3 and Fig. 4). This shows that eigengenes are more 
informative and robust compared to individual differentially expressed genes, and that they can be useful and 
preferable for the analysis and comparison of expression profiles. When eigengenes are used as features in both 
predictive models, SVM has a similar accuracy compared to BN (89%), a slightly higher precision (92% vs. 88%), 
and a lower recall (92% vs. 98%). For clinical usage, the choice between these two approaches will depend on 
the preference between precision and recall. While we were writing this paper, we published Foroushani et al.57, 
which is focused on the biological significance of the gene modules. In that paper, we reported that a simple deci-
sion tree has a high accuracy on the MILE and BCCA datasets, which once again underlines the relatively high 
predictive power of eigengenes.

Our methodology is different from other BN approaches in which each random variable represents the 
expression of a single gene9–15. Because the number of training samples in real applications is usually limited to a 
few hundred cases, those approaches are not generally suitable to model many (thousands of) genes in a Bayesian 
network. One workaround is to filter genes before BN learning (e.g.8,29, and also the dedup function in the 
bnlearn package), which is inefficient due to information loss. The genes in a gene module are either highly corre-
lated or highly anticorrelated, and they generally contribute to the same biological processes. Therefore, we do not 
model the probabilistic dependencies between the genes within a module, unlike the modular network learning 
approach59,60, which can unnecessarily complicate learning the structure of the BN. Although we compute the 
eigengene of a gene module using PCA, our approach is fundamentally different from applying PCA directly to 
the entire expression profile. PCA does not preserve the modular structure, and this can result in substantial and 
undesirable loss of information61. We implemented one of many ways in which a Bayesian network could be 

Module 4 12 1 28 30 3 6 14 21

Frequency 4 4 3 2 2 1 1 1 1

Table 4. Parents of the Effect node in the 5 BNs that were fitted to the MILE dataset (Supplementary File S2).
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designed, trained, and used to infer information from eigengenes. We discuss some of the prominent alternative 
approaches in Supplementary Note S1.

Limitations. One limitation of the employed coexpression network analysis is that each gene can be a mem-
ber of only one module. This is suboptimal because some gene products can contribute to multiple biological pro-
cesses. Fuzzy or soft clustering techniques62,63 and the incorporation of prior biological knowledge from pathway 
databases64–66 may address this challenge. Our predictive model is based on the expression of thousands of genes. 
The large number of genes makes our test difficult to apply in clinical settings. This can be addressed by excluding 
the genes that have a relatively smaller contribution to the eigengenes. Specifically, a greedy algorithm can be used 
to exclude the genes that have a smaller absolute weight (loading)67.

It would be interesting to reverse the train-test datasets and evaluate the performance of a model trained on 
RNA-Seq data. However, the current BCCA dataset has limited samples, so we leave this experiment for future 
work. We chose the MILE and BCCA datasets based on the following criteria: (1) Each dataset includes samples 
from both AML-NK and MDS cases, and (2) the number of cases of each disease is at least 20. To the best of our 
knowledge, the MILE and BCCA datasets are currently the only available datasets that meet these criteria. A 
couple of related datasets are available, including GSE3486068, GSE1241769, Leucegene (https://leucegene.ca), and 
The Cancer Genome Atlas (TCGA)70 with 78, 242, 46, 74 AML-NK cases, respectively. However, these datasets do 
not include MDS samples; therefore, they could not be used for the validation of our binary classifier. Combining 
these datasets with the MDS samples from other datasets could be problematic because of possible batch effects71. 
Also, the expression profile of 159 MDS cases in the GSE58831 dataset72 could not be directly compared to the 
MDS samples analyzed in this study because of the difference in the tissues. Specifically, the former is a gene 
expression profile of only CD34+ cells, while the BCCA and MILE datasets are based on whole peripheral blood 
samples.

Generalizations and future directions. In this study, we developed and applied a new method to a solve 
a classification problem (i.,e., supervised learning), namely, distinguishing MDS from AML. Our classifier showed 
a remarkable performance although MDS is reported to be a heterogeneous disease. For example, the goal of 
Mills et al. study was to identify subtypes of MDS and determine the prognosis of each subtype30. This goal can 
be formulated as a clustering problem (i.e.,unsupervised learning). We anticipate that eigengenes can be useful to 
achieve this goal. For example, a hidden discrete random variable can be added to the Bayesian network structure 
to model the disease subtype.

Our model identified gene modules that are associated with the disease type. Some of these modules overrep-
resent genes that are related to particular biological pathways, including the extracellular matrix and homeobox 
genes, as we described elsewhere57. Future functional analysis can determine the role of the corresponding genes 
in myeloid malignancies and explain why these features (biomarkers) can differentiate between the two diseases 
with relatively high accuracy.

This study illustrates the potential of our approach, which scales up network analysis to thousands of genes. 
Our methodology can be useful in studying other diseases using existing datasets. The results of such experiments 
will be useful in pinpointing the cause and molecular mechanisms of diseases.

Conclusion
Network analysis is useful for extracting informative biomarkers (features) from gene expression profiles. In par-
ticular, we showed that eigengenes have more predictive power than individual genes. A Bayesian network can be 
fitted to these data to model the association between the gene modules and the biological, or clinical, condition 
of interest. We compare our classifier with a support vector machine (SVM), which shows that the strength of our 
approach lies in the way we employ eigengenes as biological signatures (i.e., features). The SVM preforms unsat-
isfactory when we use individual genes as features, but when we use eigengenes as features, it has a performance 
comparable to the Bayesian network. Nevertheless, our Bayesian network approach is advantageous because it 
readily delineates the features that are most associated with the disease type, unlike SVM, which is more a black 
box classifier.

Methods
Ethics approval and consent to participate. This study was approved by the University of British 
Columbia–British Columbia Cancer Agency Research Ethics Board (UBC–BCCA REB) under protocol H13-
02687 “Genomic analysis of molecular changes in myeloid malignancy”. The informed consent of participants was 
provided before specimen acquisition under the guidelines of the Leukemia/Bone Marrow Transplant Program 
at Vancouver General Hospital, as approved by the UBC–BCCA REB (protocol H04-61292). For historical-
ly-banked anonymized specimens (i.e., Legacy cell bank specimens), a waiver of consent was provided by the 
UBC–BCCA REB (protocol H09-01779). This protocol states: Genomic data obtained from these samples may be 
posted on access restricted sites as required for publications. This is covered by transfer contracts governed by our 
Technology Development Office. Transfer of material outside the institution would also be covered by Material 
Transfer Agreements (MTAs).

The MILE dataset. We used the GEO2R tool73 to download gene expression data from the Gene Expression 
Omnibus (GEO) repository. We downloaded this dataset with accession number GSE15061, which is part of the 
MILE series (i.e., microarray innovations in leukemia). It consists of 164 MDS samples as well as 202 AML sam-
ples30, where 181 AML samples have normal karyotypes (AML-NK) and the remaining 21 AML samples have 
complex aberrant karyotypes.

https://leucegene.ca
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We used the limma package (Version 3.28.5) to compute a p–value for each probe with a moderatet t-test74. 
The null hypothesis was that the probe was expressed the same in AML and MDS. We sorted the probes based 
on their p–values (i.e., variation across disease types). Consistent with the approach taken by other scholars in 
applying gene network analysis10,75, we kept all of the top third of the most variably expressed probes (n = 18,200) 
in our study. We used Custom CDF76 (Version 15) to map probes to Entrez-gene IDs. This mapping was not 
one-to-one, and we used the following approach to project the data from the probe level to the gene level: First, 
we excluded probes that were mapped to multiple Entrez-gene IDs. Out of 18, 200 probes, 13, 294 remained. Next, 
among all probes that were mapped to a specific Entrez-gene, the probe with the lowest p–value was chosen as the 
representative of that gene. That is, we considered the most differentially expressed probe as the representative of 
a gene. Based on our previous experiments57, we preferred this approach to alternative approaches such as using 
the mean or median of the expression of probes. Multiple probes that map to the same gene may measure the 
expression of different transcripts77. The alternative approaches can introduce redundant noise into the analysis 
when, for example, only one of these transcripts is differentially expressed. Also, if a transcript is upregulated and 
another transcript of the same gene is downregulated, then computing the average expression over probes could 
result in missing the potential relevance of the gene to the disease. If a gene had only one corresponding probe, 
that single probe was taken as the representative of the gene.

Our approach resulted in an expression profile consisting of 9,166 probes, where each of these probes rep-
resented a unique Entrez-gene with expression values for 202 AML cases and 164 MDS cases. We stored these 
data in two 9,166 × 202 and 9,166 × 164 matrices. We used these data as training data to identify gene modules 
and to learn the BN structure. We also compared the predictive value of these 9,166 genes with a shorter list of 
differentially expressed genes.

The BCCA dataset. We used RNA sequencing dataacquired at the British Columbia Cancer Agency  
(BCCA) as the test data to evaluate the performance of our predictive model. This dataset contains 54 AML- 
NK and 22 MDS samples (peripheral blood cells or bone marrow blast). As detailed in the Supplementary File S5, 
we mapped the reads using Sailfish to quantify the gene expression and to compute RPKM values (i.e., 
reads per kilobase of transcript per million mapped reads)78. We inferred the eigengenes in the BCCA dataset 
using the logarithm of RPKM values in base 10 and the project.eigen function of the Pigengene package 
(https://bioconductor.org/packages/Pigengenehttps Version 1.2.0).

The eigengenes are available in Supplementary File S1. Because BCCA dataset was the test dataset, we did not 
use it in the module identification and BN learning procedures.

Identifying gene modules. We used the R79 package WGCNA5 (Version 1.41) to perform coexpression net-
work analysis on the 202 AML samples from the MILE dataset. WGCNA defines the similarity between two genes 
as the absolute value of the Pearson correlation of their expression levels. Using the pickSoftThreshold  
function with the default parameters, the power (β) parameter was inferred to be 8. For every integer β value 
in the range of 1–20, this function raises the similarity between all gene pairs to β, then computes the scale-free 
topology fit value of the resulting network80. The smallest β that results in a fit value more than RsquaredCut 
which is 0.85 by default, is returned as the suggested power parameter (Supplementary Fig. S5).

We used the blockwiseModules () function to identify gene modules based on the Pearson correlation 
of their expression. For better results, we set the parameter maxBlockSize = 9166 so that the process was 
performed in only one block. This prevented errors that could have occurred when merging the results from 
smaller blocks. We set TOMType = “unsigned”, and we used the default values for the rest of the arguments 
of blockwiseModules ().

WGCNA identified 33 modules. The largest and smallest modules consisted of 888 and 21 genes, respectively. 
Module sizes had a mean, median, and standard deviation of 153, 75, and 188, respectively (Supplementary 
Fig. S1). These modules were relatively stable with respect to the number of analyzed genes. That is, when we used 
99%, 98%, 97%, 96%, 95%, 90%, and 80% of the 9,166 genes, the resulting modules had relatively high overlaps 
with the 33 modules that were identified using all the 9,166 genes (Supplementary Table S1). WGCNA could not 
confidently assign 4,125 genes to any of the modules because they showed little correlation with any other gene. 
These uncorrelated genes were designated as module 0 and were excluded from the rest of the analysis.

Computing eigengenes. An eigengene of a module is a weighted average of the expressions of all the genes in 
that module. These weights are adjusted so that the loss in the biological information is minimized7,81. To compute 
eigengenes, we used principal component analysis (PCA)81, similar to the approach developed by Oldman et al.  
but with the following oversampling modification: We balanced the number of AML and MDS cases in the MILE 
dataset using oversampling, so that both disease types had comparable representatives in the analysis. That is, we 
repeated the data of each AML and MDS case 9 and 11 times, respectively. This resulted in 1,818 AML samples and 
1,804 MDS samples. Then, we applied the moduleEigengenes () function from the WGCNA package to the 
oversampled data. This function computed the first principal component of each module, which maximized the 
explained variance, thus ensuring the loss in the biological information was minimized (Supplementary File S1)7,81.

Designing the Bayesian network structure. Each of the 33 eigengenes corresponds to one observed 
random variable in our BN. In addition, the network has one binary variable, Effect, which models the disease 
type82. Effect is observed during the training phase. It is equal to 1 for AML, and it is 0 otherwise. By construction, 
no node is allowed to be a child of Effect. This design simplifies the inference using bnlearn; however, it may not 
be optimal for predicting the disease type, as we explain in the Discussion.

To implement the above property, we blacklisted all outgoing edges from the Effect node. The Markov prop-
erty of BNs implies that, given its parents, the Effect node is independent from the rest of the network. More 

https://bioconductor.org/packages/Pigengenehttps
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specifically, the Markov blanket of a node is a set of nodes that consists of the parents of the node, the children 
of the node, and any other parents of the children of that node83. In our model, the Markov blanket for the Effect 
node includes only its parents, because it does not have any children by construction. The Markov property of 
BNs then states that, conditioned on the Markov blanket of a node, the probability distribution of the node is 
independent from the rest of the network. In other words, the parents of the Effect node contain all the knowledge 
needed to predict its value. We inferred the value of Effect to predict the disease type in the test dataset.

Subsampling. We did not used the BN shown in Fig. 3 to predict the disease type. Instead,we performed 
subsampling and predicted the disease type based on the majority vote of the individual models. That is, we 
randomly partitioned the training samples into five subsets that were almost equal in size. We fitted a BN using 
four of the five training subsets, and we repeated this procedure five times to obtain five Bayesian networks 
(Supplementary File S2). For each case in the test dataset, we inferred the value of Effect using these five BN 
models (Supplementary File S3). We considered the majority vote of five predictions as the ultimate prediction 
for each test case. Our subsampling approach is similar to the FeaLect methodology40, which roots in the sta-
tistical method developed by Politis and Romano84,85. This resampling approach is more generally applicable86 
and slightly different from the common bootstrap aggregating (bagging) approach87,88 in that sampling is done 
without replacement84,85.

Cross-validation. To assess the performance of the predictive model on the training dataset, we performed 
5-fold cross validation (Supplementary Fig. S6). That is, we randomly partitioned the training samples into five 
subsets that were almost equal in size. We set aside one partition as the validation set, and we used the rest of sam-
ples to fit a BN. Using this BN, we inferred the value of Effect for each case in the validation dataset. In this way, 
the disease type of each training case is predicted by a BN that is trained using a subset of samples, which does not 
include that particular training case.

Learning the BN structure and parameters. There are different approaches for fitting a BN to a dataset. 
A common approach is to optimize the Bayesian Dirichlet equivalent (BDe) scoring metric89. The BDe score is 
proportional to the posterior probability of a Bayesian network structure given the data and it has the event equiv-
alence property. That is, two Bayesian network structures that represent the same set of independence assertions 
have equal BDe scores. A comparative study by Yu et al. (2002) using simulated data suggests that an appropriate 
Bayesian network inference approach to recover genetic pathways is to employ a greedy search method with ran-
dom restarts to optimize BDe score, and to employ 3-interval hard discretization90. Accordingly, we discretized 
our eigengene expression data into three levels using Hartemink’s method91. We used the bn.boot() function 
from the bnlearn package (Version 4.0) to fit several BN structures (DAGs) to the discretized data92. This function 
used a hill-climbing strategy to optimize the BDe score89. Consistent with the approach taken by other scholars10, 
we averaged one-third of the networks with the highest scores to obtain the consensus network. We used the  
bn.fit  function to fit the parameters (probability tables) of the consensus network. The diagram in 
Supplementary Fig. S2 shows these steps in more detail. The names of the functions, which we used from the 
bnlearn package, are highlighted in red.

The analysis of the BDe scores showed that learning 500 networks is enough to infer the consensus BN for 
our data (Supplementary Fig. S3). Accordingly, we chose to learn 500 networks for our experiments. Also, the 
consensus networks obtained from both 500 and 5,000 networks have similar structures (Fig. 3). For example, in 
both models, modules 6 and 12 are the parents of the Effect node, and module 9 has no children.

Inference. We used the consensus model to predict the disease type. Specifically, we used the predict.bn.fit  
function of the bnlearn package and set method = bayes−lw to infer the value of the Effect node. With this 
setting, this function uses the likelihood weighting algorithm93,94 to estimate the value for the Effect node that has 
the highest probability conditioned on the observed eigengene data. Because Effect has no children by construc-
tion, its Markov blanket consists of only its parents, which are all observed random variables. Therefore, in this 
specific case, the above approach is equivalent to identifying the value for Effect that is most probable according 
to the conditional probability table for this node.

Measuring the performance of the predictive model. To assess the performance of our predictions, we 
considered AML cases as positive samples and considered MDS cases as negative samples. We computed several 
statistical measures of the performance95, including (a) accuracy, which is the proportion of correctly predicted 
samples among all predictions, (b) sensitivity, also known as recall, which is the ratio of correctly predicted positive 
samples over all positive samples, (c) precision, also known as positive predictive value, which is the ratio of correctly 
predicted positive samples over all predicted positive samples96,97, and (d) AUC, which is the area under the receiver 
operating characteristic (ROC) curve98. We used the caret package (short for classification and regression training, 
Version 6.0–76) to calculate the performance of our predictions95. We used the plot.ROC function from the 
MCLSLLreproduction package to plot several ROC curves in one frame99.

Breast cancer datasets. The METABRIC discovery and validation datasets are available from the European 
Genome-phenome Archive with the study accession number EGAS00000000083. We applied the Pigengene pack-
age on the METABRIC discovery dataset to identify 16 modules, and to compute the corresponding eigengenes 
(Supplementary File S6). The rest of the analysis on the breast cancer data was similar to the methodology that we 
developed to analyze leukemia, which is described in this paper.
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Data availability. All data analysed during this study are included in the Supplementary Information files, 
which can be used to reproduced the results.
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