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SUMMARY

In Bayesian brain theories, hierarchically related pre-
diction errors (PEs) play a central role for predicting
sensory inputs and inferring their underlying causes,
e.g., the probabilistic structure of the environment
and its volatility. Notably, PEs at different hierarchical
levels may be encoded by different neuromodulatory
transmitters. Here, we tested this possibility in
computational fMRI studies of audio-visual learning.
Using a hierarchical Bayesian model, we found that
low-level PEs about visual stimulus outcome were
reflected by widespread activity in visual and supra-
modal areas but also in the midbrain. In contrast,
high-level PEs about stimulus probabilities were en-
coded by the basal forebrain. These findings were
replicated in two groups of healthy volunteers. While
our fMRI measures do not reveal the exact neuron
types activated in midbrain and basal forebrain,
they suggest a dichotomy between neuromodulatory
systems, linking dopamine to low-level PEs about
stimulus outcome and acetylcholine tomore abstract
PEs about stimulus probabilities.

INTRODUCTION

The notion that the brain has evolved to implement a predictive

machinery for anticipation of future events has existed since

early cybernetic theories (Ashby, 1952). The mechanisms by

which the brain learns the probabilistic structure of the world

have been examined primarily from the perspective of reinforce-

ment learning (RL), with a focus on how reward learning is driven

by prediction errors (PEs) (Fletcher et al., 2001; McClure et al.,

2003; O’Doherty et al., 2003; Pessiglione et al., 2006;Wunderlich

et al., 2011). Another perspective is provided by theories that

view the brain as approximating optimal Bayesian inference

(Dayan et al., 1995; Doya et al., 2011; Friston, 2009; Knill and

Pouget, 2004; Körding and Wolpert, 2006). These theories go

beyond reward learning and have been applied to many aspects

of perception as, for example, in theories of ‘‘predictive coding’’
(Rao and Ballard, 1999) and the ‘‘free energy principle’’ (Friston

et al., 2006).

A central postulate of these Bayesian perspectives is that the

brain continuously updates a hierarchical generative model of its

sensory inputs to predict future events and infer on the causal

structure of the world. This belief updating process rests on mul-

tiple, hierarchically related PEs that are weighted by their preci-

sion. Notably, these PEs are not restricted to reward, but

concern all types of sensory events as well as their underlying

‘‘laws,’’ e.g., probabilistic associations and how these change

in time (volatility; Behrens et al., 2007). Simply speaking, esti-

mates of environmental volatility are updated in proportion to

PEs about stimulus probabilities; in turn, estimates of stimulus

probabilities are updated by PEs about stimulus occurrences.

While several empirical studies have examined human

behavior and brain activity from this Bayesian perspective, the

hierarchical nature of PEs has received little attention so far.

This is a significant gap, not only because hierarchically related

PEs are at the heart of the Bayesian formalism, but also because

PEs at different hierarchical levels may be linked to different neu-

romodulatory transmitter systems. While dopamine (DA) has

long been related to the encoding of PEs about reward (Daw

and Doya, 2006; Schultz et al., 1997), other modulatory neuro-

transmitters have been linked tomore abstract roles, such as en-

coding of ‘‘expected uncertainty’’ by acetylcholine (ACh) (Yu and

Dayan, 2002, 2005). Notably, this was (implicitly) operationalized

as a higher-level PE in that it represents the difference between a

conditional probability (degree of cue validity) and certainty.

Other computational concepts of ACh suggested that it may

be representing the learning rate (Doya, 2002). Again, this notion

can be related to hierarchical Bayesian accounts where the

learning rate at any given level is proportional to the precision

of predictions and evolves under the influence of the next higher

level in the hierarchy (Mathys et al., 2011). This weighting by pre-

cision (a form of adaptive scaling) is crucial and has been

described for DA responses to reward (Tobler et al., 2005) and

novelty (Bunzeck et al., 2010). Such a function may generalize

across neuromodulators: it has been suggested that both DA

and AChmay be involved in the precision-weighting of PEs (Fris-

ton, 2009; Friston et al., 2012).

Here, we present behavioral and fMRI studies that examine

possible links between neuromodulatory systems and hierarchi-

cal precision-weighted PEs during associative learning. The
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Figure 1. Task Design and Model

(A) Task design. Subjects had to predict within 800 ms (behavioral study), 1,000 ms (first fMRI study), or 1,200 ms (second fMRI study) which visual stimulus (face

or house) followed an auditory cue (high or low tone). In the behavioral study and first fMRI study, a monetary reward (0.05 or 5.00 Swiss Francs coin) was

randomly presented in one of the four corners. The type of coin presentedwas uncorrelated to visual stimulus outcome andwas omitted in the second fMRI study.

(B) Black: time-varying cue-outcome contingency, including strongly predictive cues (probabilities of 0.9 and 0.1), moderately predictive cues (0.7, 0.3) and

nonpredictive cues (0.5); red: example of a subject-specific trajectory of the posterior expectation of visual category.

(C) HGF: generative model. x1 represents the stimulus identity (category), x2 the cue-outcome contingency (the conditional probability of the visual stimulus given

the auditory cue) in logit space, and x3 represents the log-volatility of the environment. See Equations 2, 3, and 4 and Table S2.

See also Figures S1, S2, and S3 and Tables S1, S2, S4, S5, and S6.
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analyses rest on a recently developed hierarchical Bayesian

model, the Hierarchical Gaussian Filter (HGF) (Mathys et al.,

2011), which does not assume fixed ‘‘ideal’’ learning across sub-

jects but contains subject-specific parameters that couple the

hierarchical levels and allow for individual expression of (approx-

imate) Bayes-optimal learning. Using the subject-specific

learning trajectories, we examined whether activity in neuromo-

dulatory nuclei could be explained by precision-weighted PEs,

and if so, at which hierarchical level. In particular, we focused

on dopaminergic and cholinergic nuclei, using anatomical masks

specifically developed for these regions. Importantly, we exam-

ined 118 healthy volunteers from three separate samples, two of

which underwent fMRI (n = 45 and n = 27, respectively). This

enabled us to verify the robustness of our results and test which

of them would replicate across samples.

RESULTS

We report findings obtained from three separate samples of

healthy volunteers undergoing purely behavioral assessment

(n = 46) or combined fMRI-behavior (n = 45 and n = 27). All three

studies used a simple associative audio-visual learning task

where participants had to learn the time-varying predictive

strengths of auditory cues and predict upcoming visual stimuli
520 Neuron 80, 519–530, October 16, 2013 ª2013 Elsevier Inc.
(faces or houses) by button press (Figure 1). This task required

hierarchical learning about stimulus occurrences, stimulus prob-

abilities, and volatility that we modeled as a hierarchical

Bayesian belief updating process, using a standard HGF with

three levels (Mathys et al., 2011); see Experimental Procedures

for details.

Modeling of Behavioral Data
In a first step, we used random effects Bayesian model selec-

tion (BMS) (Stephan et al., 2009) to examine the possibility

that our subjects might have engaged in a different cognitive

process than intended, or may have used a different model

than hypothesized. In the behavioral study and first fMRI study,

we tried to ensure constant motivation of our participants by

associating each trial with a monetary reward whose potential

pay-out at the end of the experiment depended on successful

prediction of the visual outcome (face or house). Even though

subjects were explicitly instructed that these reward were

random and orthogonal to the visual outcomes, one may

wonder whether subjects’ learning might nevertheless have

been driven by (implicit) prediction of these trial-wise reward.

To exclude this possibility, we compared a three-level HGF

assuming that audio-visual associations were learned and

guided subjects’ behavior (HGF1; Figure 1C) to a second HGF
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that assumed that participants attempted to learn and predict

trial-wise reward (HGF2).

A second question was whether our participants were indeed

engaging in hierarchical learning and updating their learning rate

dynamically, as our Bayesian model assumed, or used a simpler

learning mechanism. To clarify this, we added two more models

to our comparison set. The models were a Bayesian model with

reduced hierarchical depth (HGF3) in which the third level was

eliminated from the hierarchy, and a standard Rescorla-Wagner

(RL) model with a fixed learning rate. Finally, we implemented a

RLmodel with dynamic learning rate (Sutton, 1992) that was rec-

ommended by one of the reviewers as a non-Bayesian alterna-

tive to HGF1. See the Supplemental Experimental Procedures

section C (available online) for more information on these

models.

Comparing these five models, we found that, across studies,

HGF1 was the superior model in 86 out of our 118 participants.

Examining each study separately, random effects BMS yielded

posterior model probabilities of 84% (behavioral study), 74%

(first fMRI study), and 72% (second fMRI study) for HGF1, which

was five to ten times higher than for the next best model in each

case (Table S1). As a consequence, in each study, the exceed-

ance probability in favor of HGF1 (i.e., the probability that its

posterior probability was higher than that of any other model

considered) (Stephan et al., 2009) was indistinguishable from

100%. These results provide strong evidence that our partici-

pants did learn the task-relevant conditional probabilities of vi-

sual stimuli (instead of predicting the incidental reward) and

were capable of updating their learning rate dynamically.

We next examined the estimates of the free parameters (k, w, z)

from the winning model (Table S2). These estimates were com-

parable across the three studies, as demonstrated by ANOVA:

none of the model parameters showed significant differences

across studies (k: F(2,115) = 1.04, p = 0.358; w: F(2,115) =

0.91, p = 0.405; z: F(2,115) = 2.98, p = 0.055). Additionally, we

used multiple regression to evaluate how well our model ex-

plained subjects’ behavior (percentage of correct responses).

This quantified model performance in terms of variance ex-

plained, complementary to the relative model comparison by

BMS above. This analysis showed that the linear combination

of the three model parameters predicted subjects’ task perfor-

mance well (behavioral study: R2 = 0.64, F(3,42) = 25.3, p <

0.001; first fMRI study: R2 = 0.59, F(3,41) = 20.1, p < 0.001; sec-

ond fMRI study: R2 = 0.63, F(3,23) = 13.2, p < 0.001).

fMRI Data Analysis
As detailed in the Experimental Procedures section, our fMRI

analysis focused on precision-weighted PEs and uncertainty es-

timates across the hierarchical levels of the HGF. For each of

these variables, our analysis proceeded in three steps (see

Experimental Procedures): first, we performed whole-brain ana-

lyses; second, we focused on our anatomically defined regions

of interest (ROIs), using a combined mask of dopaminergic and

cholinergic nuclei in the brain stem and subcortex; finally, we

conducted these fMRI analyses separately in two independent

samples of n = 45 and n = 27 volunteers. Note that we only

report those findings that survived stringent family-wise error

(FWE) peak-level correction for multiple tests (p < 0.05) and
that could be replicated across studies. Replication was as-

sessed using a voxel-wise ‘‘logical AND’’ operation on the

FWE-thresholded activation maps from both fMRI studies, and

only those activations are being reported in which this proce-

dure showed an overlap of significant activations in both fMRI

studies.

Low-Level Precision-Weighted Prediction Errors

Initially, we examined the precision-weighted PE about visual

stimulus outcome, ε2 (for mathematical details, see Experimental

Procedures and the Supplemental Experimental Procedures,

section A). In both fMRI studies, our whole-brain analyses

demonstrated significant activations in a widely distributed set

of regions (Table 1; Figure 2). In addition to the visual cortex

(around the calcarine sulcus), the activity of numerous supramo-

dal regions correlated positively with trial-wise estimates of ε2,

including the middle and inferior frontal gyri, anterior cingulate

cortex (ACC), intraparietal sulcus (IPS), and anterior insula, all

located bilaterally. Perhaps the most notable finding, however,

was a significant activation of the midbrain (ventral tegmental

area [VTA]/substantia nigra [SN]). In both fMRI studies, this

VTA/SN activation not only survived FWE correction within our

anatomically defined mask, but also across the whole brain

(p < 0.05; Figure 3). This finding is remarkable because the pre-

cision-weighted PE ε2 concerns a purely sensory event: the

visual stimulus category predicted by the auditory cue. This

conclusion is supported by the BMS analysis of the behavioral

data described above that demonstrated that in the first fMRI

study subjects were not trying to predict reward but visual out-

comes. Furthermore, in the second fMRI, study rewards were

omitted entirely while keeping sensory stimulation and task de-

mands identical.

Interestingly, as implied by predictive coding theories (cf. Fris-

ton, 2005), regions whose activity correlated positively with PEs

about visual inputs considerably overlapped with regions that

activated on each trial, regardless of the computational state

and stimulus category (‘‘task execution per se’’). Figure 4 shows

the results of a nested conjunction analysis: this combined the

conjunction analyses of contrasts testing for task execution

per se (i.e., a statistical contrast on the base regressor encoding

trial events, not the parametric modulators) and for ε2, respec-

tively, across both fMRI studies. These results indicated that in

both studies, primary visual cortex (calcarine sulcus), bilateral

IPS, right dorsolateral prefrontal cortex (DLPFC), and right ante-

rior insula were activated by the task per se and by precision-

weighted PEs about stimulus category. Please note that this

is an extremely conservative analysis: all conjunction analyses

tested the conjunction null hypothesis, i.e., a ‘‘logical AND’’

(Nichols et al., 2005), with all contrasts thresholded at p < 0.05

(FWE whole-brain corrected), and the combination of these

conjunctions across both studies corresponded to a double

logical AND.

The results reported so far refer to the outcome prediction er-

ror ε2; this is the (precision-weighted) difference between the

actual visual stimulus outcome and its a priori probability (i.e.,

before trial outcome observation). However, we can also use

the predictions from our model to examine activations reflecting

choice prediction error εch; this is the difference between the cor-

rectness of the subject’s choice and the a priori probability of this
Neuron 80, 519–530, October 16, 2013 ª2013 Elsevier Inc. 521



Table 1. Whole-Brain Activations by ε2

fMRI study 1 Hemisphere x y z t Score fMRI Study 2 Hemisphere x y z t Score

ε2: Positive Correlation ε2: Positive Correlation

Middle frontal gyrus/ Anterior/

middle cingulate cortex

R 34 8 57 10.25 Middle frontal gyrus R 34 14 55 7.95

Insula R 33 24 �3 10.13 Anterior/middle cingulate cortex R 2 30 40 8.91

Inferior parietal cortex R 39 �49 45 9.49 Insula R 32 24 �3 10.85

Precuneus R 8 �69 49 9.00 Inferior parietal cortex R 38 �46 46 8.98

Intraparietal sulcus/

inferior parietal cortex

L �28 �61 43 8.53 Precuneus R 4 �70 46 8.70

Inferior frontal gyrus L �44 26 31 8.25 Intraparietal sulcus/ inferior

parietal cortex

L �28 �61 39 7.59

Insula L �30 24 �0 7.96 Inferior frontal gyrus L �44 24 33 9.30

Middle frontal gyrus L �28 5 63 7.52 Insula L �28 24 �3 9.20

Middle frontal gyrus L �27 50 15 6.30 Middle frontal gyrus L �28 11 60 7.92

Lingual gyrus L �8 �78 3 5.55 Middle frontal gyrus L �28 53 13 6.88

Lingual gyrus R 2 �78 3 5.36 Lingual gyrus L �12 �81 4 5.29

Supramarginal gyrus R 48 �48 27 5.40 Lingual gyrus R 2 �82 4 5.09

Cerebellum L �30 �57 �32 5.35 Cerebellum L �30 �55 �32 6.16

Middle temporal gyrus R 58 �30 �8 5.21 Supramarginal gyrus R 45 �46 25 6.59

VTA / substantia nigra R 3 �24 �18 5.12 Middle temporal gyrus R 56 �30 �8 6.18

Prefrontal cortex L �16 14 64 5.00 VTA / substantia nigra R 2 �21 �18 5.06

Prefrontal cortex L �18 18 66 8.30

All results: p < 0.05 FWE whole-brain corrected. MNI coordinates and t values for regions activated by ε2, the precision-weighted PE about stimulus

outcome, in the first and second fMRI study. Only those activations are listed that were replicated across studies. The activation in the first row consti-

tuted a single cluster in the first study, whereas it was split into two separate clusters in the second study.
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choice being correct (see the Supplemental Experimental Proce-

dures, section B, for formal definitions of both PEs).

In both fMRI studies, choice PEs evoked prominent activa-

tions (p < 0.05 FWEwhole-brain corrected; Figure 5) in numerous

regions, including the bilateral ventral striatum, ventromedial

prefrontal cortex, OFC and ACC (for a complete list, see Table

S7). Activations of these regions are commonly found for reward

PEs, and it is remarkable that we obtain a similar activation

pattern even though in our studies learning was orthogonal to

reward (fMRI study 1) and reward were absent (fMRI study 2).

Finally, it is notable that the activation of the ventral striatum

also extended into the basal forebrain, as delineated by our

anatomical mask (p < 0.05 FWE corrected for the entire mask

volume).

High-Level Precision-Weighted Prediction Errors

Subsequently, we investigated precision-weighted PEs at the

next higher level of the hierarchy in our Bayesian model. This

PE, ε3, concerns the cue-outcome contingency, i.e., the proba-

bility (in logit space) of the visual stimulus category given the

auditory cue, and is used to update estimates of log-volatility

at the third level of the HGF. We found that the trial-wise expres-

sion of this PE correlated positively with activity in the septal part

of the cholinergic basal forebrain (Table 2; Figure 6). In both fMRI

studies, this activation was significant (p < 0.05) when corrected

for multiple comparisons across the volume of our anatomically

defined mask (that included all cholinergic and dopaminergic

nuclei in brain stem and subcortex).
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DISCUSSION

In this study, three independent groups of healthy volunteers (n =

118 in total) performed an audio-visual associative learning task

that required explicit predictions about an upcoming visual stim-

ulus category (face or house) given a preceding auditory cue.

Because the cue-outcome contingencies were varying unpre-

dictably in time, optimal performance required hierarchical

learning about conditional stimulus probabilities and their

change in time.

Our analyses showed that participants were indeed likely to

engage in such a hierarchical learning process. Formal statistical

comparisonof fivealternativemodels indicated that a hierarchical

Bayesian model (a three-level HGF) best explained the observed

behavioral data. Applying the computational trajectories from this

model to fMRI data, we found that precision-weighted PEs about

visual outcome, ε2, were not only encoded by numerous cortical

areas, including dopaminoceptive regions like DLPFC, ACC, and

insula, but alsoby thedopaminergic VTA/SN.Notably,we verified

both statistically and experimentally that these PE responses

concerned visual stimulus categories and not reward. At the

higher level of the model’s hierarchy, precision-weighted PEs

about cue-outcome contingencies (conditional probabilities of

the visual outcome given the auditory cue), ε3, were reflected by

activity in the cholinergic basal forebrain.

Our findings have two important implications. First, our results

are in accordance with a central notion in Bayesian theories of
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first fMRI study
x = 3, y = 25, z = 47

second fMRI study
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conjunction across studies
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Figure 2. Whole-Brain Activations by ε2

Activations by precision-weighted prediction error about visual stimulus outcome, ε2, in the first fMRI study (A) and the second fMRI study (B). Both activation

maps are shown at a threshold of p < 0.05, FWE corrected for multiple comparisons across the whole brain. To highlight replication across studies, (C) shows the

results of a ‘‘logical AND’’ conjunction, illustrating voxels that were significantly activated in both studies.

See Table S3 for deactivations.

Neuron

Hierarchical Prediction Errors in Sensory Learning
brain function, such as predictive coding (Friston, 2005; Rao and

Ballard, 1999): even seemingly simple processes of perceptual

inference and learning do not rest on a single PE but rely on hier-

archically related PE computations. As a corollary, one would

expect a widespread expression of PEs within the neuronal sys-

tem engaged by a particular task. Indeed, we found a remarkable

overlap of areas involved in the execution of the task and areas

expressing PEs (Figure 4). Second, our findings suggest a poten-

tial dichotomy with regard to the computational roles of DA and

ACh. According to our results, the midbrain may be encoding

outcome-related PEs, independent of extrinsic reward. In

contrast, the basal forebrain may be signaling more abstract

PEs that do not concern sensory outcomes per se but their prob-

abilities. In the following, we will discuss these two implications

in the context of the previous literature.

Since early accounts of general systems theory and cyber-

netics (Ashby, 1952), the notion of PE as a teaching signal for

adaptive behavior has taken an increasingly central place in the-

ories of brain function. In contemporary neuroscience, PEs play

a pivotal role in two frameworks, reinforcement learning (RL)

and Bayesian theories. Studies inspired by RL have largely

focused on the role of reward PEs, suggesting that these are en-

coded by phasic dopamine release from neurons in VTA/SN

(Montague et al., 2004; Schultz et al., 1997). In humans, this

has been supported by fMRI studies that have demonstrated

the presence of reward PE signals in the VTA/SN (e.g., D’Ard-

enne et al., 2008; Diuk et al., 2013; Klein-Flügge et al., 2011)

or in regions targeted by its projections, such as the striatum

(Gläscher et al., 2010; McClure et al., 2003; Murray et al.,

2008; O’Doherty et al., 2003; Pessiglione et al., 2006; Schon-

berg et al., 2010).

While RL models have also been used to study PE-dependent

learning in the sensory domain (den Ouden et al., 2009; Law and

Gold, 2009), amore prevalent framework to study perception has

been the ‘‘Bayesian brain hypothesis’’ that the brain constructs

and updates a generative model of its sensory inputs (Doya

et al., 2011). One particular formulation of this hypothesis is pre-
dictive coding (Friston, 2005; Rao and Ballard, 1999) that postu-

lates that PEs are weighted by their precision and are computed

at any level of hierarchically organized information processing

cascades, as in sensory systems. This has been examined by

several fMRI studies that contrasted predictable versus unpre-

dictable visual stimuli, finding PE responses in visual areas

specialized for the respective stimuli used (Harrison et al.,

2007; Summerfield and Koechlin, 2008) and precision-weighting

under attention (Kok et al., 2012). Other studies have used an

explicit model of trial-wise PEs, using visual (Egner et al., 2010)

or audio-visual associative learning (den Ouden et al., 2010;

den Ouden et al., 2009) paradigms. Notably, these studies did

not have explicit readouts of subjects’ predictions and used rela-

tively simplemodeling approaches: they either described implicit

learning processes (in the absence of behavioral responses) us-

ing a delta-rule RL model (den Ouden et al., 2009; Egner et al.,

2010), or dealt with indirect measures of prediction (e.g., reaction

times) using an ideal Bayesian observer with a fixed learning tra-

jectory across subjects (den Ouden et al., 2010).

Our present study goes beyond these previous attempts by (1)

requiring explicit trial-by-trial predictions, and (2) characterizing

learning via a hierarchical Bayesian model that provides subject-

and trial-specific estimates of precision-weighted PEs at

different hierarchical levels of computation. Based on these

advances, the present study shows much more widespread

sensory PE responses than previously reported. Replicated in

two separate groups, these responses were not only found in

the visual cortex, but also in many supramodal areas in prefron-

tal, cingulate, parietal, and insular cortex (Figure 2). Whereas a

distribution of reward (Vickery et al., 2011) and value signals

(FitzGerald et al., 2012) across the whole brain have recently

been demonstrated in humans, this has not yet been shown, to

our knowledge, for PEs; in this case, precision-weighted PEs

about the sensory outcome (visual stimuli).

Perhaps themost interesting aspect of our findings on sensory

outcome PEs, ε2, was the significant activation of the midbrain.

In humans, strong empirical evidence exists for DA involvement
Neuron 80, 519–530, October 16, 2013 ª2013 Elsevier Inc. 523
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Figure 3. Midbrain Activation by ε2

Activation of the dopaminergic VTA/SN associ-

ated with precision-weighted prediction error

about stimulus category, ε2. This activation is

shown both at p < 0.05 FWEwhole-brain corrected

(red) and p < 0.05 FWE corrected for the volume of

our anatomical mask comprising both dopami-

nergic and cholinergic nuclei (yellow).

(A) Results from the first fMRI study.

(B) Second fMRI study.

(C) Conjunction (logical AND) across both studies.
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in processing reward PEs (Montague et al., 2004; Schultz et al.,

1997) and novelty (Bunzeck and Düzel, 2006). In animal

studies, dopaminergic midbrain responses to visual stimuli

have been reported in the absence of reward; however, this

required that the stimuli were novel, arousing or physically similar

to reward-related stimuli (Horvitz, 2000; Redgrave and Gurney,

2006; Schultz, 1998). In contrast, in our study the VTA/SN

responses scaled with trial-by-trial precision-weighted PE

about the stimulus category; these were neither reward-related,

arousing nor novel (we kept repeating two to four face and

house stimuli in each study). One could think of VTA/SN activity

reflecting conditional novelty (Bayesian surprise); however,

this is not a tight link because ε2 is only related but not iden-

tical to Bayesian surprise (see Supplemental Experimental

Procedures).

An important caveat is that we cannot claim with certainty

that the midbrain activation we found specifically reflects the

activity of DA neurons in VTA/SN because this region is not

homogenous in its cellular composition and also contains

glutamatergic and GABAergic neurons (Nair-Roberts et al.,

2008). In particular, our anatomical mask does not distinguish

pars compacta and pars reticularis of the SN; the latter

contains GABAergic neurons whose contribution to the

blood oxygen level-dependent (BOLD) signal is not well

understood (Logothetis, 2008). While multimodal investigations

have demonstrated good correspondence between striatal DA

release and BOLD signal in VTA/SN in response to reward PEs

or novel stimuli (see Düzel et al., 2009 for review), this relation

still remains to be established for sensory PEs. Similar caveats

apply to our findings on the basal forebrain, which also con-

tains other neurons than only cholinergic ones (Zaborszky

et al., 2008).

With this caveat in mind, our study suggests that in humans

the dopaminergic midbrain may not only encode PEs about

reward, but also precision-weighted PEs about purely sensory

outcomes. To our knowledge, similar midbrain activations have

not been reported in previous studies on reward-unrelated

learning (e.g., d’Acremont et al., 2013; Gläscher et al., 2010).

Notably, our experiments were designed to detect brainstem ac-

tivations, including an optimized fMRI sequence and careful

correction for physiological (cardiac and respiratory) noise.

Last but not least, our studies had considerably larger sample

sizes, and consequently higher statistical power, than previous

fMRI studies on reward-unrelated learning.

It is worth mentioning that the recent study by Ide et al. (2013),

which reports activity for unsigned PEs (Bayesian surprise) in
524 Neuron 80, 519–530, October 16, 2013 ª2013 Elsevier Inc.
ACC during a Go/NoGo task, does show a midbrain activation

(their Figure 3); however, this is not a sensory PE but reflects a

main effect of stop versus go trials. Another recent fMRI study

(Payzan-LeNestour et al., 2013) on neuromodulatory mecha-

nisms during learning focused on different forms of uncertainty

and on the noradrenergic system but did not report any findings

related to PEs, nor to DA or ACh, as in this study.

In animal studies, disentangling responses to sensory and

reward aspects of stimuli is often difficult because stimulus-

bound reward are required to maintain motivation (Maunsell,

2004). In our study, however, the finding of a sensory PE

response in the midbrain cannot easily be explained by any (hid-

den) reward effect since we controlled for the potential influence

of reward in two ways. In the first fMRI study, we orthogonalized

reward delivery to the task-relevant predictions about visual

stimuli; additionally, we verified by model comparison that our

subjects’ decisions were unlikely to be driven by reward predic-

tions. In our second fMRI study, we entirely omitted any reward,

yet found exactly the same VTA/SN response to PEs about visual

stimuli as in the first fMRI study (Figure 3).

Beyond PEs about visual stimulus category, our hierarchical

model also enabled us to examine higher-level PEs. Specifically,

in both fMRI studies, we found a significant activation of the

cholinergic basal forebrain by the precision-weighted PE ε3

about conditional probabilities (of the visual stimulus given the

auditory cue) or, equivalently, cue-outcome contingencies.

This finding provides a new perspective on possible computa-

tional roles of ACh. In the previous literature, the release of

acetylcholine has been associated with a diverse range of func-

tions, including working memory (Hasselmo, 2006), attention

(Demeter and Sarter, 2013), or learning (Dayan, 2012; Doya,

2002).

A recent influential proposal was that ACh levels may encode

the degree of ‘‘expected uncertainty’’ (EU) (Yu and Dayan, 2002,

2005). Operationally, EU was defined (in slightly different ways

across articles) in reference to a hidden Markov model repre-

senting the relation between contextual states, cue validity,

and sensory events. Notably, Yu and Dayan (2002, 2005) implic-

itly defined EU as a high-level PE, in the sense that it represents

the difference between a conditional probability (degree of cue

validity) and certainty. Despite clear differences in the underlying

models, this definition is conceptually related to ε3 in our model

(see Supplemental Experimental Procedures, section A, for de-

tails) that we found was encoded by activity in the basal fore-

brain. Our empirical findings thus complement the previous

theoretical arguments by Yu and Dayan (2002, 2005), offering a
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Figure 4. Overlap of Activations by Task Execution Per Se and ε2

Conjunction analysis (‘‘logical AND,’’ conjunction null hypothesis) of the contrasts testing for trial events and for the precision-weighted prediction error about

stimulus visual outcome, ε2.

(A) First fMRI study.

(B) Second fMRI study.

(C) Results of a double conjunction, i.e., the conjunction of the results from (A) and (B) across both studies.
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related perspective on ACh function by conceptualizing it as a

precision-weighted PE about conditional probabilities (cue-

outcome contingencies). The precision-weighting of this PE

also relates our results on basal forebrain activation to the previ-

ous suggestion of a link between ACh and learning rate (Doya,

2002). This is because, in its numerator, c3 (the precision weight

of ε3) contains an equivalent to a dynamic learning rate (Preusch-

off and Bossaerts, 2007) for updating cue-outcome contin-

gencies (see Equation A.10 in the Supplemental Experimental

Procedures, section A and Equation 27 in Mathys et al., 2011).

In summary, our findings are important in two ways. First, they

provide empirical support for the importance of precision-

weighted PEs as postulated by the Bayesian brain hypothesis.

Furthermore, they contribute to the ongoing debate about the

computational roles of neuromodulatory transmitters (Dayan,

2012), suggesting a more general role for DA than only encoding

reward-related PEs and providing empirical evidence for ACh

involvement in representing higher-order PEs (about conditional

probabilities). Our results are compatible with the notion that

multiple neuromodulators may be involved in the precision-

weighting of PEs (Friston, 2009), but suggest separable roles

for DA and ACh at different hierarchical levels of learning.

In future analyses, we will focus on elucidating how these PEs

may be used as ‘‘teaching signals’’ for synaptic plasticity (ex-

pressed through changes in effective connectivity; cf. den Ou-

den et al., 2010). We hope that, eventually, this work will

contribute to establishing neurocomputational assays that allow

for inference on neuromodulatory function in the brains of indi-

vidual patients. If successful, this could have far-reaching impli-

cations for diagnostic procedures in psychiatry and neurology

(Maia and Frank, 2011; Moran et al., 2011; Stephan et al., 2006).

EXPERIMENTAL PROCEDURES

Subjects

This article reports findings obtained from three separate samples of healthy

volunteers. The three studies used nearly identical experimental paradigms,
enabling us to test which results would survive replication, both in the pres-

ence of monetary reward (behavioral study and first fMRI study) and in their

absence (second fMRI study).

The first sample containing 63 male volunteers (mean age ± SD: 21 ± 2.2

years) was examined behaviorally only. The second sample (48 male volun-

teers; 23 ± 3.1 years) and third sample (27 male volunteers; 21 ± 2.2 years)

underwent both behavioral assessment and fMRI (the third sample corre-

sponded to the placebo group from a pharmacological study whose results

will be reported elsewhere). We only employed male participants to exclude

variations of hormonal effects on the BOLD signal during the menstrual cycle.

The participants were all nonsmokers, without any psychiatric or neurological

disorders in their past medical history and were not taking any medication.

All three studies employed a near-identical audio-visual associative learning

task (see below). Prior to data analysis, each subject’s data was examined for

invalid trials. These were defined as missed responses or as trials with exces-

sively long reaction times (late responses; >1,100 ms in the behavioral study,

>1,300 ms in the first fMRI study, and >1,500 ms in the second fMRI study).

Subjects with more than 20% invalid trials or less than 65% correct responses

were excluded from further analyses. These criteria led to the exclusion of 17

participants in the behavioral study and three participants in the first fMRI

study; no participants were excluded from the second fMRI study. As a conse-

quence, the final data analysis included 46 subjects from the behavioral study

(21 ± 2.3 years), 45 subjects from the first fMRI study (23 ± 3.0 years), and 27

subjects from the second fMRI study (21 ± 2.2 years). All participants gave

written informed consent before the study, which had received ethics approval

by the local responsible authorities (Kantonale Ethikkommission, KEK 2010-

0312/3 for the behavioral and first fMRI study, KEK 2011-0101/3 for the second

fMRI study).

Experimental Design: Associative Learning Task

A cross-modal associative learning task (audio-visual stimulus-stimulus

learning [SSL]) was used in all three studies (Figure 1) where participants

had to learn the predictive strength of auditory cues and predict a subsequent

visual stimulus. Notably, this prediction was explicit and indicated by button

press before the visual stimulus appeared. The task design was near-identical

in all three studies; the only variations concerned: (1) response interval (800ms

in the behavioral study, 1,000 ms and 1,200 ms in the first and second fMRI

studies), (2) duration of the visual outcome presentation (150 ms in the behav-

ioral and first fMRI study, 300 ms in the second fMRI study), and (3) the pres-

ence or absence of trial-wise monetary reward (see below).

Stimuli were presented using Cogent2000 (http://www.vislab.ucl.ac.uk/

Cogent/index.html). Trials were presented with a randomized intertrial interval
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Figure 5. Choice Prediction Error

Activations by choice prediction error, εch, in the first (A) and the second fMRI study (B). Both activation maps are shown at a threshold of p < 0.05, FWE corrected

for multiple comparisons across the whole brain. To highlight replication across studies, (C) shows the results of a ‘‘logical AND’’ conjunction, illustrating voxels

that were significantly activated in both studies.

See also Table S7.
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(ITI) of 1.5–2.5 s. At the beginning of each trial, participants heard one of two

possible auditory cues for 300 ms, a high (576 Hz) or a low tone (352 Hz). To

ensure that both tones were perceived equally loudly, subjects performed

an initial psychophysical matching task in which they had to adapt the volumes

until they perceived both cues as equally loud (cf. den Ouden et al., 2010).

Following the cue, participants had to signal their prediction by button press

(right index and middle finger), as quickly and as accurately as possible, which

of two possible visual outcome categories (houses and faces) would follow.

These comprised a small subset of stimuli (two to four) from our previous

work (den Ouden et al., 2010).

Critically, in our task the cue-outcome association strength changed over

time (i.e., reversal learning), including strongly predictive (probabilities of 0.9

and 0.1), moderately predictive (0.7, 0.3), and nonpredictive cues (0.5). Each

subject completed 320 trials, divided into ten blocks of different association

strengths. Our stimulus sequence (Figure 1B) had two key features: both block

length (24 to 40 trials) and magnitude of changes in cue-outcome contingency

varied unpredictably across blocks. Over the experiment, this led to changes

in two related variables of interest: (1) volatility, and (2) precision-weighted pre-

diction error about cue-outcome contingency ε3 (a proxy to ‘‘expected uncer-

tainty’’; see Discussion). Please note that in our modeling framework, there is a

formal connection between the concepts of volatility and expected uncer-

tainty: ε3 depends on the previous estimate of log-volatility m3; in turn, ε3 deter-

mines the updating of m3 (see Equations A.10 and A.11 in the Supplemental

Experimental Procedures).

The probability sequence was pseudorandom and fixed across subjects to

ensure comparability of the induced learning process and thus model param-

eter estimates. Subjects were informed in which range the probabilities could

change but not about their order or possible values. Also, as in previous work

(den Ouden et al., 2010), they were explicitly instructed that the conditional

probabilities were coupled as follows (f: face; h: house; ♪=[ : high tone;

♪=Y : low tone):

pðf j♪=[Þ= 1� pðhj♪=[Þ=pðhj♪=YÞ= 1� pðf j♪=YÞ:
(Equation 1)

We ensured that the marginal probabilities of face and house outcomes

were identical across the experiment and could thus not bias the participants’

predictions. This was achieved by requiring that (1) the probability of one

outcome given a particular cue was the same as the probability of the other

outcome given the other cue (Equation 1), and (2) in each block, both cue types

appeared equally often and in randomorder.With these twomanipulations, we

ensured that, on average, before the cuewas presented, the a priori probability

of a face or a house occurring was 50% each. Thus, on any given trial, it was
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not possible to make an informed prediction about the outcome before having

heard the cue.

In the behavioral study and first fMRI study, each trial was associated with a

potential monetary reward. Specifically, at the end of each trial the visual

outcome was presented for 150 ms in the center of the image, together with

a coin (5 CHF or 0.05 CHF) randomly located in one of the corners (Figure 1A).

Critically, reward size was uncorrelated to the visual outcome to be predicted.

In other words, high and low reward appeared randomly on 50% of the trials

each, ensuring that any cue would predict any reward with 50% probability.

At the end of the experiment, we applied a simple pay-out rule: 100 low-

rewarding trials and one high-rewarding trial were randomly chosen, and the

summed reward from correct trials only was paid out (note that the maximal

possible net value for both low- and high-reward trials was identical, i.e., 5

CHF). This procedure was used to motivate the participants to deliver

constantly high performance throughout the experiment: by minimizing the

number of incorrect predictions about the visual outcome, participants would

maximize their expected total reward.

Although we instructed our participants explicitly that the reward sequence

was random and could not be learned, one might wonder whether some sub-

jects might nevertheless have tried to predict upcoming reward instead of

visual outcomes. We therefore also modeled any putative learning of the

orthogonal reward and performed model comparison to quantify whether pre-

dictions of visual outcomes or reward would better explain the subjects’

observed behavior (see below). Finally, in the second fMRI study, we omitted

reward. This enabled us to examine experimentally whether behavior and fMRI

activations would remain identical when monetary reward were absent.

Hierarchical Gaussian Filter

For behavioral data analysis, we applied a Hierarchical Gaussian Filter (HGF)

that describes learning at multiple levels and allows for inference on an agent’s

belief about the causes of its sensory inputs (Mathys et al., 2011). The HGF

rests on a variational approximation to ideal hierarchical Bayes, which conveys

two major advantages. First, the HGF allows for individualized Bayesian

learning: it contains subject-specific parameters that couple the different

levels of the hierarchy and determine the individual learning process. Second,

the update equations are analytic and contain reinforcement learning as a spe-

cial case, with precision-weighted prediction errors (PEs) driving belief updat-

ing at the different levels of the hierarchical model (see below).

Here, we implemented a three-level HGF as described by Mathys et al.

(2011) and summarized by Figure 1C, using the HGF Toolbox v2.1 that is avail-

able as open source code (http://www.translationalneuromodeling.org/tapas).

The first level of this model represents a sequence of environmental states x1
(here: whether a face or housewas presented), the second level represents the

http://www.translationalneuromodeling.org/tapas


Table 2. Basal Forebrain Activations by ε3

fMRI Study 1 X y z t Score fMRI Study 2 x Y z t Score

ε3: Positive Correlation ε3: Positive Correlation

Basal forebrain 0 10 �8 4.22 Basal forebrain 0 10 �8 5.02

MNI coordinates and t values for regions activated by ε3, the precision-weighted PE about stimulus probability in the first and second fMRI study. Only

those activations are listed that were replicated across studies.
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cue-outcome contingency x2 (i.e., the conditional probability, in logit space, of

the visual target given the auditory cue), and the third level the log-volatility of

the environment x3. Each of these hidden states is assumed to evolve as a

Gaussian random walk, such that its variance depends on the state at the

next higher level (Figure 1C):

pðx1jx2Þ= sðxÞx1 ð1� sðx2ÞÞ1�x1 =Bernoulliðx1; sðx2ÞÞ;
(Equation 2)
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where s($) is a sigmoid function.

In Equations 2, 3, and 4, w determines the speed of learning about the log-

volatility of the environment; k determines how strongly the second and third

levels are coupled and thus how much the estimated environmental volatility

affects the learning rate at the second level; and u is a constant component

of the step size at the second level. Finally, the predicted probability of a visual

target given the auditory cue (i.e., the posterior mean of x2) is linked to trial-wise

predictions of visual stimulus category by means of a softmax function with

parameter z (encoding decision noise). Our three-level HGF for categorical

outcomes thus has four parameters. In our implementation, three of them

were free (w, k, z), whereasuwas fixed to�4 in our analyses in order to ensure

model identifiability.

Importantly, the variational approximation underlying the HGF provides an-

alytic update equations that share a general form: At any level i of the hierarchy,

the update of the belief on trial k (i.e., posterior mean m
ðkÞ
i of the state xi) is pro-

portional to the precision-weighted prediction error (PE) ε
ðkÞ
i . This weighted PE

is the product of the PE d
ðkÞ
i�1 from the level below and a precision ratio j

ðkÞ
i :

m
ðk + 1Þ
i � m

ðkÞ
i fj

ðkÞ
i d

ðkÞ
i�1 = ε

ðkÞ
i ; (Equation 5)

j
ðkÞ
i =

bpðkÞ
i�1

p
ðkÞ
i

; (Equation 6)

where bpðkÞ
i�1 represents the precision of the prediction about input from the level

below andp
ðkÞ
i encodes the precision of the belief at the current level. The form

of this general update equation is reminiscent of RL models. Specifically, the

precision-weighting can be understood as (component of) a dynamic learning

rate (cf. Preuschoff and Bossaerts, 2007); see Mathys et al. (2011) and section

A of the Supplemental Experimental Procedures for details.

In our three-level HGF, two precision-weighted PEs εi occur. At the second

level, ε2 is the precision-weighted PE about visual stimulus outcome that

serves to update the estimate of x2 (the cue-outcome contingency in logit

space). At the third level, ε3 is the precision-weighted PE about cue-outcome

contingency that is proportional to the update of x3 (environmental log-vola-

tility). These are the two quantities of interest that the fMRI analyses in this

article focus on. For the exact equations, see the Supplemental Experimental

Procedures, section A.

fMRI Data Acquisition and Analysis

The experiment was conducted on a 3T Philips Achieva MR Scanner at the

SNS Lab, using an eight channel SENSE head-coil. Structural images were ac-
quired using a T1-weighted sequence. For functional imaging, 500 whole-brain

images were acquired in the first fMRI study and 550 images in the second

fMRI study, using a T2*-weighted echo-planar imaging sequence that had

been optimized for brain stem imaging (slice thickness: 3 mm; in-plane resolu-

tion: 2 3 2 mm; interslice gap: 0.6 mm; ascending continuous in-plane acqui-

sition; TR = 2,500 ms; TE = 36 ms; flip angle = 90�; field of view = 1923 1923

118 mm; SENSE factor = 2; EPI factor = 51). In order to reduce field inhomo-

geneities a second order pencil-beam volume shim (provided by Philips) was

applied during the functional acquisition. Functional data acquisition lasted

�21min. During fMRI data acquisition, respiratory and cardiac activity was ac-

quired using a breathing belt and an electrocardiogram, respectively.

fMRI data were analyzed using statistical parametric mapping (SPM8).

Following motion correction of the functional images and coregistration to

the structural image, we warped both functional and structural images to

MNI space using the ‘‘New Segment’’ toolbox in SPM; see Appendix A in Ash-

burner and Friston (2005). The functional images were smoothed applying a

6 mm full-width at half maximum Gaussian kernel and resampled to 1.5 mm

isotropic resolution. In order to optimize signal-to-noise ratio for critical regions

such as the brain stem, we corrected for physiological noise using

RETROICOR (Glover et al., 2000) based on an in-house implementation

(Kasper et al., 2009) (open source code available at http://www.

translationalneuromodeling.org/tapas).

For fMRI data analysis, we specified a voxel-wise general linear model

(GLM) for each participant. In the first fMRI study, this GLM reflected a 2 3 2

factorial design with visual outcome category (face, house) and incidental

reward stimulus (high, low) as factors. In the second fMRI study, reward stimuli

were absent; therefore, the GLM only contained the two visual outcome

conditions. Additionally, wemodeled missed and late responses, respectively,

by separate regressors. All regressors were convolved with a canonical hemo-

dynamic function and its temporal derivative. The subject-specific belief

trajectories, obtained from the HGF, were used in theGLM as parametric mod-

ulators. These variables included (cf. Equations 2, 3, 4, 5, and 6; Figures S1

and S2):

(1) ε2, the precision-weighted PE about visual stimulus outcome (that

serves to update the estimate of visual stimulus probabilities in logit

space);

(2) ε3, the precision-weighted PE about cue-outcome contingency (that

serves to update the estimate of log-volatility);

(3) c2, precision weight at the second level; this corresponds to the

learning rate by which estimates of cue-outcome contingency are

updated;

(4) c3, precision weight at the third level; this is proportional to the learning

rate by which log-volatility estimates are updated;

(5) m3, the predicted log-volatility; and

(6) εch, the choice prediction error.

Importantly, choice PE εch and precision-weighted outcome PE ε2 have

distinct definitions (see sections A and B of the Supplemental Experimental

Procedures for mathematical details). The choice PE εch is the difference be-

tween the correctness of the subject’s choice (1 if choice was correct, 0 other-

wise) and the a priori probability of this choice being correct. This PE is positive

when the subject’s choice was correct and negative when it was wrong. In

contrast, ε2 multiplies two components (Equations 5 and 6): (1) the precision

weight j
ðkÞ
i (that is always positive), and (2) d1, the difference between the

actual visual stimulus outcome and its a priori probability (also always posi-

tive); the latter corresponds to Bayesian surprise and is bounded between

0 and 1.
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Figure 6. Basal Forebrain Activations by ε3

Activation of the cholinergic basal forebrain associated with precision-

weighted prediction error about stimulus probabilities ε3 within the anatomi-

cally defined mask. For visualization of the activation area we overlay the

results thresholded at p < 0.05 FWE corrected for the entire anatomical mask

(red) on the results thresholded at p < 0.001 uncorrected (yellow) in the first (A:

x = 3, y = 9, z =�8) and the second fMRI study (B: x = 0, y = 10, z =�8). (C) The

conjunction analysis (‘‘logical AND’’) across both studies (x = 2, y = 11, z =�8).
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Importantly, the GLM used all computational trajectories in their original

form, without any orthogonalization. Thus, we did not impose any judgment

on the relative importance of regressors for explaining the fMRI data. Also,

the timings of our events were chosen such that PE estimates were time-

locked to the visual outcome at the end of the trial; prediction and precision re-

gressors spanned the entire trial and changed at outcome, according to the

update induced by the PE.

Our subject-specific (first-level) GLM also included regressors representing

potential confounds. This included the realignment parameters (encoding

head movements) and their first derivative, a regressor marking scans with

>1 mm scan-to-scan head movement, and physiological confound variables

(cardiac activity and breathing), provided by RETROICOR.

In addition to whole-brain analyses, we performed ROI analyses based on

anatomical masks of dopaminergic and cholinergic nuclei. These included

(1) the dopaminergicmidbrain (SN and VTA), (2) the cholinergic basal forebrain,

(3) cholinergic nuclei in the tegmentum of the brainstem, i.e., the pedunculo-

pontine tegmental (PPT) and laterodorsal tegmental (LDT) nuclei. For the

VTA/SN, we used an anatomical atlas based on magnetization transfer-

weighted structural MR images (Bunzeck and Düzel, 2006). The basal fore-

brain was defined using the maximum probability map from a probabilistic

cytoarchitectonic atlas warped into MNI space (Eickhoff et al., 2005; Za-

borszky et al., 2008). This map included the different compartments of the

basal forebrain with cholinergic neurons (septum, the diagonal band of Broca,

and subpallidal regions including the basal nucleus of Meynert). Given the lack

of a published atlas for PPT and LDT, we used MRICron to manually trace the

region of these nuclei according to anatomical landmarks from the literature

(Naidich et al., 2009; Zrinzo et al., 2011). Note that we did not use these

anatomical masks separately to test for activations; instead, all regions

mentioned above were combined into a single mask image, and each ROI

analysis used this combined mask for multiple comparison correction.
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Contrasts of interest testing for each of the parametric modulators specified

above were defined at the first level and entered into second level ANOVAs to

allow for inference at the group level. We tested for both positive and negative

effects of our parametric modulators. Please note that we only report results

that (1) survived stringent family-wise error correction (FWE) at the voxel level

(p < 0.05), based on Gaussian random field theory (Worsley et al., 1996),

across the whole brain and within ROIs, respectively, and (2) were replicated

in both fMRI studies. Replicability was assessed by testing the conjunction

null hypothesis, i.e., a voxel-wise ‘‘logical AND’’ analysis (Nichols et al.,

2005). In the main text of this article, we focus on activations related to predic-

tion errors; for other findings related to the remaining regressors, see Supple-

mental Experimental Procedures (Figure S3; Tables S3, S4, S5, and S6).

Bayesian Model Selection

To disambiguate alternative explanations (models) for the participants’

behavior, we used Bayesian model selection (BMS). BMS is a standard

approach in machine learning and neuroimaging (MacKay, 1992; Penny

et al., 2004) for comparing competing models that describe how neurophysi-

ological or behavioral responses were generated. BMS evaluates the relative

plausibility of competing models in terms of their log-evidences. The log-evi-

dence of a model corresponds to the negative surprise about the data, given

the model, and quantifies the trade-off between accuracy (fit) and complexity

of a model. Here, we used a recently developed random effects BMS method

to account for potential interindividual variability in our sample (Penny et al.,

2010; Stephan et al., 2009), quantifying the posterior probabilities of five

competing models (see Results and Supplemental Experimental Procedures

for details).
SUPPLEMENTAL INFORMATION
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Düzel for providing us with the anatomical masks for delineating the basal fore-

brain and VTA/SN, respectively.

Accepted: September 3, 2013

Published: October 16, 2013

REFERENCES

Ashburner, J., and Friston, K.J. (2005). Unified segmentation. Neuroimage 26,

839–851.

Ashby, W.R. (1952). Design for a Brain. (London: Chapman & Hall).

Behrens, T.E., Woolrich, M.W., Walton, M.E., and Rushworth, M.F. (2007).

Learning the value of information in an uncertain world. Nat. Neurosci. 10,

1214–1221.
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During a reanalysis of the fMRI data reported in Iglesias et al. (Neuron 80, 519–530, 2013), we noticed that we made a programming

mistake in our analysis pipeline that affects the interpretation of the published fMRI results. Specifically, we used the open source

software SPM8 (release number 4193) for fMRI analyses, which, by default, sequentially orthogonalizes parametrically modulated

regressors in general linear model (GLM) analyses. We had intended to manually switch off the code responsible for this orthogonal-

ization. Unfortunately, we did this incompletely, and the parametrically modulated regressors were inadvertently orthogonalized after

they had been convolved with a hemodynamic response function. In brief, our results essentially reflect the default statistical

procedure in SPM8 for parametrically modulated regressors. The inadvertent orthogonalization means that for our three prediction

errors (PEs) of interest—the precision-weighted PEs ε2, ε3 and the choice PE εch—the low-level (visual outcome) PE ε2 was given

most latitude to explain shared fMRI signal variance, followed by the high-level (probability or cue-outcome contingency) PE ε3, while

the choice PE εch was given least freedom. Therefore, any shared variance between the PEs was assigned in this order.

We have now redone the fMRI analyses without orthogonalization of regressors, using the same analysis software (SPM8) as

before but switching off orthogonalization (by disabling lines 277–279 and line 228 in the SPM functions spm_fMRI_design and

spm_get_ons, respectively). In this reanalysis, we became aware that in the absence of orthogonalization, some regressors of

secondary interest (precision ratios j2, j3 and predicted log-volatility m3) showed extremely high correlations (up to 0.99) with the

base regressors encoding trial events. This was a consequence of our particular trial design (where these variables had a constant

value over the entire trial, with only small updates at the end of the trial), leading to ill-conditioned design matrices with very high

multicollinearity. We thus restricted the design matrix to base regressors and parametric modulators of interest (the precision-

weighted PEs ε2, ε3 and choice PE εch). The outcome of the revised analysis is presented below in revised Figures 2, 3, 5, and 6

and Tables 1 and S7.

In this revised analysis, our main results hold under the predefined significance criteria (family-wise error [FWE] correction at p < 0.05,

either whole-brain or in the predefined anatomical regions of interest): as before, the precision-weighted low-level PE about sensory

outcome, ε2, activated themidbrain (Figure 3), and the precision-weighted high-level PE about stimulus-outcome contingency, ε3 (cf.

expected uncertainty; Yu and Dayan, Neuron 46, 681–692, 2005) activated the basal forebrain (Figure 6). These activations survived

peak-level FWE correction within our predefined anatomically defined mask, separately for each of the two studies as well as for the

‘‘logical AND’’ conjunction across studies. Furthermore, the whole-brain peak-level FWE corrected results for the choice PE εch re-

mained very similar to our previous report (Figure 5; Table S7).

Two differences between our revised analyses and those originally reported are worth mentioning; these do not, however, affect the

main conclusions by the study. First, under FWE peak-level correction across the whole brain, the activation pattern by the low-level

PE ε2 was somewhat reduced and no longer included deactivations (compare previous Table S3) or themidbrain (Figure 2). However,

we continued to find widespread cortical ε2 activations, including almost all of the cortical regions reported before (see Figure 2 and

Table 1). Most importantly, as described above, the midbrain activation did continue to survive FWE peak-level correction within our

predefined anatomical mask in both studies separately and for the conjunction across studies (Figure 3).

A second difference concerns the double conjunction analysis reported in Figure 4. We emphasize that this analysis did not address

the study’s main question (i.e., whether low-level and high-level PEs are reflected by activity in neuromodulatory nuclei) but inves-

tigated a supplementary issue (i.e., whether there is spatial overlap of PE activity and context-independent task activity per se). Spe-

cifically, this analysis tested whether any whole-brain FWE corrected activations (1) by base regressors (trial events, independently of

computational state and stimulus category) and (2) by low-level visual outcome PEs (ε2) would (3) spatially overlap within and across

the two studies (a double ‘‘logical AND’’). Previously, activations in visual, parietal, prefrontal, and insular cortex hadmet these criteria

(Figure 4 of Iglesias et al., 2013 displays the three latter only; the visual activation was mentioned in the main text). Our reanalysis

showed a reduced results pattern: now, only the visual cortex (lingual gyrus near calcarine sulcus, x = 2, y = –86, z = –5) remained
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significant. As a consequence, two statements in the original manuscript that refer to Figure 4 should be reformulated based on our

reanalysis:

d First, the respective paragraph on page 521 should read: ‘‘Interestingly, predictive coding theories (cf. Friston, 2005) imply

considerable overlap of regions whose activity correlates positively with PEs about visual inputs with regions that activate

on each trial, regardless of the computational state and stimulus category (‘‘task execution per se’’). Our results are in partial

agreement but limit this overlap to early perceptual stages (visual cortex).These results indicated that in both studies, primary

visual cortex (calcarine sulcus) was activated.’’

d Second, the sentence on page 523 should read: ‘‘Here, we found overlap of areas involved in the execution of the task and

areas expressing PEs in the visual cortex.’’

We hope that this Correction clarifies the situation. We are very sorry for our unintended error and would like to apologize for any

inconvenience caused.

fMRI RESULTS REPORTED IN THE MAIN TEXT

Activations by Precision-Weighted Visual Outcome Prediction Error ε2
Figure 2. Whole-Brain Activations by ε2

Activations by precision-weighted prediction errors about visual stimulus outcome, ε2, in the first fMRI study (A) and the second fMRI study (B). Both activation

maps are shown at a threshold of p < 0.05, FWE peak-level corrected for multiple comparisons across the whole brain. To highlight replication across studies,

(C) shows the results of a ‘‘logical AND’’ conjunction, illustrating voxels that were significantly activated in both studies.
Neuron 101, 1196–1201, March 20, 2019 1197



Table 1. Whole-Brain Activations by ε2

All results: p < 0.05 FWE whole-brain peak-level corrected. MNI coordinates and t values for regions activated by ε2, the precision-weighted PE about

visual outcome, in the first and second fMRI study. Only those activations are listed that were replicated across studies. To facilitate comparison with

Iglesias et al. (2013), we report the significant voxel that is closest to the previously reported coordinates.

Figure 3. Midbrain Activation by ε2

Activation of the dopaminergic VTA/SN by precision-weighted prediction errors about visual outcome, ε2. The activation at p < 0.05 FWE peak-level corrected for

the volume of our anatomical mask (comprising both dopaminergic and cholinergic brain structures: VTA/SN, PPT/LDT, and basal forebrain) is shown in red. The

activation thresholded at p < 0.001 uncorrected is shown in yellow.

(A) Results from the first fMRI study. (B) Second fMRI study. (C) Conjunction (logical AND) across both studies.
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Activations by Precision-Weighted Choice Prediction Error εch
Figure 5. Choice Prediction Error

Activations by choice prediction error, εch, in the first (A) and in the second (B) fMRI study. Both activation maps are shown at a threshold of p < 0.05, FWE

peak-level corrected for multiple comparisons across the whole brain. To highlight replication across studies, (C) shows the results of a ‘‘logical AND’’

conjunction, illustrating voxels that were significantly activated in both studies. See also Table S7.
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Activations by Precision-Weighted Prediction Error about Stimulus Probabilities ε3
Figure 6. Basal Forebrain Activations by ε3

Activation of the basal forebrain by precision-weighted prediction error about stimulus probabilities ε3 within the anatomically defined mask. For visualization of

the activation area, we overlay the results thresholded at p < 0.05 FWE peak-level corrected for the entire anatomical mask (red) on the results thresholded at

p < 0.001 (yellow; the yellow cluster also survives p < 0.05 FWE cluster-level correction for the entire anatomical mask). The anatomical mask comprised both

dopaminergic and cholinergic brain structures: VTA/SN, PPT/LDT, and basal forebrain. (A) and (B) show results from the first (A: local maximum at x = 4, y = 12,

z = –11, t = 4.71) and the second fMRI study (B: local maximum at x = 0, y = 10, z = –8, t = 5.09). (C) shows the conjunction analysis (‘‘logical AND’’) across both

studies. To ease visual comparison with Iglesias et al. (2013), the figure sections (x and y coordinates are indicated on each panel) are not located at the local

maxima but correspond closely to those in Iglesias et al. (2013).
ADDITIONAL fMRI RESULTS REPORTED IN THE SUPPLEMENTARY MATERIAL

Deactivations by Precision-Weighted Outcome Prediction Error ε2
In our revised analysis, the conjunction analysis across studies did not yield results under our significance criteria.
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TABLE OF ACTIVATIONS BY CHOICE PREDICTION ERROR
Table S7. Whole-Brain Activations by εch

Montreal Neurological Institute (MNI) coordinates and t values of activations by εch that were significant (p < 0.05, FWE peak-level whole-brain

corrected) in both fMRI studies (‘‘logical AND’’ conjunction). To facilitate comparison with Iglesias et al. (2013), we report those significant voxels

that are closest to the original coordinates.
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