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472 J. NEYMAN 

does not apply to the case we are considering here. From 
these explanations it follows that it would be safe to 
adopt the following definitions. By the term "true value" 
of the difference of the yields of two varieties, sown on K 

selected plots, we mean a 
[411 

number A associated with the difference of the observed 
partial averages Xi-X,in such a way that the probability -

P, of preserving the inequality 

1 xi - x,- A 1 < 

is greater than 

1 
1 - -

t 2  

for all t > 0. 
We can determine empirically that the difference of 

partial averages of the plots sampled shows a fair agree- 
ment with the Gaussian law distribution. This encour- 
ages us to name the true difference in yields of two 
varieties a number 6 associated with the difference of the 

corresponding partial averages, under the condition that 
the probability of preserving the inequality 

TI <Xi - Xj- G < T2 

equals 

where, 

and TI < T2 are arbitrary numbers. [A misprint (or 
inconsistency) in the preceding equation has been elimi- 
nated; cf. formulas (16) and (17).] 

We should remember, however, that this definition is 
not properly justified. 

Of course everything that has been said about the 
comparison of varieties applies to the comparison of 
fertilizers. 
[42] 

Comment: Neyman (1923) and 
Causal Inference in Experiments and 
Observational Studies 
Donald B. Rubin 

Dorota Dabrowska and Terry Speed are to be most 
warmly thanked for bringing this fundamentally im- 
portant but previously recondite early work of Jerzy 
Neyman to the attention of the statistical community. 
It is an honor to be asked to discuss this docu- 
ment, which reinforces Neyman's place as one of our 
greatest statistical thinkers and clarifies the debt 
all modern statisticians interested in causal inference 
owe to Jerzy Neyman. There are several specific 
contributions in this article (hereafter referred to as 
Neyman, 1923) that I feel are particularly noteworthy. 
To delineate these for my discussion, I first provide a 
brief summary using a mix of Neyman's notation and 
more standard current notation. I then discuss Ney- 
man's original definition of causal effects in random- -

ized experiments, extensions of it to experiments with 
interference between units and versions of treatments, 
and further extensions to observational studies. Three 

Donald B. Rubin is Professor and Chairman, Harvard 
University, Department of Statistics, Science Center, 1 
Oxford Street, Cambridge, Massachusetts 02138. 

other contributions in Neyman (1923) are also ana- 
lyzed: his proposal for the completely randomized 
experiment, his proposal for using repeated-sampling 
evaluations over randomization distributions, and his 
specific results on variance estimation in the com- 
pletely randomized experiment. Throughout, I at-
tempt to relate these contributions of Neyman's to 
proceeding and contemporary work of R. A. Fisher 
and others, and to subsequent work, including my own 
cited in the Dabrowska and Speed introduction. My 
conclusions regarding the relationship of Neyman 
(1923) to other work are briefly summarized in the 
final section. 

1. AN OVERVIEW OF NEYMAN (1923) 

Neyman begins with a description of a field experi- 
ment with m plots on which v varieties might be 
applied: ". . . Uik is the yield of the ith variety on the 
kth plot"; Uik is a "potential yield" (Neyman's term) 
not an observed yield because i indexes all varieties 
and k indexes all plots, and each plot is exposed to 
only one variety. Throughout, the collection of poten- 
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tial outcomes, U = {Uik: i = 1, ' .  U;k = 1, , m )  effects, in particular, Bayesian inference as indicated 
is treated as a priori fixed but unknown. The "best in Section 7. 
estimate" of the yield from the ith variety in the field Now letting xi be the sample mean of the n plots 
is the average potential outcome over all m plots, actually exposed to the i th variety, and analogously 

for xj, Neyman shows that 

Neyman calls ai the best estimate because of his 
concern with the definition of "true yield," something 
that he struggled with again in Neyman (1935), as I 
discuss in Section 3. 

Neyman then describes an urn model for determin- 
ing which variety each plot receives; this model is 
stochastically identical to the completely randomized 
experiment with n = m/u plots exposed to each vari- 
ety. (I use n here rather than Neyman's K to avoid 
confusion with Neyman's use of k to index plots.) He 
notes the lack of independence implied by this re- 
stricted sampling of treatments without replacement 
(i.e., it is impossible for one plot to receive more than 
one variety, and exactly n plots are exposed to each 
variety), and he goes on to note that certain formulas 
for this situation that have been justified on the basis 
of independence and/or the Gaussian Law (i.e., 
treating the Uij as normal random variables given 
some parameters) need more careful consideration. 
Neyman's nonliteral oral translation to Reid (1982, 
page 45) is: 

"'Using the method of mathematical expectations 
I make an effort to solve the problem of the 
dependence of the expected precision of the ex- 
periment on the number of plots in the fields and 
the number of replications. As far as I know, this 
problem has not been properly treated thus far.'" 

The derivation of the "repeated-sampling random- 
ization-based" expectations and variances of sample 
estimates then follows. Specifically, with U fixed, let 
E[ . I U]  and V[ . I U]  indicate the expectation and 
variance over all possible assignments of v varieties to 
the m = nu plots with n plots receiving each variety. 
This description and notation are mine, not Ney- 
man's, and so deserve explanation. First, I use the 
phrase "repeated-sampling randomization-based to 
describe this mode of causal inference (Rubin, 1990, 
1991b) in order (a) to emphasize that all random- 
ness comes from the randomization distribution 
(that is, from the urn model with U fixed)-hence 
"randomized-based", and (b) to distinguish Neyman's 
"repeated-sampling" evaluations under a nonnull dis- 
tribution from Fisher's randomization-based testing 
of sharp null hypotheses-more of this in Section 6. 
Second, I explicitly introduce the notation E [ .  ( U ]  
and V[. I U]  so that the framework can be extended 
to handle model-based modes of inference for causal 

Thus, the standard estimate of the effect of variety i 
versus variety j, xi - xj, is unbiased (over repeated 
randomizations on the m plots) for the implied causal 
estimand, ai - aj, the average effect of variety i versus 
variety j across all m plots. 

Furthermore, Neyman then shows, expressed in our 
notation, that 

where s; is the sample variance of the n observed 
yields under variety i (with divisor n - I), and analo- 
gously for sf, and is the variance of the m 
differences Uik - Ujk (with divisor m - 1). 

Thus, the usual estimate of the variance of estima- 
tion, s f /n  + s,?/n, is positively biased (over repeated 
randomizations on the m plots) unless 8ti-j)= 0, that 
is, unless Uik - Ujk is constant for all k (i.e., unless 
the variety i versus j effect is additive, to use standard 
current jargon). Generally, SL-j)depends on the un- 
known correlation r between the Uik and the Ujk, about 
which there are no data. Neyman's recommendation 
is to assume r = 1, but he considers the problem 
worthy of future study since this method of establish- 
ing variances "has to be considered inaccurate." 

Two asides are relevant here for connecting these 
conclusions to current practice. First, if the m plots 
in the experiment are thought of as having been 
randomly sampled from a target population of N >> m 
plots for which average causal effects are to be esti- 
mated, then the usual estimate of variance of estima- 
tion is unbiased (over repeated random sampling of m 
plots from N and repeated randomizations of treat- 
ments to the m chosen plots). Second, extensions 
based on finding the variance of the variance estimate 
and applying a Satterthwaite (1946) approximation 
can provide a degrees of freedom for the variance 
estimate as a function of r (see, for example, Snedecor 
and Cochran (1980, page 97), in simpler contexts). 

2. ON NEYMAN'S USE OF POTENTIAL YIELDS 
TO DEFINE CAUSAL EFFECTS IN SXPERIMENTS 

As Dabrowska and Speed suggest, one of the most 
interesting aspects of Neyman's presentation is his 
explicit use of the notation Uik to indicate the yield of 
plot k if exposed to variety i drawn according to the 
urn scheme. This notation became standard for de- 
scribing possible outcomes of randomized experiments 
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(e.g., Pitman, 1937, Welch, 1937, McCarthy, 1939, 
Anscombe, 1948, Kempthorne, 1952, 1955, Brillinger, 
Jones and Tukey, 1978, and dozens of other places, 
often assuming additivity as in Cox, 1956, and some- 
times being used quite informally as in Freedman, 
Pisani and Purves, 1978, pages 456-458'). An elabo- 
ration with "technical errors" appears in Neyman's 
(1935) discussion of the randomized block and Latin 
square experiments, although its primary use there is 
to define a null hypothesis of zero average effects as 
an alternative to Fisher's null hypothesis of absolutely 
no effects. Joan Fisher Box (1978, page 263) supports 
the view that Neyman's model was new, perhaps even 
to Fisher in 1935, calling it a "novel mathematical 
model for field experiments." According to Reid (1982, 
page 45), Neyman himself agrees that the 1923 model 
was new: 

Neyman has always deprecated the statistical 
works which he produced in Bydogszcz [which is 
where Neyman (1923) was done], saying that if 
there is any merit in them, it is not in the few 
formulas giving various mathematical expecta- 
tions but in the construction of a probabilistic 
model of agricultural trials which, at that time, 
was a novelty. 

Nevertheless, looking back before the twentieth 
century, we can certainly find seeds of this definition 
of causal effects among both experimenters and phi- 
losophers. For example, Cochran (1978) discusses the 
great English agronomist, Arthur Young: 

A single comparison or trial was conducted on 
large plots-an acre or a half acre in a field split 
into halves-one drilled, one broadcast. Of the 
two halves, Young (1771) writes: "The soil is 
exactly the same; the time of culture, and in a 
word every circumstance equal in both." 

It seems clear in this description that Young viewed 
the ideal pair of plots as being identicah so that the 
outcome on one plot of drilling would be the same as 
the outcome on the other of drilling, and likewise for 
broadcasting, implying that the difference between 
drilling and broadcasting on either is the causal esti- 
mand for each. 

Nearly a century later, Claude Bernard, a renowned 
experimental scientist and medical researcher wrote 
(Wallace, 1974, page 144): 

The experiment is always the termination of a 
process of reasoning, whose premises are obser- 
vation. Example: if the face has movement, what 
is the nerve? I suppose it is the facial; I cut it. I 

My thanks to Neal Thomas for alerting me to this last selection. 

cut others, leaving the facial intact-the control 
experiment. . 

Also in the late nineteenth century, the philosopher 
John Stuart Mill, when discussing Hume's views offers 
(Mill, 1973, page 327):2 

If a person eats of a particular dish, and dies in 
consequence, that is would not have died if he 
had not eaten of it, people would be apt to say 
that eating of that dish was the source of his 
death. 

Furthermore, Fisher (1918, page 214) wrote the 
f~llowing:~ 

If we say, "This boy has grown tall because he 
has been well fed," we are not merely tracing out 
the cause and effect in an individual instance; we 
are suggesting that he might quite probably have 
been worse fed, and that in this case he would 
have been shorter. 

And later, in a letter to Gosset ("Student") reported 
in "Student" (1923, page 283), Fisher wrote: 

Recognising that not only differences of variety 
but differences in the conditions of the trials may 
have affected the yields, we may obtain an esti- 
mate of what the variability would be if the con- 
ditions of any one trial could be replicated in a 
number of experiments with the same variety, 
provided the following simple assumptions hold 
good. The yield obtained in any experiment is the 
sum of three quantities, one depending only on 
the variety; a second, depending only on the 'trial'; 
and a third, which may be regarded as the 'exper- 
imental error' varying independently of variety 
and trial in a normal distribution about zero 
with a standard deviation which it is desired to 
estimate. 

Although Fisher's subsequent notation did not explic- 
itly indicate a potential outcome for each plot-variety 
combination, there are certainly similarities to Ney- 
man's 1923 and 1935 formulations. 

Consequently, Neyman's notation seems to have 
formalized ideas that were relatively firmly in the 
minds of some experimenters, philosophers and sci- 
entists prior to 1923. It is, without a doubt, an ex- 
tremely important contribution since it allows causal 
effects (such as ULh - Ujk) and causal estimands (such 
as ai - aj) to be defined without reference to any 
particular probability model for the data. 

My thanks to Leland Neuberg for bringing this quotation to my 
attention. 

My thanks to Paul Holland, with an assist to Arthur Dempster, for 
pointing out this quotation, which also appears in Dempster (1990). 
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3. EXTENSIONS TO EXPERIMENTS WITH sumption is that, for each k and all possible pairs of 
INTERFERENCE BETWEEN UNITS AND 	 treatment assignments W and W ', 


VERSIONS OF TREATMENTS 

Yk(W) = Yk(W') if Wk = WL. 

The conceptualization using Uik to represent all 
potential yields in a completely randomized experi- 
ment might not be adequate. Neyman was aware of 
this in 1923 since he referred to "true yields," which 
he formalized through the use of "technical errors" in 
1935. The true yield of plot k with variety i is the 
mean across infinite hypothetical replications of the 
current experiment ". . .without any change of vege- 
tative conditions or of arrangement. . ." (Neyman, 
1935, page 110). Technical errors are the differences 
between the particular observable yields in this exper- 
iment and the "true yields" and thus have mean zero 
over the hypothetical replications. They are ". . .due 
solely to the inaccuracy of the experimental technique, 
the vegetative conditions in all our hypothetical ex- 
periments being the same" (Neyman, 1935, page 110). 
Furthermore, "It may be easily assumed that. . . [the 
technical error on one plot] is independent of 
[the technical error] corresponding to some other plot, 
and is varying normally about zero" (Neyman, 1935, 
page 114). I have never been able to decide what 
Neyman really meant by his hypothetical replications. 
Major problems are that all the replications but one 
are a priori co~nterfactual,~ and Neyman's attendant 
discussion seems to be devoid of real guidance or 
implications for practice such as is present in Cox's 
(1958a, Chapter 1) lucid discussion of these issues. 

For example, for many years before 1923, agricul- 
tural experimenters had used guard rows between 
neighboring plots treated differently to avoid "inter- 
ference between units." To characterize precisely the 
potential yields in the presence of interference, a more 
revealing notation, which is not a priori counterfac- 
tual, is most helpful. Let W = (W,, . .. , W, ) indicate 
which varieties the m plots receive, and let Yk (W) be 
the yield of the kth plot when the m plots are exposed 
as indicated by W. Before the assignment of varieties, 
each Yk(W ) for each possible W is potentially observ- 
able, and thus no Yk (W ) is a priori counterfactual. In 
cases without interference between units, the simpler 
Uik notation is adequate. Replacing "varieties" with 
the more general term "treatments" and "plots" with 
the more general term "units," I call (Rubin, 1980) the 
assumption that the Uik notation is adequate, the 
"stable-unit-treatment-value assumption", SUTVA, 
or simply "the stability assumption." In the case of 
possible interference between units, the stability as- 

4A is counterfmtwl if it cannot be that is, if it is 
entirely hypothetical; see Hollund (1986) and its discussion for more 
on this concept in causal inference. 

That is, under the stability assumption, the yield of 
the kth plot when exposed to variety i = Wk is the 
same no matter what varieties the other plots received. 
With interference between neighboring plots, Yk (W ) 
and Yk(Wt) can differ even when Wk = WL if neigh- 
bors of plot k receive different varieties under W and 
W'. Interference between units can be a major issue 
when studying medical treatments for infectious dis- 
eases (e.g., malaria, AIDS) or educational treatments 
given to children who interact with each other. 

Variability in outcome due to variability in the 
efficacy of nominally identical treatments (e.g., coro- 
nary bypass surgery) can be handled in an analogous 
manner. Variation in efficacy of randomly chosen 
versions of the same treatment is what I think Ney- 
man was trying to capture with his independent tech- 
nical errors (Rubin, 1986). To incorporate versions of 
treatments, simply include an additional variable V = 
(VI, . . . , V,) so that (W, V) indicates both the 
treatments and the versions of the treatments received 
by all m plots. (In the context of the completely 
randomized field experiment of varieties, each Vk must 
be able to take on at least n values since a t  least n 
applications of each variety must be available to con- 
duct the experiment.) Then the potential outcomes 
allowing for both interference and variability in effi- 
cacy are Yk (W, V ), k = 1, .. , m, which are, again, 
a priori not counterfactual. The stability assumption 
is now that, for each k and each possible pair of 
assignments (W, V) and (W', V'), 

Yk(W, V) = Yk(W', V') if Wk = WL . 
Experiments with possible carryover effects and other 
deviations from stability can be similarly handled. 

I believe that notation such as this is more satisfying 
practically than Neyman's 1923 "true yields" or his 
1935 "technical errors" because of its direct corre- 
spondence to issues of design. Nevertheless, Neyman's 
notation appears to provide the first explicit defini- 
tion of nonnull causal estimands in an experiment 
that is free of specific models, and this is a major 
contribution. 

4. EXTENSIONS TO THE GENERAL CASE 
INCLUDING OBSERVATIONAL STUDIES 

A further limitation of Neyman's original formula- 
tion is that it was entirely tied to randomization-based 

and for a half-centur~,it was 
perceived as being relevant for defining causal effects 
in observational (i.e., nonexperimental) studies. To be 
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fruitful, however, this extension to observational stud- 
ies requires an explicit model for the assignment 
mechanism, that is, the specification of a model pro- 
viding the probability of treatment assignment W 
given U (and other variables if relevant), Pr(W I U). 
This model arises directly from explicitly viewing the 
process for observing components of the potential 
outcomes, U, as a missing data process (Rubin, 1975, 
1976, page 581), and allows randomized experiments 
to be viewed as having "ignorable" missing data mech- 
anisms because Pr(W I U)is free of U, and observa- 
tional studies to be modeled as possibly nonignorable 
because Pr(W I U) might depend on unobserved com- 
ponents of U. 

In this formulation, causal estimands are defined 
without reference to either a specific model for the 
data, Pr(U), or a specific model for the assignment 
mechanism, Pr(W I U).  As in Rubin (1976, 1978), the 
assignment mechanism can reflect both the survey 
sampling of units into the study from a finite popu- 
lation and the assignment of treatments to the units 
in the study. As a result, the roles of random sampling 
of units and randomized assignment of treatments are 
made explicit for both frequentists (randomization- 
based and model-based) and Bayesians (including 
direct-likelihood advocates). 

In my opinion, the primary conceptual contribution 
of my work cited by Dabrowska and Speed in their 
introduction is the coupling of (a) the extension of the 
experimental potential-outcome notation to observa- 
tional studies with (b) an explicit model for the as- 
signment mechanism exhibiting possible dependence 
on all potential outcomes, and the resultant imbedding 
of both frequency and Bayesian inference in one co- 
herent structure for inferring causal effects in studies 
of all kinds. I feel that this formulation is relatively 
subtle. For example, contrast the explicit role played 
by randomization in this formulation for likelihood- 
based inference (i.e., for obtaining ignorable assign- 
ment mechanisms) with Kempthorne's (1976, page 
497) comment on Fisher's contributions to statistics: 

The work of Fisher abounds in curiosities. One 
which has struck me forcibly is the absence of 
any discussion of the relationship of Fisher's ideas 
on experimentation (DOE) to his general ideas 
on inference (SI). The latter book contains no 
discussion of ideas of randomization (except for 
the irrelevant topic of test randomization) which 
made DOE so interesting and compelling to in- 
vestigators in noisy experimental sciences. Can 
the ideas on randomization and on parametric 
likelihood theory be fused into a coherent whole? 
I think not. 

Prior to my work and others' in the 1970s and 1980s 
using the "potential outcomes with assignment mech- 

anism" perspective, the standard approach to causal 
inference in observational studies used one variable to 
represent the observed outcome and an indicator to 
represent treatment assignment. Despite the limita- 
tions imposed by using this notation (e.g., treatment 
assignment is correlated with observed outcome even 
in a completely randomized experiment, except under 
the null hypothesis), there were many fine contribu- 
tions on causal inference in observational studies in 
the half-century following Neyman (1923), such as 
Peters (1941), Cochran (1965, etcetera, overviewed in 
Rubin, 1984), Hill (1965), Campbell and Stanley 
(1966), and Goldberger (1972), to pick only a few from 
various fields. 

Nevertheless, it appears that in some instances the 
new perspective has fostered a noticeable increase in 
clarity of thought, exposition and methodology on 
observational studies. The contrasts between litera- 
ture on causal inference before and after the influence 
of the "potential outcomes with assignment mecha- 
nism" perspective can be striking, even within the 
same author. For example, compare Pratt and 
Schlaifer (1984) with Pratt and Schlaifer (1988), 
and Heckman (1979) with Heckman (1989); the earlier 
publications use the observed outcome notation, 
whereas the later publications, following direct discus- 
sion of their previous work by Rosenbaum and Rubin 
(1984) and Holland (1989), respectively, explicitly 
adopt the "potential outcomes with assignment mech- 
anism" perspective. Furthermore, the new perspective 
does seem to be becoming popular in many fields; for 
example, in addition to the recent references already 
directly cited here and in the Dabrowska and Speed 
introduction, and indirectly in those references, con- 
sider the very recent Rosenbaum (1987), Robins (1987, 
1989), Greenland and Poole (1988), Smith and Sugden 
(1988), Sugden (1988), Holland (1988a, b, 1989), 
Dempster (1990), Kadane and Seidenfeld (1990), 
Sobel (1990), Rubin (1990, 1991a, b), Gelman and 
King (1991), Efron and Feldman (1991), and their 
references. 

To believe that those who used and accepted 
Neyman's experimental model understood its exten- 
sion to observational studies and its role in defining 
assignment mechanisms would be, I believe, as fal- 
lacious as believing that the thinkers quoted in Sec- 
tion 2 had Neyman's formalization in mind prior to 
1923. For example, contrast Cox (1958a) writing in 
the experimental context using the potential outcomes 
notation, with Cox and McCullagh (1982, Section 6) 
writing in the observational study context without the 
benefit of either the potential-outcomes notation or 
the explicit consideration of an assignment mecha- 
nism; for discussion of their problem, "Lord's para- 
dox," using both tools, see Holland and Rubin (1983). 

Of course these comments do not mean that the 
formulation I am advocating for observational studies 
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is the only one, but rather that it may have had some 
novel aspects and useful implications, and seems to 
be becoming more accepted. Nevertheless, there are 
many respected workers on causal inference from ob- 
servational data who do not accept this formulation, 
some claiming that nonexperimental causal inference 
requires an entirely different conceptualization (e.g., 
Granger, 1986); also see a variety of selections from 
Aigner and Zellner (1988). 

5. NEYMAN'S PROPOSAL FOR THE 
COMPLETELY RANDOMIZED EXPERIMENT 

I am in full agreement with Scheffk's (1956) descrip- 
tion of Neyman's mathematical model as correspond- 
ing to the completely randomized experiment, and I 
also agree with Dabrowska and Speed that the explicit 
suggestion to use the urn model to physically assign 
varieties to plots is absent. This latter conclusion, 
however, is highly influenced by Neyman's attribution 
of physically randomized experiments to Fisher and 
his followers (Neyman, 1935, page 109): 

Owing to the work of R. A. Fisher, "Student" and 
their followers, it is hardly possible to add any- 
thing essential to the present knowledge concern- 
ing local experiments.. . . One of the most 
important achievements of the English School is 
their method of planning field experiments 
known as the method of Randomized Blocks and 
Latin Squares. 

The Neyman (1935, page 112) quotation given in the 
Dabrowska and Speed introduction also attributes 
randomization to Fisher. Furthermore, Reid (1982, 
page 45) quotes Neyman to this effect: 

On one occasion, when someone perceived him 
as anticipating the English statistician R. A. 
Fisher in the use of randomization, he objected 
strenuously: 
". .. I treated theoretically an unrestrictedly ran- 
domized agricultural experiment and the random- 
ization was considered as a prerequisite to 
probabilistic treatment of the results. This is not 
the same as the recognition that without random- 
ization an experiment has little value irrespective 
of the subsequent treatment. The latter point is 
due to Fisher, and I consider it as one of the most 
valuable of Fisher's achievements." 

If these statements from Neyman had been replaced 
by claims of priority based on his 1923 paper, it would 
have been difficult for me not to have accepted the 
position that he had independently envisioned physi- 
cally randomized experiments even without a trans- 
lation that used the word "randomization." 

Certainly, the idea of random assignment seems to 
have been "in the air" in 1923. "Student" (1923, pages 

281-282) writes: "If now the plots had been randomly 
placed .. ." and ". .. we are as accurate as if we had 
devoted twice the area to plots randomly arranged." 
Also, Fisher and MacKenzie (1923, page 473) write: 

Furthermore, if all the plots were undifferen-
tiated, as if the numbers had been mixed up and 
written down in random order, the average value 
of each of the two parts [between and within sums 
of squares] is proportional to the number of de- 
grees of freedom in the variation of which it is 
compared. 

Nearly forty years earlier, Peirce and Jastrow (re- 
printed in Stigler, 1980, pages 75-83) used physical 
randomization to create sequences of binary treatment 
conditions (heavier versus lighter weight) in a 
repeated-measure psychological experiment.' The 
primary purpose of the randomization was to create 
sequences such that "any possible psychological guess- 
ing of what changes the operator [experimenter] was 
likely to select was avoided." I detected no suggestion, 
however, even implicit, that such randomization could 
play a useful role in the assignment of treatments to 
nonhuman units. 

Despite the early use of physical randomization by 
Peirce and Jastrow, the allusions to random assign- 
ments by "Student" and the mathematical results 
using the urn-model formulation in Neyman (1923), 
all writers since 1925, including Neyman, seem to 
agree that the first explicit recommendation to make 
physical randomization an integral part of experimen- 
tation was in Fisher (1925) closely followed by Fisher 
(1926). This situation, with its juxtaposition of im- 
plicit suggestion and explicit contrary attribution from 
the same author, emphasizes to me the dangers of 
overinterpreting, with ebullient and embellished hind- 
sight, early writings of great men. 

6. NEYMAN'S PROPOSAL FOR USING 
REPEATED-SAMPLING EVALUATIONS OVER 

RANDOMIZATION DISTRIBUTIONS 

To my knowledge, this paper represents the first 
attempt to evaluate, formally or informally, the 
repeated-sampling properties of statistics over their 
nonnull randomization distributions, and so I believe 
this contribution is uniquely and distinctly Neyman's. 
That Neyman did this prior to his 1935 article is no 
surprise; in Rubin (1990) I attributed this general 
mode of inference to Neyman, but lacking Neyman 
(1923) I referred to Neyman (1934) oh random sam- 
pling and to Neyman (1935). This mode of inference 
not only became the standard in survey methodology 

6My thunh to Stephen Stigler for caUing my attention to this, 
qpparently first, use of randomization in experiments. 
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and experimental design, but it is still the standard pealing to de Finetti's theorem, we can write 
approach in survey practice as well as the foundation 
for much of statistical practice in analysis of variance 
contexts (e.g., the Cornfield and Tukey, 1956, rules k = l  

for expected mean squares). 
Fisher's mode of randomization-based inference in 

experiments was distinctly different from Neyman's, 
and, in contrast to Neyman's, had no neat analog for 
survey practice. Fisher's proposition was to: posit a 
sharp null hypothesis under which all values are 
known (e.g., in Neyman's notation Uik = Ujk for all 
i,j pairs and each k);calculate the null randomization 
distribution of some statistic (i.e., calculate the value 
of the statistic under the null hypothesis for each 
possible randomization); locate the observed value of 
the statistic in its randomization distribution; and, 
finally, calculate the unusualness (i.e., p-value) of the 
observed value of the statistic according to some 
a priori definition of unusualness (i.e., the proportion 
of the possible values of the statistic as unusual or 
more unusual than the observed value). 

Neyman's prescription offers a general plan for 
evaluating proposed procedures, whereas Fisher's pre- 
scription directly provides distribution-free p-values 
for sharp null hypotheses. I find the approaches to be 
complementary. 

7. SPECIFIC RESULTS ON VARIANCE 
ESTIMATION IN THE COMPLETELY 

RANDOMIZED EXPERIMENT 

In the last half-century, many statisticians have 
repeated the calculations Neyman provides. The most 
interesting result here is the inherent uncertainty of 
variance estimation due to the "inestimable" cor-
relation between the {Uik: k = 1, . .. , m )  and the 
{ Qk:k = 1, . . - ,m ),inestimable because Uik and Q k  

can never be jointly observed-"the fundamental 
problem of causal inference" (Holland, 1986). Inciden- 
tally, it is only their partial correlation, given observed 
blocking factors and covariates, that is entirely 
inestimable. 

Given Neyman's stated motivation for deriving 
equations (1) and (2) (i.e., issues of dependence and 
normality), I believe it is important to compare his 
repeated-sampling randomization-based answers for 
the completely randomized experiment with the cor- 
responding Bayesian answers (following the frame- 
work in Rubin, 1978). Specifically, a completely 
randomized experiment corresponds to an ignorable 
treatment assignment mechanism, and therefore the 
posterior distribution of any causal estimand, such as 
ai - aj, follows from the specification of a distribution 
for the data matrix, U. To simplify the comparison of 
answers, we suppose only two treatments. Then, ap- 

for some bivariate density f (. I 8) indexed by parame- 
ter 8 with prior distribution p(8). Suppose f ( .  I 8) is 
normal with means p = (pl, p2), variances (a?, a;) 
and correlation p. Then conditional on (a) 8, (b) the 
observed values of U, Uobs, and (c) the observed value 
of the treatment assignment, Webs, we have that the 
joint distribution of (al, a2)  is normal with means 

variances aT(1 - p2)/4n, a ; ( l  - p2)/4n, and 
zero correlation. To simplify comparison with the 
repeated-sampling randomization-based answers, now 
assume large m and a relatively diffuse prior distri- 
bution for (p,, p2, a:, a;) given p. Then the condi- 
tional posterior distribution of (al - a,) given p is 
normal with mean 

and variance 

V[al - a2 I Uobs,Webs, PI = 
s 2+ s2 1 

6(1-2),n n m 

where ' J : ~ - ~ )  is the prior variance of the differences 
Ulk - U2k, U: + U; - 2ul(r2p. 

The practical similarity between the Bayesian re- 
sults (3) and (4) and the repeated-sampling randomi- 
zation-based results (1) and (2) is striking. From (1) 
and (3), the correct estimate of the causal effect of 
variety 1versus variety 2 is the difference in observed 
sample means, and from (2) and (4), the usual squared 
standard error associated with this estimate is too 
conservative by the amount 

Also, if the m plots were randomly sampled from a 
field of N >> m plots and the causal estimand were 
the mean difference between variety 1and variety 2 
across all N plots, this conservatism would vanish 
from the Bayesian perspective as well as from the 
Neyman perspective. 

Thus, as often occurs with such problems, the Baye- 
sian answer closely parallels the randomization-based 
answer. A more complete Bayesian derivation would 
automatically include adjustments for (a) small- 
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sample effects of variance estimation (i.e., the 
marginal posterior distribution of al- az given p is 
similar to a Behrens-Fisher distribution, which often 
can be well approximated by a t using a Satterthwaite 
approximation), and (b) uncertainty due to the un- 
known correlation (i.e., by integrating over the prior 
distribution of p). Furthermore, simple arguments 
support the claim that the normal posterior distribu- 
tion given by (3) and (4) is a good approximation even 
without the normal assumption for f ( . ( 0 ) .  

8. CONCLUSIONS 

Without a doubt, Neyman (1923) is an important, 
but previously unposted, milestone in statistics. My 
belief is that the proposal to evaluate procedures over 
their repeated-sampling randomization-based distri- 
butions is uniquely Neyman's. Had it not been for his 
attributions to the contrary, I would have thought that 
the proposal to use the physical act of randomization 
in experimental design was previewed here as well. 
Finally, with respect to his definition of causal effects, 
although the underlying implicit definition was rela- 
tively common prior to 1923, Neyman certainly ap- 
pears to be the first to formalize it. However, neither 
he nor other writers in the next half-century seem to 
have applied this notation for potential outcomes to 
observational studies for causal effects, instead using 
the generally inferior observed-outcome notation, and 
providing no formal statement of a treatment assign- 
ment mechanism exhibiting possible dependence on 
the potential outcomes. In contrast, in the last dozen 
years, since the publication of the papers referenced 
in the Dabrowska and Speed introduction, this frame- 
work, with explicit statements of its associated as- 
sumptions and explicit modeling of nonrandomized 
assignment mechanisms, has been applied in a variety 
of disciplines, often with an attendant increase in 
clarity. As with Neyman's 1923 formalization, I have 
no doubt that these refinements were "in the air," and 
I'm glad to have been a contributor to their exposition 
and development. 
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