
Partition MCMC for Inference on Acyclic Digraphs

Partition MCMC for Inference on Acyclic Digraphs∗

Jack Kuipers jack.kuipers@bsse.ethz.ch
D-BSSE, ETH Zurich
Mattenstrasse 26
4058 Basel, Switzerland

Giusi Moffa
Division of Psychiatry

University College London

London, UK

Editor:
Abstract

Acyclic digraphs are the underlying representation of Bayesian networks, a widely used
class of probabilistic graphical models. Learning the underlying graph from data is a way
of gaining insights about the structural properties of a domain. Structure learning forms
one of the inference challenges of statistical graphical models.

MCMC methods, notably structure MCMC, to sample graphs from the posterior dis-
tribution given the data are probably the only viable option for Bayesian model averaging.
Score modularity and restrictions on the number of parents of each node allow the graphs
to be grouped into larger collections, which can be scored as a whole to improve the chain’s
convergence. Current examples of algorithms taking advantage of grouping are the biased
order MCMC, which acts on the alternative space of permuted triangular matrices, and
non ergodic edge reversal moves.

Here we propose a novel algorithm, which employs the underlying combinatorial struc-
ture of DAGs to define a new grouping. As a result convergence is improved compared
to structure MCMC, while still retaining the property of producing an unbiased sample.
Finally the method can be combined with edge reversal moves to improve the sampler
further.

Keywords: Bayesian Networks, Structure Learning, MCMC.

1. Introduction

A key question in applied statistics is to learn the relationship between a number of inter-
acting entities and their surrounding environment. Examples include the many genes of a
genome, the molecules in a cell, the different cells of an organism, demographics, economic
and political factors in the dynamics of society, behavioural habits and biology in the devel-
opment and progression of diseases. Most often, not only is the strength of the relationship
between the variables unknown but so too is the connectivity structure itself, and of great
scientific interest. Think for instance of gene regulatory networks (Friedman et al., 2000;
Husmeier, 2003; Friedman, 2004; Rau et al., 2012) and cellular signalling pathways (Sachs
et al., 2005; Mukherjee and Speed, 2008; Hill et al., 2012), including their development over
time (Husmeier, 2003; Rau et al., 2012; Hill et al., 2012).

Probabilistic graphical models provide a framework for characterising the joint prob-
ability distribution of the variables in a domain and making inference about features of

∗. R code is available at https://github.com/annlia/partitionMCMC

1

ar
X

iv
:1

50
4.

05
00

6v
2

 [
st

at
.M

L
]

 2
0

O
ct

 2
01

5

https://github.com/annlia/partitionMCMC

Kuipers and Moffa

interest. Bayesian networks are a popular class of probabilistic graphical models with di-
rected acyclic graphs (DAGs) as their underlying structure. The representation is such that
the joint probability distributions of the nodes of the network can be written as a prod-
uct of the conditional distribution of each node given its parents in the graph. In general
no structural information is available and the learning process involves both estimating
the graphical structure and the parameters which characterise the conditional probability
distributions of each node on its parents, given a particular network topology.

A rather comprehensive overview of approaches for Bayesian network learning is given
by Daly et al. (2011). Structure learning is known to be a hard problem, especially due
to the super-exponential growth of the DAG space when increasing the number of nodes.
Broadly speaking the literature about structure learning can be divided into two classes:
constraint-based methods, and score and search algorithms (as discussed for example in
Koller and Friedman, 2009).

The edges of a Bayesian network encode conditional independence relationships, which
constitute the main ingredient of constraint based learning methods, such as the widely used
PC algorithm (Spirtes et al., 2000; Kalisch and Bühlmann, 2007) which was also recently
implemented in the pcalg R package (Kalisch et al., 2012). Starting from a complete
skeleton, decisions about whether edges should be deleted are made recursively based on
tests of conditional independence. The tests start from pairwise comparisons and increase
in complexity. By their very nature, methods building on this strategy are sensitive to local
errors of the tests and to the order in which they are run (Colombo and Maathuis, 2014),
but they tend to scale relatively well with the dimension.

On the other side of the spectrum are score and search algorithms, which rely on the
definition of a measure of fit of a graphical model to the observed data. The fit is typi-
cally evaluated by scoring the entire network, with the drawback that the method requires
exploration of the large network space.

In an attempt to exploit the strengths of each approach, hybrid solutions have also been
proposed, as for example the max-min-hill-climbing method of Tsamardinos et al. (2006).
Their algorithm first learns a skeleton of admissible edges in the network and then proceeds
by a greedy hill-climbing restricted to the space of structures compatible with the learned
skeleton. Hybrid methods take advantage of the constraint based ideas to perform – possibly
rather conservative – significance tests in a first phase, only to reduce the search space of a
second score and search phase.

The direction of the edges in a Bayesian network are interesting from a causal perspec-
tive, since the connections learned from observational data may help unveil unknown causal
relations. Due to the great potential for shedding light on important scientific questions,
the possibility of deriving causal statements from DAGs has had great appeal ever since the
causal interpretation of Bayesian networks was proposed (Pearl and Verma, 1991; Pearl,
2000). Caution must however be taken in interpreting DAGs causally (Dawid, 2010), since
it is only justified under strict and quite likely untestable assumptions, such as not having
unmeasured confounders. Moreover, graphical structures encoding the same conditional
independencies cannot be distinguished from observational data, so that even in the best
case scenario only the equivalence class of all the networks describing the same probability
distribution can be inferred.

2

Partition MCMC for Inference on Acyclic Digraphs

Recently Maathuis et al. (2009) proposed an interesting extension of the intervention
calculus of Pearl (2000) to scenarios where the underlying DAG is unknown and only an
equivalence class can be learned from data, while retaining the strict assumptions of faith-
fulness and absence of unobserved confounders. A combination of observational and inter-
ventional data may however help to distinguish between the models of an equivalence class
(Cooper and Yoo, 1999; Eaton and Murphy, 2007b; Hauser and Bühlmann, 2015; see also
Friedman et al., 2000 for a concise discussion about the discovery of causal patterns from
observational data).

The focus of our work is on score and search methods, and in particular on MCMC
methods for the graph space exploration. The main advantage of MCMC approaches with
respect to methods based on greedy searches and other optimisation algorithms is that they
can provide a collection of samples from the posterior distribution of the graph given the
data. This means that inference can be made in the spirit of Bayesian model averaging,
since the expectation of given network features, such as the posterior probability of an
individual edge, can be estimated by averaging over the sample (Madigan and York, 1995).
The possibility of conducting Bayesian model averaging is especially important in high
dimensional domains with sparse data, where no single best model can be clearly identified,
so that relying on the best scoring model to perform inference is unjustified.

The first MCMC algorithm over graph structures is due to Madigan and York (1995),
later refined by Giudici and Castelo (2003). To improve on the mixing and convergence,
Friedman and Koller (2003) suggested to build a Markov chain on the space of node orders
instead, at the price of introducing a bias in the sampling. For smaller systems, space and
time complexity are such that an efficient option is given by dynamic programming (Koivisto
and Sood, 2004), which can also be used to extend the proposals of standard structure
MCMC in a hybrid method (Eaton and Murphy, 2007b). Within the MCMC approach,
to avoid the bias in order MCMC, while keeping reasonable convergence, Grzegorczyk and
Husmeier (2008) more recently proposed a new edge reversal move combining ideas both of
standard structure and order MCMC.

In this paper we present a novel MCMC algorithm designed on the combinatorial struc-
ture of DAGs, with the advantage of improving convergence with respect to structure
MCMC. At the same time it still provides an unbiased sample since it acts directly on
the space of DAGs. It can also be combined with the algorithm of Grzegorczyk and Hus-
meier (2008), in place of structure, to promote convergence.

Bayesian networks provide a valuable tool for gaining insights from observational data
about the mechanism underlying the data generating process, and help to design experi-
ments which can validate observational findings. Efficient tools for structure learning are
therefore highly important. While there are a number of software packages, such as pcalg

(Kalisch et al., 2012) and bnlearn (Scutari, 2010) in R, for constraint based learning meth-
ods, publicly available tools for MCMC based structure learning algorithms are less common,
with the possible exception of BDAGL (Eaton and Murphy, 2007a). In tandem with dynamic
programming approaches, both standard structure, and MCMC in the space of orders are
implemented in BDAGL, but not the more recent new edge reversal move of Grzegorczyk and
Husmeier (2008) and the package is written for Matlab.

3

Kuipers and Moffa

With this paper we provide R code for structure (Madigan and York, 1995) and or-
der (Friedman and Koller, 2003) MCMC, together with the algorithm of Grzegorczyk and
Husmeier (2008) and our newly proposed partition MCMC.

2. Terminology and notation of Bayesian networks

Given a set of n random variables X = {X1, . . . , Xn} we are interested in characterising
their joint probability distribution by means of a directed graphical model. A Bayesian
network B = (G, θ) can be fully specified by associating a set of parameters θ to a directed
acyclic graph G whose nodes are the random variables in X. The parameters θ specify
a conditional probability distribution P (Xi|Pai) for each variable Xi given the set of its
parents Pai in the graph G. From the Markov assumption (Koller and Friedman, 2009)
that each variable Xi is independent of its non-descendants given its parents in the graph
G, it follows that the joint probability distribution described by the Bayesian network B
factorizes as

P (X1, . . . , Xn) =
n∏
i

P (Xi|Pai) .

The random variables in X can be discrete, continuous, or a mixture of both. In our
examples we will focus on continuous variables with a multivariate Gaussian distribution
(Geiger and Heckerman, 2002; see also the correction in Consonni and Rocca, 2012; Kuipers
et al., 2014).

In practice we may want to learn a Bayesian network B which best explains a set of
independent observations D from the distribution of the variables in X. The estimation of
a Bayesian network breaks up into two steps (Cowell et al., 2007), referred to as structure
and parameter learning. Given the data D we wish to learn the structural dependence
of the variables in X encoded by a DAG G and estimate a set of parameters θ for the
corresponding G. The focus of our work here is on the structure learning, in the context of
search and score algorithms.

It is well known, however, that the structure of the network, or in other words the
DAG, is identifiable only up to an equivalence class. All DAGs in an equivalence class
encode the same probability distribution. Equivalent DAGs share the same skeleton, or
undirected underlying graph, and the same v-structures (two parents with the same child
and no direct edge between them, Verma and Pearl, 1990). In practice, even from perfect or
noiseless data, when all conditional independencies are known exactly, we can only learn the
common features of an equivalence class (Maathuis et al., 2009), which can be represented
by a completed partially directed acyclic graph (CPDAG) or an essential graph (Andersson
et al., 1997).

The scoring functions for the graphical structure are typically derived from a Bayesian
approach, where the score for a DAG G is defined as its posterior probability given the data
D

P (G|D) ∝ P (D|G)P (G) ,

with P (G) a prior distribution over graphical structures. The marginal likelihood P (D|G) is
obtained by integrating the likelihood function P (D|G, θ) over the parameter prior P (θ|G)
for a given graph G and over the parameter space Θ. When the prior satisfies the conditions

4

Partition MCMC for Inference on Acyclic Digraphs

of structure modularity, parameter independence and parameter modularity as defined by
Heckerman and Geiger (1995), and if the data is complete, the score is structure equivalent
and decomposable (Friedman et al., 2000; Friedman and Koller, 2003)

P (G|D) ∝ P (D|G)P (G) =
∏
i

S(Xi,Pai|D) ,

where S is a score function depending only on the node variable Xi and its parents. The
decomposability is important from an implementation point of view, since it means that
during a structure search, only the score of the nodes whose parents change with respect
to the previously scored structure needs to be reevaluated. Since the number of possible
DAGs grows super-exponentially with the number of vertices, an exhaustive search quickly
becomes impracticable even for a moderate number of nodes. State of the art approaches
rely on approximate solutions, in particular from simulation methods based on MCMC.

3. Structure learning of Bayesian networks by MCMC methods

Before presenting our algorithm, we briefly review the current state of the art of MCMC
methods for structure learning of Bayesian networks. The most common strategies rely
either on elementary moves in the graph structure, involving a single edge, or on sampling
in the space of node orders, but leading to biased samples. The novelty of our approach
consists in starting from the combinatorial representation of DAGs to build an efficient
MCMC scheme directly on the space of DAGs.

3.1 Structure MCMC

The classical MCMC method for learning the underlying structure of Bayesian networks
dates back to Madigan and York (1995) and is referred to by Friedman and Koller (2003) as
structure MCMC. It is based on the simple idea of building a Markov chain on the space of
graphical models, such that its stationary distribution is the posterior distribution P (G|D)
of the network G given the data D. The simplest procedure constructs a random walk
by means of the simple operations of addition and deletion of single edges in a Metropolis
Hastings algorithm.

Given a DAG Gj at iteration j, find the neighbourhood nbd(Gj) of all DAGs with one
edge added or deleted (and including Gj itself). Sample a new graph G′ uniformly from this
neighbourhood with proposal probability

q(G′|G) =

{
1

#nbd(Gj) if G′ ∈ nbd(Gj)
0 otherwise

,

as defined by Madigan and York (1995).

The acceptance probability for the proposed graph in a Metropolis Hastings algorithm
is then

ρ = min

{
1,
q(Gj |G′)P (G′|D)

q(G′|Gj)P (Gj |D)

}
= min

{
1,

#nbd(Gj)P (G′|D)

#nbd(G′)P (Gj |D)

}
,

so that the next state in the chain Gj+1 = G′ with probability ρ and Gj+1 = Gj otherwise.

5

Kuipers and Moffa

Once the chain converges, it provides a sample G? of a graphical structure from the
posterior distribution P (G|D), providing the means to conduct inference based on Bayesian
model averaging. Typically this means collecting a (correlated) sequence of DAGs from one
or several MCMC chains, after a burn-in period to decouple from the starting point of the
chain. Since processing the DAGs after they have been sampled can be quite computation-
ally expensive, thinning is often appropriate (Link and Eaton, 2012).

By modifying the original algorithm of Madigan and York (1995) to include the pos-
sibility of reversing an edge, the convergence speed can be greatly improved (Giudici and
Castelo, 2003). Moreover, rejection sampling from a larger fixed sized neighbourhood can
be employed to avoid explicitly calculating the neighbourhood, which can further speed
up the implementation (Giudici and Castelo, 2003). Even with these improvements, struc-
ture MCMC can still struggle to converge for relatively small DAGs. In Appendix A.2 for
example, severe convergence difficulties are already apparent for DAGs with 14 nodes.

To assess the accuracy of structure learning algorithms, Tsamardinos et al. (2006) in-
troduced the structural Hamming distance (SHD) on CPDAGs. The SHD corresponds
to the number of simple operations, namely additions and deletions of both directed and
undirected edges, or reversing of directed edges, required to go from one CPDAG to the
other.

Although the SHD is calculated on CPDAGs rather than DAGs (to avoid penalising
statistically non identifiable differences), one could say that the SHD is the rational behind
structure MCMC. Namely, proposals are limited to graphical structures with a SHD of 1
from the current graph. Interestingly, what complicates things for exploring the space of
graphical structures is not only the super-exponential growth of their space size, but also the
fact that the behaviour of the SHD does not necessarily correspond to similar behaviours
in the likelihood landscape. The score of a network may in fact change substantially when
performing small changes to the structure (Friedman and Koller, 2003), or it may, on the
other hand, vary very little when making more important modifications to the network
structure.

Intuition suggests that it should be possible to define more efficient MCMC schemes
by making proposals which more closely reflect the likelihood landscape. Defining suitable
distances between graphical structures to help design better schemes is unfortunately not
straightforward. In the context of causal graphs a distance was recently defined (Peters
and Bühlmann, 2015), though purely based on a graphical criterion, directly related to the
network interpretation in terms of differences in the causal inference statements deriving
from each structure.

3.2 Order MCMC

To overcome the slow mixing property of structure MCMC, Friedman and Koller introduced
the order MCMC algorithm (Friedman and Koller, 2003). Key is the concept of a node
ordering ≺ which is simply a permutation of the n node labels. The nodes are essentially
lined up in a chain and labelled according to the given permutation. The DAGs belonging
to the corresponding order are such that each node may only have parents from further up
the chain, or following it in the ordering.

6

Partition MCMC for Inference on Acyclic Digraphs

For example if for n = 3 we choose the ordering 3, 1, 2 then node 3 could have either
of the others (or both or none) as parents. Node 1 may only have node 2 (or none) as
parents while node 2 is forced to have no parents. The possible choices of parents can be
represented as an adjacency matrix where the rows and columns are labelled according to
the order

3 1 2

3 0 0 0
1 {0, 1} 0 0
2 {0, 1} {0, 1} 0

so that only the lower triangular elements can differ from 0. Each choice for the lower
triangular elements is a different DAG and there are therefore 8 different DAGs compatible
with this ordering of 3 nodes.

The great insight of Friedman and Koller (2003) was that if the score is modular, and we
precompute the score of each node’s possible parent sets, we can efficiently sum the scores
of all the DAGs compatible with a particular node ordering. For each node we simply sum
the scores of all the parent sets that do not include nodes preceding it in the ordering. The
product of the node score sums over possible parent sets provides a score R(≺ |D) of the
entire order ≺ given the data D

R(≺ |D) =
∑
G∈≺

P (G|D) ∝
n∏
i=1

∑
Pai∈≺

S(Xi,Pai|D) . (1)

However, for each node the number of parents sets is 2n−1 which all need to be scored and
searched through to find the score of each order. To prevent the exponential complexity as
n increases, a hard limit K on the size of the parent sets is typically introduced to reduce
the complexity of scoring each node to order nK . A low threshold could exclude highly
scoring DAGs while increasing K too highly could increase the computational cost without
a concomitant improvement in the DAGs included. One therefore aims to select the lowest
value which still encapsulates the bulk of the posterior weight.

A Markov chain can then be constructed on the smaller space of node orders rather
than the space of all DAG structures. A chain with stationary distribution proportional to
R(≺ |D) can be produced by a Metropolis Hastings algorithm with acceptance probability

ρ = min

{
1,
q(≺j | ≺′)R(≺′ |D)

q(≺′ | ≺j)R(≺j |D)

}
, (2)

where q(≺′ | ≺) is the probability of proposing a move to ≺′ from ≺, and can be any
move in the space of permutations or orders (see Friedman and Koller, 2003, for some
examples). The simplest move consists in flipping two nodes in the order while leaving the
other unchanged. This is symmetric so that the q terms in (2) cancel.

Upon convergence, order MCMC provides a sample of an order ≺? from a distribution
proportional to the score R(≺ |D) over the space of n! possible orders of the nodes of the
graphical structure. Given a sampled order, one can sample a DAG by sampling the parents
of each node independently according to the scores of its permissible parent sets.

By grouping together and averaging the score over so many DAGs, the convergence
properties of the MCMC chain on the much smaller space of orders are vastly improved
compared to structure MCMC (Madigan and York, 1995; Giudici and Castelo, 2003).

7

Kuipers and Moffa

The convergence improvement, however, only works by ignoring the combinatorial struc-
ture of DAGs and working on the much simpler space of permuted triangular matrices. With
n nodes there are 2L DAGs consistent with each order with L = n(n− 1)/2 the number of
lower triangular elements, since each can take one of two values. There are also n! orders
giving a total of n!2L permuted lower triangular matrices. The number of DAGs, an, is ex-
ponentially smaller, as can be seen from the asymptotic behaviour (Robinson, 1970, 1973;
Stanley, 1973)

an ∼
n!2L

Mqn
,

where M = 0.574 . . . and q = 1.48 . . . are constants. The number of orders each DAG
belongs to is therefore exponentially large on average (it can range from 1 to n!). The fact
that a given graph G may be consistent with more than one order induces a bias in the
posterior distribution defined on the space of graphical structures.

This bias arises since the expression in equation (1) does not exactly correspond to the
posterior distribution P (≺ |D) which can be written instead as

P (≺ |D) =
∑
G

P (G,≺ |D) =
∑
G∈≺

P (≺ |G)P (G|D) .

The difference with respect to (1) consists of the term P (≺ |G), which is the inverse of the
number of orders the DAG G is consistent with. Neglecting this term in the order MCMC
algorithm then weights DAGs by the number of orders they belong to, resulting in the
aforementioned bias.

This weighting can also be seen as a consequence of placing a prior on orders P (≺). The
prior on graphs is then determined as P (G) =

∑
≺ P (G| ≺)P (≺) so each DAG obtains a

contribution from each order it can belong to. Attempts to remove the bias via importance
sampling (Ellis and Wong, 2008) can help for small graphs, but they struggle as the size
increases due to the exponential number of orders DAGs can be consistent with on average.

3.3 New edge reversal moves

Since the bias is the main problem with order MCMC, while the slow convergence is the
main limit of structure MCMC, Grzegorczyk and Husmeier (2008) introduced a novel edge
reversal move into structure MCMC in an attempt to overcome both difficulties. Their
new move also relies on the key feature of order MCMC, of combining the score of many
possible parent sets. Moreover, when an edge is reversed, the parents of the two nodes that
it connects are resampled according to their score. Since the jumps are chosen according to
their score, the chain moves to more probable DAGs more quickly, which vastly improves the
convergence of structure MCMC. The edge reversal move typically results in the proposal of
DAGs with a SHD bigger than 1 from the current graph in the chain, so that larger jumps
than those of structure MCMC are possible.

Since the edge reversal operation requires the knowledge of the scores of many possible
parent sets, again a hard limit K on the size of such sets is usually introduced as in order
MCMC. Moreover by itself the new edge reversal move is not ergodic in the space of DAGs.
To overcome this problem, the complete sampling algorithm of Grzegorczyk and Husmeier
(2008) combines the new move with an underlying structure MCMC chain in a mixture,

8

Partition MCMC for Inference on Acyclic Digraphs

where a new reversal move is proposed with a given probability prev and a classical structure
move with probability 1−prev. Since both structure MCMC and the new edge reversal move
are unbiased, the algorithm based on their mixture is also unbiased in the space of DAGs.

At the same time as avoiding the bias inherent in order MCMC the algorithm of Grze-
gorczyk and Husmeier (2008) exhibits much better convergence than structure MCMC. One
may try to combine all the currently available methods to find the most efficient way of
sampling DAGs according to their posterior probabilities. A valid strategy consists of using
order MCMC to find a graph from which to start a chain, which is then continued with the
mixture of structure MCMC and edge reversal.

4. Partition MCMC

In the current paper we propose a novel MCMC method which adheres to the philosophy
of order MCMC but which respects the combinatorial structure of DAGs. In particular,
we define a MCMC algorithm on the space of node partitions, essentially a subdivision of
orders necessary to avoid over representing certain DAGs. The subdivision will in general
slow the convergence compared to order MCMC, but by acting directly on the space of
acyclic digraphs our algorithm does not suffer from bias. As for edge reversal, one may run
order MCMC to start the chain and then continue with partition MCMC to remove the
bias.

The grouping of DAGs into partitions means that the convergence is much improved
with respect to structure MCMC. Moreover, we can efficiently combine our method with
the new edge reversal move of Grzegorczyk and Husmeier (2008) and improve upon their
MCMC sampler.

4.1 Outpoints

DAGs, since they do not admit cycles, must have at least one outpoint, defined as a node
with no incoming arcs. Outpoints are also known as sources. In Figure 1 for example
nodes 1, 3 and 5 are outpoints. If these, and their outgoing edges, are removed from the
graph then we are left with a smaller DAG. A single outpoint is then left as node 4, which
when removed leaves node 2 as the sole outpoint. This property allows DAGs to be built
recursively and enumerated (Robinson, 1970, 1973), which also means they can be sampled
uniformly (Kuipers and Moffa, 2015).

If we combine the outpoints at every stage into m sets each of size ki then since all
nodes are placed somewhere,

∑m
i=1 ki = n and we have partitioned n into [k1, k2, ...km].

For example in Figure 1, we have the following three sets: {2}, {4} and {1, 3, 5} and the
partition [1, 1, 3]. The partition order is reversed from Kuipers and Moffa (2015).

When arranging the partitioned sets of nodes in groups from left to right, edges are only
allowed to come from sets, or partition elements, further to the right. The arrangement is
similar to the ordering used in order MCMC, but there are two additional restrictions:

• nodes in the same partition element are not allowed to be connected to each other
(otherwise they would not be concurrent outpoints)

9

Kuipers and Moffa

k1 k2

k3

3 5 1

1 4 2 4 3

2 5

Figure 1: By collecting the outpoints at each step into a set, the DAG on the left can be
redrawn according to the partition [1, 1, 3] where now edges are only allowed to
come from the right.

• nodes must be connected to by at least one directed edge from the nodes in the
adjacent partition element to the right (otherwise they would be outpoints at an
earlier stage).

For example, in Figure 1 node 2 must receive an edge from node 4.

4.2 MCMC for uniform sampling

The number of DAGs belonging to a given partition follows from the number of edge
possibilities. Let Sj =

∑m
i=j ki then

a[k1,...,km] =
n!

k1! . . . km!

m−1∏
j=1

(
2kj+1 − 1

)kj m−2∏
j=1

2kjSj+2 .

The first combinatorial term is the number of ways of distributing the n nodes into the m
partition elements of size k1, . . . , km. Basically, permuting the nodes labels inside a partition
element has no effect on the set of DAGs consistent with the partition. The second term
counts the number of ways in which the nodes in each partition element can receive edges
from the adjacent element to the right, where subtracting 1 inside the bracket excludes the
case when the nodes receive no edges. The final term is the number of possible edges from
nodes in partition elements even further right. The number of DAGs in a partition therefore
varies from 1 for the partition with a single element up to n!2L−n+1 for the partition with
n elements.

By assigning each partition P a score aP , a MCMC scheme was previously introduced in
the space of partitions to sample DAGs uniformly (Kuipers and Moffa, 2015). In particular
the moves were chosen so that the ratio of scores

aP ′
aP

in the acceptance probability simplified
and was as cheap as possible to evaluate. Here we extend the method to sample from a
posterior distribution in the context of Bayesian inference for directed graphical models.
Namely, a MCMC sampling procedure can be built from the combinatorial structure of
DAGs, which comprises:

• an ordered partition of n, namely λ = [k1, k2, ...km] with
∑
ki = n

10

Partition MCMC for Inference on Acyclic Digraphs

• a permutation π on the node labels

• edges connecting the nodes (with certain restrictions).

4.3 Scoring partitions

For a given partition and permutation, permuting the labels inside a partition element
does not matter, so an ordering can be fixed. Denote by πλ a single representative of the
equivalent permutations with respect to the partition λ so that the pair (λ, πλ) = Λ can be
viewed as a labelled partition.

Analogously to order MCMC, for a given labelled partition Λ and with a modular score
we can score all permissible parent sets for each node. From the list of all parent sets we
exclude any with a member in the same partition element or in one further left. Only parent
sets with at least one member in the partition element immediately to the right need to be
included. For example, if λ = [1, 2, 2] and πλ = 2, 3, 4, 1, 5 as in Figure 2(c), we can look at
the possible parent sets for node 3. Nodes 2 and 4 are excluded as possible parents while
at least one of 1 and 5 must be included, resulting in three possible parent sets.

By summing the scores of the permissible parent sets for each node (and multiplying
the sums for all nodes), we treat all the possible edge combinations and hence combine the
score of all DAGs consistent with the given labelled partition Λ. The total score so obtained
coincides with the posterior probability of the labelled partition

P (Λ|D) =
∑
G
P (Λ|G, D)P (G|D) ≡

∑
G∈Λ

P (G|D) ∝
n∏
i=1

∑
Pai∈Λ

S(Xi,Pai|D) , (3)

and a MCMC chain can be built on the joint space of partitions and permutations. Each
MCMC move needs to propose a new labelled partition Λ′ which is accepted with probability

ρ = min

{
1,

#nbd(Λ)P (Λ′|D)

#nbd(Λ′)P (Λ|D)

}
, (4)

where the neighbourhood needs to be calculated for each move type.

4.4 Basic move

The basic move consists of splitting a partition into two or joining two adjacent ones. In
Kuipers and Moffa (2015) this move was performed by a mapping to binary sequences. As
an example, in Figure 1 which is redrawn in Figure 2(a), node 4 may be joined to node 2
or the set {1, 3, 5} and the partition element containing {1, 3, 5} may be split in two. If we
do split {1, 3, 5} into two by separating off node 3 to the left, we move from Figure 2(a) to
Figure 2(b). Further joining nodes 3 and 4 gives the labelled partition in Figure 2(c).

However when splitting an element of size k into two elements of size c and k− c respec-
tively there are

(
k
c

)
ways to separate the nodes and correspondingly update the permutation.

With (m− 1) ways of joining partition elements, the size of the neighbourhood is then

m− 1 +
m∑
i=1

ki−1∑
c=1

(
ki
c

)
= m− 1 +

m∑
i=1

(
2ki − 2

)
= −m− 1 +

m∑
i=1

2ki .

11

Kuipers and Moffa

(a)

2 4

1

3

5

(b)

2 4 3

1

5

(c)

2

3

4

1

5

Figure 2: From the partition λ = [1, 1, 3] in Figure 1 drawn in (a) splitting the partition
element containing nodes {1, 3, 5} into two by moving node 3 into a new partition
element on the left leads to the labelled partition in (b) with λ = [1, 1, 1, 2].
Further combining the two partition elements containing nodes 4 and 3 leads to
the partition in (c) with λ = [1, 2, 2].

Algorithm 1 Sample a proposal partition Λ′ from the neighbourhood of Λ

input An ordered partition Λ
Sample an integer j uniformly from 1 : #nbd(Λ) where

#nbd(Λ) = m− 1 +
m∑
i=1

ki−1∑
c=1

(
ki
c

)
with m the number of partition elements in Λ and ki the size of element i
if j < m then

Join partition elements j and j + 1 of Λ to form Λ′

else
Find minimum i? such that

j ≤ m− 1 +
i?∑
i=1

ki−1∑
c=1

(
ki
c

)
Find minimum c? such that

j ≤ m− 1 +

i?−1∑
i=1

ki−1∑
c=1

(
ki
c

)
+

c?∑
c=1

(
ki?

c

)
Sample c? nodes from partition element i? in Λ
Split them off into a new partition element on the left to form Λ′

end if
return Λ′

We can therefore sample from the neighbourhood uniformly as summarised in Algorithm 1.
This then allows us to define the full MCMC scheme for the basic move in Algorithm 2.

12

Partition MCMC for Inference on Acyclic Digraphs

Algorithm 2 Basic MCMC in the partition space

input Chain length T and an initial ordered partition Λ0

for t = 1 to T do
Sample α uniformly from (0, 1)
if α < 0.01 then . Small probability to stay still

Λt = Λt−1

else
Sample a proposal partition Λ′ from Λt−1 using Algorithm 1
Sample α uniformly from (0, 1)

if α < #nbd(Λ)P (Λ′|D)
#nbd(Λ′)P (Λ|D) then

Λt = Λ′

else
Λt = Λt−1

end if
end if
Sample DAG Gt from Λt weighted following P (Λt|D) =

∑
G∈Λt

P (G|D)
end for
return {Gt}

When joining two partition elements, only the nodes from the partition element on the
left and its adjacent element further left need to be rescored. Similarly, when splitting a
partition element, only the nodes in the newly formed element on the left, and its adjacent
element further left need to be rescored.

4.5 Sampling DAGs

Splitting and joining partitions are inverse moves of each other, so the moves are reversible.
Since all partition elements can be joined into a single one in up to (n− 1) steps and then
separated out into a new labelled partition in up to (n − 1) further steps, the chain is
certainly irreducible after 2(n−1) steps and introducing a small probability of staying still,
will avoid the possibility of a periodic chain. Finally (4) ensures detailed balance since

P (Λ|D)P (Λ→ Λ′) =
P (Λ|D)

#nbd(Λ)
min

{
1,

#nbd(Λ)P (Λ′|D)

#nbd(Λ′)P (Λ|D)

}
= min

{
P (Λ|D)

#nbd(Λ)
,
P (Λ′|D)

#nbd(Λ′)

}
= P (Λ′|D)P (Λ′ → Λ) .

The conditions to sample labelled partitions from the posterior P (Λ|D) are therefore satis-
fied.

Since P (Λ|D) =
∑
G∈Λ P (G|D) as in (3), from each sampled labelled partition Λ we

sample a single DAG, G ∈ Λ, weighted according to P (G|D) to obtain DAGs sampled from
their posterior. This DAG sampling step is then included in the MCMC scheme, for example
with the basic partition move as outlined in Algorithm 2.

13

Kuipers and Moffa

(a)

2

3

4

1

5

(b)

2

4

3

1

5

(c)

4 3 2

1

5

Figure 3: Redrawing the partition with λ = [1, 2, 2] from Figure 2(c) with spaces either side
of the partition elements highlighted as in (a), we first sample node 4 and choose
to move it into the partition element containing node 2 to arrive at the partition
in (b) with λ = [2, 1, 2]. Then we sample node 2 itself and choose to move it to a
new partition element creating the partition in (c) with λ = [1, 1, 1, 2].

4.6 Additional partition move

To change the size of a partition element however, it is necessary first to split nodes off and
then join them to a different partition element. For example, going from Figure 2(a) to
Figure 2(c) takes two basic move steps. A partition move could also be considered whereby
we swap nodes directly from one partition element to another.

It is possible to move one node at a time. For example, each node may move either
to a different partition element or to one of the gaps in between (or outside) to create a
new partition element containing a single node. In the partition of Figure 2(c) with m = 3
elements, there are a total of four gaps as highlighted in Figure 3(a). To make a move,
first sample a node uniformly from the n available. Then place that node in one of the
(m+ 1) gaps or (m− 1) different partition elements, also chosen uniformly. In the example
of Figure 3, we first sample node 4 to move to the first partition element, then node 2 to
move to the third gap. The neighbourhood of the move given the partition is simply 2mn.

However, moving one node from a partition element containing two nodes into the gap
to the right, or the other node into the gap to the left, leads to the same labelled partition.
Likewise moving a node from a partition element containing a single node into the gap
either side, the partition remains unchanged. To marginally improve the convergence, the
latter possibility is excluded, and nodes from partition elements with two nodes are not
allowed to move into the gap immediately to their left. The neighbourhood calculation also
needs to be adjusted to account for these exclusions.

As a node can be moved anywhere in the partition, a larger number of nodes might need
to be rescored at each step. However, this move can be weighted relative to the basic move
to keep the average number of nodes that need to be rescored down to around 4. This is
independent of n, which keeps the complexity of the scheme lower.

4.7 Permutation moves

Currently, exploring the space of permutations requires us to appropriately combine and
split partition elements. We could instead add moves directly in the space of permutations.

14

Partition MCMC for Inference on Acyclic Digraphs

The simplest strategy consists of swapping two elements sampled uniformly at each step.
It then takes (n− 1) steps to build an irreducible chain on the space of permutations. The
size of the neighbourhood is independent of the partition and fixed at L.

However, swapping nodes inside the same partition element does not change anything
and just increases the probability of staying still. Excluding such possibilities and only
swapping nodes in different partition elements, the neighbourhood is then smaller and equal
to

m∑
i=1

ki(n− ki)
2

.

Finally, one could consider only allowing nodes in adjacent partition elements to be
swapped. The idea here would be that this move would be more ‘local’ and be more likely
to choose a swap with a high score. Only a smaller number of nodes need to be rescored
leading to faster steps in the chain. The neighbourhood is smaller still and equal to

m∑
i=1

kiki+1 ,

but the irreducibility length in the space of permutations increases up to order n2. Ac-
cordingly, local steps get stuck more easily in high scoring areas reducing convergence and
mixing but as compensation more moves can be performed in the same computational time.
We can balance the two types of permutation moves to benefit from the positive aspects of
both and improve the overall convergence. In particular we again weight them to keep the
average number of nodes to rescore down to about 4.

4.8 Combining moves

The partition and permutation neighbourhoods could be combined into a single larger
neighbourhood to sample uniformly from (including the current point). For simplicity, we
sample each move type with a fixed probability.

5. Partition MCMC with edge reversal

In the edge reversal move of Grzegorczyk and Husmeier (2008), new parent sets of the two
nodes connected by the edge selected for reversal are also sampled. Since they are sampled
according to their score, higher scoring DAGs are proposed more often, and the chain moves
more quickly. However, the move is non ergodic, and needs to be built on an underlying
irreducible framework like structure MCMC, which was the choice in Grzegorczyk and
Husmeier (2008).

Since partition MCMC offers an alternative to structure, it can be used as the underlying
MCMC method instead. A DAG is simply sampled from the current labelled partition
according to the list of scores, the new edge reversal move from that DAG is performed
exactly as in Grzegorczyk and Husmeier (2008), and the proposed DAG is accepted with
the same probability. If accepted, the new DAG is mapped to its labelled partition, which
is then used for further partition MCMC steps. Since the starting DAG is sampled from
the current partition, the relative scores of the start and end partition cancel (like the steps
in the new edge reversal move) and we need no further correction.

15

Kuipers and Moffa

Explicitly, the transition probability from Λ to Λ′ through the DAGs G ∈ Λ and G′ ∈ Λ′

is

KG′|G(Λ′|Λ) =
P (G|D)

P (Λ|D)
K.(G′|G) , (5)

where the first term is the probability of sampling a DAG from the partition with normal-
isation as in (3) and K.(G′|G) is the transition probability of the edge reversal move in
Grzegorczyk and Husmeier (2008) from G to G′. Since that move satisfies detailed balance

P (G′|D)

P (G|D)
=
K.(G′|G)

K.(G|G′)
,

substituting into (5) leads directly to

KG′|G(Λ′|Λ)

KG|G′(Λ|Λ′)
=
P (Λ′|D)

P (Λ|D)
, (6)

so that detailed balance holds for the edge reversal move inside partition MCMC when the
DAG is sampled from the current labelled partition.

Finally we need to consider the possibility that there is more than one path between
partitions so that

K(Λ′|Λ) =
∑
G,G′

KG′|G(Λ′|Λ) ,

is the total transition probability between the two partitions. Detailed balance

P (Λ|D)K(Λ′|Λ) = K(Λ|Λ′)P (Λ′|D) ,

follows from (6), rearranged and summed.

The computational expense of an edge reversal move involves examining the possible
parent sets four times. Namely, for both nodes attached to the edge which is reversed and
for both the forward and backward move. It therefore has roughly the same computational
cost as a partition MCMC move. However, if the move is accepted, the entire new partition
needs to be scored from scratch by rescoring all the nodes. Therefore a relative cost of
approximately n

4 is added to each accepted move, slightly reducing the length of the chain
compared to standard partition MCMC.

6. Conclusions

As demonstrated in Appendix A, partition MCMC allows DAGs to be sampled from the
posterior much more efficiently than standard structure MCMC, without the bias of order
MCMC (Friedman and Koller, 2003). The current state of the art edge reversal move of
Grzegorczyk and Husmeier (2008) can be built into the partition sampler, improving on the
convergence of their algorithm which required an underlying structure MCMC. Partitions
are a way of putting MCMC on DAGs in a more natural mathematical framework, where
the algorithm acts on their combinatorial representation. This representation may provide
a means to define distances alternative to the SHD via moves in the space of partitions.
As such, partition MCMC opens up new possibilities. Here we chose some simple moves to

16

Partition MCMC for Inference on Acyclic Digraphs

demonstrate the idea, but many more could be defined and the choice optimised, maybe
even adaptively depending on the score landscape. Structure MCMC on the other hand is
a very mature methodology and therefore highly optimised over the years, while it is hard
to envisage simple modifications of the edge reversal move of Grzegorczyk and Husmeier
(2008). The combinatorial approach we present, being novel, may offer wider scope for
improvement.

With the aim of inferring a single Bayesian network from scarce data, Elidan (2011)
suggested an adaptation of structural EM based on bootstrap aggregating or bagging (Efron,
1979; Breiman, 1996). The focus here is instead on sampling from the posterior, in order to
enable Bayesian model averaging, for example to estimate posterior probabilities of given
structural features. As noted by Friedman et al. (1999), an approximation to Bayesian
estimation can be obtained from the bootstrap approach. However, the quality of the
estimates decreases when moving away from the mode. In other words, the structure set
obtained from the bootstrap samples provides a distribution of the maximum likelihood
estimator and as such does not lead to an adequate description of the posterior. Typically
the maximal likelihood search is performed in the structure space, but a more natural
approach would be to use the order or partition space as we discuss in Appendix B. However
the complexity of such a search is the same as sampling from the posterior. Hence the
bagging approximation can be avoided since partition MCMC provides access to the full
posterior.

In Appendix A we look at example of densely connected graphs with up to 20 nodes.
From the complexity arguments also discussed in Appendix B, fixing the computational cost
we can increase the number of nodes while decreasing the limit on the number of parents.
For example, graphs with 20 nodes and no parent limit would be comparable to graphs with
100 nodes with up to 2 or 3 parents each.

In some cases some of the structural features of the domain under study may be known
from previous studies or expert knowledge. It is then useful to include prior information in
the learning process, as suggested for example by Mukherjee and Speed (2008); Werhli and
Husmeier (2007). Modular priors, such as on edges, can be easily accounted for in partition
MCMC, order or edge reversal. Non modular priors could be included in structure MCMC
(Mukherjee and Speed, 2008), but the slow convergence of the algorithm makes this of
little practical interest for domains of moderate size, therefore they would most naturally
be corrected for by means of importance sampling.

The idea behind partition MCMC is analogous to order MCMC which may be seen as
an elegant solution to the somewhat different problem of sampling triangular matrices. By
simply enforcing the chain to respect the combinatorial structure of DAGs via the partitions,
we can now solve the problem of interest. Alternatively, one could wish to sample CPDAGs,
in which case partition MCMC would still be solving slightly the wrong problem. Madigan
et al. (1996) proposed a method to sample essential graphs (or CPDAGs) as an extension
of structure MCMC, which can be sped up following the approach of Peña (2007) for the
uniform case. Recent improvements also allow the uniform sampling of large sparse essential
graphs (He et al., 2013) However, as discussed by Kuipers and Moffa (2015), the convergence
on CPDAGs is notably slower than for DAGs, and at present no better methods like edge
reversal (Grzegorczyk and Husmeier, 2008) or partition MCMC are available for the space
of CPDAGs. Moreover, the overcounting of CPDAGs when working on DAGs instead is

17

Kuipers and Moffa

bound by a low constant and is approximately 4, so that rejection or importance sampling
should be preferable when combined with an efficient method for DAGs. For example one
could try to approximately evaluate feature prevalence in the essential graph space following
the ideas of Ellis and Wong (2008). Namely, assuming each essential graph has a different
score, and since equivalent DAGs necessarily have the same score, one would only keep a
single copy of any equally scoring DAGs.

In contrast the overcounting of lower triangular matrices compared to DAGs grows
exponentially, explaining the difficulties encountered when employing importance sampling
to correct for the bias of order MCMC. With an implicit assumption that such a correction
via importance sampling is possible, there has been work to improve order MCMC by
working on partial orders (Niinimäki et al., 2011) or sampling directly on the space of
orders using dynamic programming (Koivisto and Sood, 2004). Currently, an improved
dynamic programming approach to order MCMC has been proposed (He et al., 2015) with
approximate bias removal following the work of Ellis and Wong (2008). Of course, none
of these approaches can sample DAGs from the posterior as with our partition MCMC
approach. However trying to build the dynamic programming framework on the space of
partitions rather than orders may be an interesting direction to explore as a possible way
to sample DAGs correctly and efficiently.

Appendix A. Comparison of the different MCMC methods

The standard set of moves through the space of DAGs is to change one edge at a time
(Madigan and York, 1995; Giudici and Castelo, 2003). Which edges can be added, deleted or
reversed can be calculated with the help of the incidence and ancestor matrices. For example
each nonzero entry in the incidence matrix can be set to 0 to delete an edge, giving the
neighbouring graphs with one edge fewer. Edges cannot be added to ancestors, as this would
create a cycle, or to where an edge already exists. The neighbours with one edge more can
thus be easily found. Finally, edge reversal can be thought of as a particular two step move
of deleting an edge and adding it back in the opposite direction. Appropriately multiplying
the ancestor and incidence matrices, provides the nondirect ancestors. Reversing the edge
to any of them would create a cycle. The neighbours with an edge reversed are then derived
from the remaining nonzero entries of the incidence matrix.

Given the ancestor and incidence matrices, calculating the neighbourhood is O(n2) for
the edge additions and O(n3) for the edge reversals. (We ignore possible faster matrix mul-
tiplication algorithms.) Once a new DAG is sampled from the neighbourhood, the ancestor
matrix can be updated in O(n2) (Giudici and Castelo, 2003) and the new neighbourhood
size needs to be calculated before accepting the move.

We work with the BGe score (Geiger and Heckerman, 1994; Heckerman and Geiger,
1995; Geiger and Heckerman, 2002), corrected as in Consonni and Rocca (2012); Kuipers
et al. (2014) and sped up following Kuipers et al. (2014). Since this score is modular,
each node is scored separately from the others just depending on its parent set. With edge
addition or deletion, only one node needs to be rescored while two are rescored with an
edge reversal. The scoring involves finding the determinant of a matrix of the size of the
parent set with a complexity up to K3 when the size of the parents sets are limited to K.

18

Partition MCMC for Inference on Acyclic Digraphs

Since here we limit the parent sets, the scoring may be quicker than calculating the
neighbourhoods and there have been proposals to improve the speed of the chain by avoiding
to explicitly calculate the neighbourhood at each step. In an approach designed for uniform
sampling (Melançon et al., 2001) one can simply swap an element (from 0 to 1 or back) of
the incidence matrix chosen uniformly. Moves which would create a cycle are rejected and
can be checked in a time between O(n) and O(n2) with a typical O(n log(n)) behaviour
(Alon and Rodeh, 1978) which here would depend on the higher scoring DAGs. A reversal
move can also be introduced (Melançon and Philippe, 2004). Alternatively, Giudici and
Castelo (2003) keep track of the ancestor matrix which allows them to check whether the
moves are legal in O(n). Only when moves are accepted based on the score does the ancestor
matrix need to be updated at a cost O(n2). Of course convergence is slowed down by not
calculating the neighbourhood exactly but the idea is that this is more than compensated
for by speeding up the moves.

Since the exact computation time depends on many factors we employ the following
simplifications in our comparison. We find the number of steps of standard structure MCMC
that have approximately the same computational time as the alternatives detailed below
and then run the chains n times longer. Although the examples are far from the asymptotic
limit where edge reversal is more expensive than the other moves, this factor is chosen is
to compensate for possible speed ups that could be implemented. With the compensation,
the unavoidable time spent scoring DAGs is comparable to the run time of the alternatives,
representing the limit of any speed ups.

Both Friedman and Koller (2003) and Grzegorczyk and Husmeier (2008) suggested a
more constant time factor ≈ 10 between structure and alternative steps. Although it may
depend heavily on the exact implementation, it wouldn’t be in line with asymptotic rea-
soning but for n ≈ 10 would be roughly in line with our implementation. Our comparison
however would become more favourable to structure MCMC as n increases.

The standard move in order MCMC consists of swapping any two elements in the permu-
tation of node labels (so the chain takes less than n steps to become irreducible). However,
it means you need to rescore the nodes selected and all the nodes inbetween them (on av-
erage n+4

3 nodes). Instead one could swap adjacent elements and only need to rescore 2
nodes (making the steps quicker) but the chain takes order n2 steps to become irreducible.
We employ a mixture of both moves with the probability of each chosen so that they both
take the same computational time. Since the standard move includes the other, it should
be chosen with probability 6n/(n2 +10n−24) to achieve this, meaning that around 4 nodes
need to be rescored on average. This improves the behaviour of order MCMC and makes
the time complexity of each step independent of n. A small 1% probability of staying still
is included to ensure aperiodicity of the chain.

For partition MCMC we choose a partition move to a permutation move with a ratio of
3 : 2 and inside each class we choose the larger move with 6n/(n2 + 10n − 24) so that on
average about 3 nodes and one partition element (typically a further node) are rescored at
each step. Likewise a small 1% probability of staying still is included.

The edge reversal move of Grzegorczyk and Husmeier (2008) is not irreducible by itself
and it needs to be incorporated into an irreducible scheme like structure MCMC. Since for
the edge reversal move we need to score 4 lots of possible parent sets, 2 for the forward
move and 2 for the reverse move, this takes a similar time on average to each partition

19

Kuipers and Moffa

0 200 400 600 800 1000

−
35

4
−

35
2

−
35

0
−

34
8

D
A

G
 s

co
re

0 200 400 600 800 1000

−
36

1
−

35
9

−
35

7
−

35
5

D
A

G
 s

co
re

0 200 400 600 800 1000

−
35

4
−

35
2

−
35

0
−

34
8

D
A

G
 s

co
re

0 200 400 600 800 1000

−
35

7
−

35
5

−
35

3
−

35
1

D
A

G
 s

co
re

Figure 4: A run of 50 thousand steps of structure MCMC for the simulated data with
different seeds starting at the empty DAG. In the top plots edge reversals are
allowed and we seem to hover around the maximally scoring DAG (red dotted
line). In the bottom plots, edge reversal is excluded and we do not even approach
the maximal scoring DAG.

MCMC move. For the comparison we fix the probability of the new edge reversal move to
7/100 ≈ 1/15 as in Grzegorczyk and Husmeier (2008) and use the artificial timing of the
structure steps to set the total time to match partition MCMC. Note that the edge reversal
move requires knowledge of the descendants matrix once the edge to be reversed has been
removed. This is obtained in a naive matrix multiplication implementation of order n4

compared to the order nK of scoring and sampling parent sets. Despite the complexity, the
actual computational time was negligible in our examples and faster than a less complex
algorithm, but this step could be sped up for larger graphs.

When the edge reversal move of Grzegorczyk and Husmeier (2008) is combined with
partition MCMC instead we keep the probability of choosing the edge reversal move at
7/100. If such a move is accepted though we need to rescore all the nodes for the next
partition step which slows down the implementation and leads to marginally shorter chains.

A.1 Simulated example

We generated 100 observations from the DAG in Figure 1 with 5 nodes and no maximum
number of parents (K = 4). The data were generated from a normal with regression on the
parents with coefficient 2.

First we ran standard structure MCMC (Madigan and York, 1995) for 50 thousand steps
recording a thousand evenly spaced DAGs. Figure 4 shows trace plots from two different
seeds. The highest score of the DAGs covered in the chain is plotted as the green solid line
which is placed at the top of each graph. If visible, the score of the DAG used to generate
the data is plotted as the red dotted line. In the lower plots we excluded the possibility

20

Partition MCMC for Inference on Acyclic Digraphs

0 200 400 600 800 1000

−
35

4
−

35
2

−
35

0
−

34
8

D
A

G
 s

co
re

0 200 400 600 800 1000

−
35

4
−

35
2

−
35

0
−

34
8

D
A

G
 s

co
re

0 200 400 600 800 1000

−
35

4
−

35
2

−
35

0
−

34
8

D
A

G
 s

co
re

0 200 400 600 800 1000

−
35

4
−

35
2

−
35

0
−

34
8

D
A

G
 s

co
re

Figure 5: A run of 40 thousand steps of structure MCMC with the new edge reversal move of
Grzegorczyk and Husmeier (2008) and different seeds. The edge move is selected
with probability 0.07. The performance seems the same as standard structure
MCMC, but with a large improvement when standard edge reversals are excluded
as shown by the bottom rows.

of edge reversal. Although, as discussed above, one can speed up the chain without edge
reversal, as can be seen in the plots the poor performance of the chain makes this a false
economy since the level of the best DAG is not reached. The large improvement with edge
reversal is detailed in Giudici and Castelo (2003) and in the following subsections we no
longer consider the case without it.

When including the edge reversal move of Grzegorczyk and Husmeier (2008) we run the
chain for 40 thousand steps. In this example we ran structure MCMC with and without
the standard edge reversal move. In the top plots of Figure 5 there is hardly any difference
from those in Figure 4 other than maybe a slight worsening due to a shorter chain. The
new edge reversal vastly improves the algorithm without a standard edge reversal, as can be
seen by comparing the bottom plots, but this is not surprising given the addition of some
type of edge reversal.

Removing the standard edge reversal could lead to a speed up of structure, but a degra-
dation in the performance is still evident when comparing the two rows of Figure 5. Since
the new edge reversal constitutes the computationally most expensive part, any speed up
of the structure part would be damped and unlikely to be worth considering in general
situations.

For the same simulated data, we ran partition MCMC. The time needed for 13 thousand
steps (dividing by 5) of structure MCMC allows for approximately 10 thousand steps of
partition MCMC. Some trace plots are given in Figure 6 where the top plots show the score
of the current partition, while the bottom plots show the score of a DAG sampled from that

21

Kuipers and Moffa

0 200 400 600 800 1000

−
35

4
−

35
2

−
35

0
−

34
8

P
ar

tit
io

n
sc

or
e

0 200 400 600 800 1000

−
35

4
−

35
2

−
35

0
−

34
8

D
A

G
 s

co
re

0 200 400 600 800 1000

−
35

4
−

35
2

−
35

0
−

34
8

P
ar

tit
io

n
sc

or
e

0 200 400 600 800 1000

−
35

4
−

35
2

−
35

0
−

34
8

D
A

G
 s

co
re

Figure 6: Run of 10 thousand steps of partition MCMC with different seeds on simulated
data from a DAG with 5 nodes.

0 200 400 600 800 1000

−
35

4
−

35
2

−
35

0
−

34
8

P
ar

tit
io

n
sc

or
e

0 200 400 600 800 1000

−
35

4
−

35
2

−
35

0
−

34
8

D
A

G
 s

co
re

0 200 400 600 800 1000

−
35

4
−

35
2

−
35

0
−

34
8

P
ar

tit
io

n
sc

or
e

0 200 400 600 800 1000

−
35

4
−

35
2

−
35

0
−

34
8

D
A

G
 s

co
re

Figure 7: Run of 9 thousand steps of partition MCMC including the edge reversal move of
Grzegorczyk and Husmeier (2008) with different seeds on simulated data from a
DAG with 5 nodes.

partition. When comparing the bottom plots to the top plots of Figure 4 we see similar
behaviour, with what looks like slower convergence of partition due to the shorter chain.

Incorporating the new edge reversal move, we can run around 9 thousand steps in the
same time with the results in Figure 7, which are similar.

22

Partition MCMC for Inference on Acyclic Digraphs

0 200 400 600 800 1000−
35

4
−

35
2

−
35

0
−

34
8

O
rd

er
 s

co
re

0 200 400 600 800 1000

−
35

4
−

35
2

−
35

0
−

34
8

D
A

G
 s

co
re

0 200 400 600 800 1000−
35

4
−

35
2

−
35

0
−

34
8

O
rd

er
 s

co
re

0 200 400 600 800 1000

−
35

4
−

35
2

−
35

0
−

34
8

D
A

G
 s

co
re

Figure 8: Run of 20 thousand steps of order MCMC with different seeds for simulated data
from a DAG with 5 nodes.

Finally we run order MCMC. In the plots in Figure 8, the top line is in the space of orders
with the scores of the entire order while the bottom lines are the score of DAGs sampled
from each order at each step. There are now 8 orders the DAG in Figure 1 is compatible with
and we draw red dotted lines for the total scores of each of those orders. The performance is
much better than structure even with the edge reversal move of Grzegorczyk and Husmeier
(2008). Of course order MCMC is working in a much bigger and overlapping space so we
would expect better performance.

A.2 Boston housing data

A dataset used as a benchmark is the Boston Housing data from the UCI repository (Lich-
man, 2013). It consists of N = 506 observations from n = 14 continuous variables. Both
Friedman and Koller (2003) and Grzegorczyk and Husmeier (2008) run their algorithms on
the Boston Housing data in order to analyse convergence with respect to structure MCMC.
Here we also use the same dataset to compare the performance of the different algorithms
we consider. We cannot compare directly to the results in Friedman and Koller (2003);
Grzegorczyk and Husmeier (2008) since their implementation is not available and moreover
they are most likely based on one of the incorrect versions of the BGe score (Geiger and
Heckerman, 1994; Heckerman and Geiger, 1995; Geiger and Heckerman, 2002), which has
only recently been corrected (Consonni and Rocca, 2012; Kuipers et al., 2014).

We first run one million steps of structure MCMC with different seeds. Trace plots are
shown in Figure 9. Even with such a long run, the chains have not converged.

When implementing partition MCMC, dividing by n = 14 and adjusting the times,
we run the chain for 60 thousand steps as opposed to the 1 million we ran for structure
MCMC. Since each partition MCMC step takes a very similar time to an order MCMC step
or the edge reversal move of Grzegorczyk and Husmeier (2008) we are penalising partition

23

Kuipers and Moffa

0 200 400 600 800 1000

−
24

−
20

−
16

−
12

D
A

G
 s

co
re

0 200 400 600 800 1000

−
70

−
66

−
62

−
58

D
A

G
 s

co
re

0 200 400 600 800 1000

−
76

−
72

−
68

−
64

D
A

G
 s

co
re

0 200 400 600 800 1000

−
22

−
18

−
14

−
10

D
A

G
 s

co
re

Figure 9: A run of 1 million steps of structure MCMC with different seeds for the Boston
Housing data. As can be seen the different runs arrive at different plateaux, some
of which are very far away from the global maximum set at 0.

MCMC by a factor of n = 14 which is comparable to the constant factor of 10 employed by
Friedman and Koller (2003); Grzegorczyk and Husmeier (2008). When looking at the trace
plots in Figure 10 we can see much better performance than observed for structure MCMC
in Figure 9. Most of the runs seem to arrive close to where the global maximum resides,
which is set to 0 in the graphs. The remaining run and the deviations from the plateaux
give us an idea of the convergence time.

Convergence of structure MCMC is well known to become rather slow as the graphs
get larger and the score landscape more peaked. Partition MCMC seems a simple method
to improve the convergence by combining many DAGs in the space of labelled partitions.
Previous approaches to improve structure MCMC such as order MCMC (Friedman and
Koller, 2003) and the edge reversal of Grzegorczyk and Husmeier (2008) also relied on the
combination of DAGs into larger classes.

The difference between pure structure MCMC and its combination with the edge rever-
sal move of Grzegorczyk and Husmeier (2008) was not evident for the previous simulated
example, since the space is quite small and the chains are already quite long. Looking at the
behaviour of the algorithms on the Boston Housing data instead highlights the improve-
ment. Now we run the chains for half a million steps and plot the results in Figure 11.
None of the runs are as far away as the worst examples in Figure 9 though one a run still
behaves similarly to the other examples of Figure 9. Two of the examples in Figure 11 are
around the global maximum however. When comparing to partition MCMC, local explo-
ration seems better from the longer runs, but correspondingly long times are spent around
each horizontal level. The latter is due of course to the structure moves but the edge re-
versal moves increase the chance of large jumps to new levels (and hence finding the global
maximum) though they are still rarely successful.

24

Partition MCMC for Inference on Acyclic Digraphs

0 200 400 600 800 1000

−
28

−
24

−
20

−
16

D
A

G
 s

co
re

0 200 400 600 800 1000

−
14

−
10

−
6

−
2

0
D

A
G

 s
co

re

0 200 400 600 800 1000

−
14

−
10

−
6

−
2

D
A

G
 s

co
re

0 200 400 600 800 1000

−
14

−
10

−
6

−
2

D
A

G
 s

co
re

Figure 10: A run of 60 thousand steps of partition MCMC with different seeds for the
Boston Housing data. While the first remains some distance away from the
global maximum set at 0, the other runs approach a plateau near or at the
maximum itself.

0 200 400 600 800 1000

−
14

−
10

−
6

−
2

0
D

A
G

 s
co

re

0 200 400 600 800 1000

−
14

−
10

−
6

−
2

0
D

A
G

 s
co

re

0 200 400 600 800 1000

−
20

−
16

−
12

−
8

D
A

G
 s

co
re

0 200 400 600 800 1000

−
30

−
26

−
22

−
18

D
A

G
 s

co
re

Figure 11: A run of half a million steps of the new edge reversal MCMC with different
seeds for the Boston Housing data. The top two reach the region of the global
maximum, while the others are some distance away.

25

Kuipers and Moffa

0 200 400 600 800 1000

−
20

−
16

−
12

−
8

D
A

G
 s

co
re

0 200 400 600 800 1000

−
14

−
10

−
6

−
2

0
D

A
G

 s
co

re

0 200 400 600 800 1000

−
14

−
10

−
6

−
2

D
A

G
 s

co
re

0 200 400 600 800 1000

−
14

−
10

−
6

−
2

0
D

A
G

 s
co

re
Figure 12: A run of 56 thousand steps of partition MCMC with edge reversal with different

seeds for the Boston Housing data. The runs on the right seem to reach the
global maximum set at 0, while the first plot remains just a little lower.

Combining the edge reversal with partition MCMC instead we run chains of 56 thousand
steps as opposed to the 60 thousand before. Of course the exact timing of each run depends
on the acceptance probability and can be quite variable. Trace plots are shown in Figure 12
and they seem to combine the best features of Figures 10 and 11.

For comparison, we also run order MCMC for 150 thousand steps, for which trace plots
appear in Figure 13. The performance in finding the maximum is the best, but a relative
score region between -10 and -14 seems overly represented, which may be due to the bias.

To compare the ability of the algorithms to discover the maximum, the four example
trace plots presented do not suffice so we run each of the better unbiased methods with 100
different seeds. A density plot of the maximal scores they discover is presented in Figure 14.
Edge reversal finds the maximum most often, partition MCMC the least. Partition MCMC
however finds a large range of possible values as opposed to the handful found by edge
reversal suggesting that the edge reversal chains follow more similar paths through the
score landscape. Combining partition MCMC with edge reversal provides intermediate
behaviour.

A.3 Simulation from a more connected DAG

Keeping n = 14 we move to a simulation of a more connected DAG with K = 6. We
sample uniformly a lower triangular (0, 1) matrix and remove elements at random from any
column with more than K non-zero entries until only K remain. We then pick a random
permutation of the nodes and use the resulting DAG to generate N = 500 observations
following a normal distribution with regression on the parents. So far the setup is like
the Boston Housing data, but with a more connected underlying DAG. Again we run the

26

Partition MCMC for Inference on Acyclic Digraphs

0 200 400 600 800 1000

−
14

−
10

−
6

−
2

0
D

A
G

 s
co

re

0 200 400 600 800 1000

−
14

−
10

−
6

−
2

0
D

A
G

 s
co

re
0 200 400 600 800 1000

−
14

−
10

−
6

−
2

0
D

A
G

 s
co

re

0 200 400 600 800 1000

−
14

−
10

−
6

−
2

0
D

A
G

 s
co

re

Figure 13: A run of 150 thousand steps of order MCMC with different seeds for the Boston
Housing data. All the runs reach the global maximum at 0, but there seems to
be a strong propensity to explore a region between -10 and -14.

−20 −15 −10 −5 0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Figure 14: Density plots of the maximal score found by partition MCMC (solid blue), struc-
ture with edge reversal (dashed orange) and partition with edge reversal (dotted
purple) for the Boston Housing data.

27

Kuipers and Moffa

−100 −80 −60 −40 −20 0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

−20 −15 −10 −5 0
0.

00
0.

10
0.

20
0.

30

Figure 15: Density plots of the maximal score found by partition MCMC (solid blue), struc-
ture with edge reversal (dashed orange) and partition with edge reversal (dotted
purple) for simulated data on 14 nodes. In the inset, we zoom in the region
around 0 with a narrower convolving function.

different methods with 100 seeds and keep track of the maximal scores discovered by the
chains. The density plot of the maximal scores is an imperfect measure of how good each
method is, but indicative. Keeping half a million steps for structure with the new edge
reversal move of Grzegorczyk and Husmeier (2008), instead of timing the structure steps
we assume they take negligible time and run partition MCMC for 0.07 times the number
of steps, or 35 thousand. The combined partition with edge reversal is run for 32 thousand
steps each time. The resulting density of maxima is plotted in Figure 15. Despite the
slight chain length advantage for edge reversal, it performs worse than partition MCMC
with a large tail far away from the global maximum but with a smaller spread around the
maximum itself. The behaviour is a reflection of the relatively small number of different
score regions edge reversal discovers compared to the wider spread of partition MCMC.
The clear favourite in Figure 15 is the combination of partition MCMC with edge reversal.
These results suggest that the combination would be the preferred algorithm for inference
on DAGs as the size and connectivity increases.

A.4 Larger simulations

When moving to larger graphs with n = 18 and n = 20 with N = 200 observations and a
limit of K = 5 on the parents we observe the same improvement by combining edge reversal
with partition MCMC as shown in Figure 16.

28

Partition MCMC for Inference on Acyclic Digraphs

−100 −50 0

0.
00

0.
02

0.
04

0.
06

−200 −150 −100 −50 0

0.
00

0.
01

0.
02

0.
03

0.
04

Figure 16: Density plots of the maximal score found by partition MCMC (solid blue), struc-
ture with edge reversal (dashed orange) and partition with edge reversal (dotted
purple) for simulated data on 18 nodes (left) and 20 nodes (right).

Appendix B. MAP discovery

Although we focus on sampling from the posterior, MCMC methods can be adapted to
perform a stochastic search for maximum a posteriori (MAP) graphs, or, by replacing the
score function appropriately, for (penalized) maximum likelihood discovery.

A common approach for structure search is greedy hill-climbing, but it has the drawback
of stopping in the first local maximum, where MCMC schemes may get only temporarily
trapped, as for example in the plateaux visible for the n = 14 Boston Housing example in
Figure 9.

The complexity of a structure based greedy hill-climbing approach involves testing O(n2)
neighbours at each step to find and move to the best one. Each neighbour must be scored,
which with a fixed limit K on the number of parents is O(1). After each step, the neigh-
bourhood can be updated in O(n2) using the ideas of Giudici and Castelo (2003). The
structure moves take O(n2) steps to move through the DAG space leading to a complexity
of O(n4) to find each local optimum. The overall complexity may be higher if the number
of restarts required also grows with n.

A stochastic search based on structure MCMC, using for example simulated anneal-
ing, has a complexity of approximately O(n5 lnn) (Kuipers and Moffa, 2015) which may
grow further if the peakiness of the score landscape likewise grows with n. For practical
implementations the coefficients of the complexities play a large role. Based on the or-
der of complexity though, hill-climbing appears to have the edge; even more so with the
improvements in Tsamardinos et al. (2006) in the context of hybrid methods.

For moderate sized problems, as with 14 nodes in Figure 9, structure MCMC gets
trapped in low-scoring local maxima, suggesting that greedy searches would also suffer for
larger graphs. Instead one can search directly in the order or partition space. The bias due
to working in the space of orders rather than the DAG space is not of great concern for
MAP learning. Therefore we start with the simpler permutation space of node orderings
≺, of size n!. Each order gets assigned the maximal score of all the DAGs consistent with

29

Kuipers and Moffa

that node ordering

Q(≺ |D) = max
G∈≺

P (G|D)γ . (7)

Instead of hill-climbing through the orders, one can perform a stochastic search with a
symmetric MCMC through the space of permutations with acceptance probability

ρ = min

{
1,
Q(≺′ |D)γ

Q(≺ |D)γ

}
. (8)

Throughout the chain the algorithm can keep track of the maximal ordering and hence the
maximal DAG discovered. The power γ flattens or sharpens the score landscape and can
be tuned to help find the maximum as quickly as possible. Increasing γ as the chain is run
corresponds to simulated annealing.

From a complexity perspective, if each move swaps two nodes at a time, it takes n steps
for the chain over the space of permutations to become irreducible. On this irreducible scale
of n steps, we assume that the exponential convergence of the MCMC has a rate which is
asymptotically independent of n. The chain needs to converge at least to the scale of the
inverse size of the space. To get to ∼ 1

n! suggests that at least n lnn irreducible rounds
or O(n2 lnn) MCMC steps are required for good convergence and maximum discovery
properties. The complexity of each MCMC step when carefully weighted as in Appendix A
is O(nK) leading to an overall behaviour of at least O(nK+2 lnn). Order and partition
MCMC also have the same complexity. Of course the coefficients may be very different
especially due to the possibility of tuning γ to speed up the MAP discovery.

For a greedy hill-climbing order search, at each step O(n2) neighbouring orders are
examined. Moving through this neighbourhood efficiently by only swapping adjacent ele-
ments at each step, the cost of scoring each neighbour is still O(nK). Moving through the
order space requires O(n) steps leading to a minimum complexity of O(nK+3) with possible
increases depending on how the number of restarts relates to n.

The stochastic search may have lower complexity than greedy hill-climbing on orders,
and can cope with an uneven score landscape, but its main advantage is the possibility of
providing an indication of the confidence that the maximum is the global one.

Imagine the search uncovers a maximally scoring DAG which belongs to a single order.
To test whether this local maximum may be the global one, a stochastic search is run Z
times, discovering the candidate global maximum on z of those runs. The probability of
discovering the maximum on each run would be estimated as p? = z

Z . Since the search,
once converged, is sampling proportionally to Qγ , it is more likely to hit higher scoring
graphs, if they exist. The probability of doing so on each run should be greater than p?.
The probability of missing any higher scoring graphs on any of the runs should be less than
about (1 − p?)Z . By modifing γ, Z and the lengths of the runs, we can reduce the bound
to any acceptably low value.

If the candidate maximum happens to belong to W orders the same reasoning leads to

a weaker bound of
(
1− z

WZ

)Z
. Alternatively, one can can turn to the partition space with

a unique representation of each DAG, though there may still be equivalent DAGs in other
partitions.

30

Partition MCMC for Inference on Acyclic Digraphs

References

I. Alon and M. Rodeh. Finding a minimum circuit in a graph. SIAM Journal on Computing,
7:413–423, 1978.

S. A. Andersson, D. Madigan, and M. D. Perlman. A characterization of Markov equivalence
classes for acyclic digraphs. Annals of Statistics, 25:505–541, 1997.

L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

D. Colombo and M. H. Maathuis. Order-independent constraint-based causal structure
learning. Journal of Machine Learning Research, 15:3741–3782, 2014.

G. Consonni and L. L. Rocca. Objective Bayes factors for Gaussian directed acyclic graph-
ical models. Scandinavian Journal of Statistics, 39:743–756, 2012.

G. F. Cooper and C. Yoo. Causal discovery from a mixture of experimental and obser-
vational data. In Fifteenth Conference on Uncertainty in Artificial Intelligence, pages
116–125, 1999.

R. G. Cowell, P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic networks and
expert systems. Springer, 2007.

R. Daly, Q. Shen, and S. Aitken. Learning Bayesian networks: approaches and issues. The
Knowledge Engineering Review, 26:99–157, 2011.

A. P. Dawid. Beware of the DAG! Journal of Machine Learning Research Workshop and
Conference Proceedings, 6:59–86, 2010.

D. Eaton and K. Murphy. BDAGL. http://www.cs.ubc.ca/~murphyk/Software/BDAGL/,
2007a.

D. Eaton and K. Murphy. Bayesian structure learning using dynamic programming and
MCMC. In Twenty-third Conference on Uncertainty in Artificial Intelligence, pages 101–
108, 2007b.

B. Efron. Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7:1–26,
1979.

G. Elidan. Bagged structure learning of Bayesian network. In International Conference on
Artificial Intelligence and Statistics, pages 251–259, 2011.

B. Ellis and W. H. Wong. Learning causal Bayesian network structures from experimental
data. Journal of the American Statistical Association, 103:778–789, 2008.

N. Friedman. Inferring cellular networks using probabilistic graphical models. Science, 303:
799–805, 2004.

N. Friedman and D. Koller. Being Bayesian about network structure. A Bayesian approach
to structure discovery in Bayesian networks. Machine Learning, 50:95–125, 2003.

31

http://www.cs.ubc.ca/~murphyk/Software/BDAGL/

Kuipers and Moffa

N. Friedman, M. Goldszmidt, and A. Wyner. Data analysis with Bayesian networks: A
bootstrap approach. In Fifteenth Conference on Uncertainty in Artificial Intelligence,
pages 196–205, 1999.

N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze
expression data. Journal of Computational Biology, 7:601–620, 2000.

D. Geiger and D. Heckerman. Learning Gaussian networks. In Tenth Conference on Un-
certainty in Artificial Intelligence, pages 235–243, 1994.

D. Geiger and D. Heckerman. Parameter priors for directed acyclic graphical models and the
characterization of several probability distributions. Annals of Statistics, 30:1412–1440,
2002.

P. Giudici and R. Castelo. Improving Markov chain Monte Carlo model search for data
mining. Machine Learning, 50:127–158, 2003.

M. Grzegorczyk and D. Husmeier. Improving the structure MCMC sampler for Bayesian
networks by introducing a new edge reversal move. Machine Learning, 71:265–305, 2008.

A. Hauser and P. Bühlmann. Jointly interventional and observational data: estimation of
interventional Markov equivalence classes of directed acyclic graphs. Journal of the Royal
Statistical Society, Series B, 77:291–318, 2015.

R. He, J. Tian, and H. Wu. Structure learning in Bayesian networks of moderate size by
efficient sampling. arXiv:1501.04370, 2015.

Y. He, J. Jia, and B. Yu. Reversible MCMC on Markov equivalence classes of sparse directed
acyclic graphs. Annals of Statistics, 41:1742–1779, 2013.

D. Heckerman and D. Geiger. Learning Bayesian networks: A unification for discrete and
Gaussian domains. In Eleventh Conference on Uncertainty in Artificial Intelligence, pages
274–284, 1995.

S. M. Hill, Y. Lu, J. Molina, L. M. Heiserand, P. T. Spellman, T. P. Speed, J. W. Gray,
G. B. Mills, and S. Mukherjee. Bayesian inference of signaling network topology in a
cancer cell line. Bioinformatics, 28:2804–2810, 2012.

D. Husmeier. Sensitivity and specificity of inferring genetic regulatory interactions from
microarray experiments with dynamic Bayesian networks. Bioinformatics, 19:2271–2282,
2003.

M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs with
the PC-algorithm. Journal of Machine Learning Research, 8:613–636, 2007.

M. Kalisch, M. Mächler, D. Colombo, M. H. Maathuis, and P. Bühlmann. Causal inference
using graphical models with the R package pcalg. Journal of Statistical Software, 47:
1–26, 2012.

M. Koivisto and K. Sood. Exact Bayesian structure discovery in Bayesian networks. Journal
of Machine Learning Research, 5:549–573, 2004.

32

Partition MCMC for Inference on Acyclic Digraphs

D. Koller and N. Friedman. Probabilistic graphical models. MIT press, 2009.

J. Kuipers and G. Moffa. Uniform random generation of large acyclic digraphs. Statistics
and Computing, 25:227–242, 2015.

J. Kuipers, G. Moffa, and D. Heckerman. Addendum on the scoring of Gaussian directed
acyclic graphical models. Annals of Statistics, 42:1689–1691, 2014.

M. Lichman. UCI machine learning repository, 2013. http://archive.ics.uci.edu/ml.

W. A. Link and M. J. Eaton. On thinning of chains in MCMC. Methods in Ecology and
Evolution, 3:112–115, 2012.

M. H. Maathuis, M. Kalisch, and P. Bühlmann. Estimating high-dimensional intervention
effects from observational data. Annals of Statistics, 37:3133–3164, 2009.

D. Madigan and J. York. Bayesian graphical models for discrete data. International Sta-
tistical Review, 63:215–232, 1995.

D. Madigan, S. A. Andersson, M. D. Perlman, and C. T. Volinsky. Bayesian model averaging
and model selection for Markov equivalence classes of acyclic digraphs. Communications
in Statistics — Theory and Methods, 25:2493–2519, 1996.

G. Melançon and F. Philippe. Generating connected acyclic digraphs uniformly at random.
Information Processing Letters, 90:209–213, 2004.

G. Melançon, I. Dutour, and M. Bousquet-Mélou. Random generation of directed acyclic
graphs. Electronic Notes in Discrete Mathematics, 10:202–207, 2001.

S. Mukherjee and T. P. Speed. Network inference using informative priors. Proceedings of
the National Academy of Sciences, 105:14313–14318, 2008.

T. Niinimäki, P. Parviainen, and M. Koivisto. Partial order MCMC for structure discov-
ery in Bayesian networks. In Twenty-seventh Conference on Uncertainty in Artificial
Intelligence, pages 557–564, 2011.

J. Pearl. Causality: models, reasoning and inference. MIT press, 2000.

J. Pearl and T. S. Verma. A theory of inferred causation. In Second International Conference
on Principles of Knowledge Representation and Reasoning, pages 441–452, 1991.

J. M. Peña. Approximate counting of graphical models via MCMC. In Proceedings of the
Eleventh International Conference on Artificial Intelligence and Statistics, pages 352–359,
2007.

J. Peters and P. Bühlmann. Structural intervention distance (SID) for evaluating causal
graphs. Neural Computation, 27:771–799, 2015.

A. Rau, F. Jaffrézic, J.-L. Foulley, and R. W. Doerge. Reverse engineering gene regulatory
networks using approximate Bayesian computation. Statistics and Computing, 22:1257–
1271, 2012.

33

http://archive.ics.uci.edu/ml

Kuipers and Moffa

R. W. Robinson. Enumeration of acyclic digraphs. In Second Chapel Hill Conference on
Combinatorial Mathematics and its Applications, pages 391–399, 1970.

R. W. Robinson. Counting labeled acyclic digraphs. In New directions in the theory of
graphs, pages 239–273. Academic Press, New York, 1973.

K. Sachs, O. Perez, D. Pe’er, D. A. Lauffenburger, and G. P. Nolan. Causal protein-signaling
networks derived from multiparameter single-cell data. Science, 308:523–529, 2005.

M. Scutari. Learning Bayesian networks with the bnlearn R package. Journal of Statistical
Software, 35:1–22, 2010.

P. Spirtes, C. N. Glymour, and R. Scheines. Causation, prediction, and search. MIT Press,
2000.

R. P. Stanley. Acyclic orientations of graphs. Discrete Mathematics, 5:171–178, 1973.

I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing Bayesian
network structure learning algorithm. Machine Learning, 65:31–78, 2006.

T. S. Verma and J. Pearl. Equivalence and synthesis of causal models. In Sixth Conference
on Uncertainty in Artificial Intelligence, pages 220–227, 1990.

A. V. Werhli and D. Husmeier. Reconstructing gene regulatory networks with Bayesian net-
works by combining expression data with multiple sources of prior knowledge. Statistical
Applications in Genetics and Molecular Biology, 6:1–47, 2007.

34

	1 Introduction
	2 Terminology and notation of Bayesian networks
	3 Structure learning of Bayesian networks by MCMC methods
	3.1 Structure MCMC
	3.2 Order MCMC
	3.3 New edge reversal moves

	4 Partition MCMC
	4.1 Outpoints
	4.2 MCMC for uniform sampling
	4.3 Scoring partitions
	4.4 Basic move
	4.5 Sampling DAGs
	4.6 Additional partition move
	4.7 Permutation moves
	4.8 Combining moves

	5 Partition MCMC with edge reversal
	6 Conclusions
	A Comparison of the different MCMC methods
	A.1 Simulated example
	A.2 Boston housing data
	A.3 Simulation from a more connected DAG
	A.4 Larger simulations

	B MAP discovery

