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SUMMARY

This paper highlights several areas where graphical techniques can be harnessed to address
the problem of measurement errors in causal inference. In particular, it discusses the control of
unmeasured confounders in parametric and nonparametric models and the computational prob-
lem of obtaining bias-free effect estimates in such models. We derive new conditions under
which causal effects can be restored by observing proxy variables of unmeasured confounders
with/without external studies.
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1. INTRODUCTION

1·1. Preliminaries

This paper discusses methods of dealing with measurement errors in the context of graph-
based causal inference. It is motivated by a powerful result reported in Greenland & Lash (2008)
that is rooted in classical regression analysis (Greenland & Kleinbaum, 1983; Selén, 1986;
Carroll et al., 2006), but has not been fully utilized in causal analysis or graphical models.

For V = (V1, . . . , Vn), let pr(v)= pr(v1, . . . , vn) be the joint distribution of V =
(V1, . . . , Vn)= (v1, . . . , vn), pr(vi | v j ) the conditional distribution of Vi = vi given Vj = v j and
pr(vi ) the marginal distribution of Vi = vi . Similar notation is used for other distributions. For
the graph-theoretic terminology used in this paper, we refer readers to Pearl (1988, 2009).

Given a directed acyclic graph G = (V, E) with a set V of variables and a set E of arrows, a
probability distribution pr(v) is said to be compatible with G if it can be factorized as

pr(v)=
n∏

i=1

pr{vi | pa(vi )}, (1)

where pa(vi ) is a set of parents of Vi in G. When pa(vi ) is an empty set, pr{vi | pa(vi )} is the
marginal distribution pr(vi ). When equation (1) holds, we also say that G is a Bayesian network
of pr(v) (Pearl, 2009, pp. 13–16).

C© 2014 Biometrika Trust
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If a joint distribution is factorized recursively according to the graph G, then the conditional
independencies implied by the factorization (1) can be obtained from the graph G according to the
d-separation criterion (Pearl, 1988). That is, for any distinct subsets X , Y and Z , if Z d-separates
X from Y in G, then X is conditionally independent of Y given Z , denoted as X Y | Z , in every
distribution satisfying equation (1).

If every parent-child family in the graph G stands for an independent data-generating mech-
anism, the Bayesian network is called a causal diagram (Pearl, 2009, p. 24). Based on a causal
diagram G, for any variables X, Y ∈ V , the causal effect of X on Y is defined as

pr{y | do(x)} =
∑

v\{x,y}

pr{x, y, v\{x, y}}
pr{x | pa(x)} ,

for all x for which pr{x | pa(x)}> 0. The symbol do(x) indicates that X is fixed to x by an
external intervention (Pearl, 2009). When the causal effect can be determined uniquely from
a joint distribution of observed variables, the causal effect is said to be identifiable. The most
common identifiability condition that can be obtained from the graph structure is the back door
criterion. A set S of variables is said to satisfy the back door criterion relative to (X, Y ) if it
satisfies the following conditions:

(i) no vertex in S is a descendant of X , and
(ii) S d-separates X from Y in the graph obtained by deleting from a graph G all arrows emerg-

ing from X .

If any such set can be measured, the causal effect of X on Y is identifiable and is given by the
formula pr{y | do(x)} =∑

s pr(y | x, s)pr(s) (Pearl, 2009, pp. 79–80); S is then called sufficient.

1·2. Motivation

With the preparation above, we consider the problem of estimating the causal effect of X on
Y when a sufficient confounder U is unobserved, and can only be measured with error via one
or several proxy variables shown in Fig. 1.

Our motivation can be illustrated through Magidson’s analysis of Head Start Program
(Magidson, 1977), which is a program of the United States Department of Health and Human Ser-
vices that provides comprehensive education, health, nutrition, and parent involvement services
to low-income children and their families. The programme’s services and resources are designed
to foster stable family relationships, enhance children’s physical and emotional well-being, and
establish an environment to develop strong cognitive skills. Magidson’s sample consists of 148
children who received the summer Head Start Program and 155 control children. Let X be a
dummy variable indicating attendance in the Head Start Program, and let Y be the outcome vari-
able of the Metropolitan Readiness Test, which is a measure of children cognitive ability. Let U
represent the socio-economic status, which was unobserved but can be considered as a sufficient
confounder based on the discussion in Magidson (1977).

Figure 1 shows several situations that may be realized of this study. Figure 1(a) depicts a sit-
uation where father’s occupation W is measured as a proxy variable of U , and Fig. 1(b) depicts
a situation where father’s occupation W and family income Z are measured as proxy variables
of U . Figure 1(c) also depicts a situation where both W and Z are measured as proxy variables
of U . Different from Fig. 1(b), since family income Z is an important factor that determines
whether or not a child attended the Head Start Program, it is reasonable to model Z as having a
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(a) (b)

(c) (d)

Fig. 1. Causal diagrams with proxy variables of U , for the identification of
causal effects. (a) requires knowledge of pr(w | u), while (b) and (c) identify
causal effects from data. (d) identifies causal effects in linear models but not

in nonparametric models from data.

direct effect on X . Finally, Fig. 1(d) depicts a situation where father’s occupation, W , is assumed
to have a direct effect on Y . Figures 1(b), (c) and (d) assume that father’s occupation and family
income are conditionally independent given U , which may be unrealistic and is relaxed later in
§ 4·3.

In Fig. 1, U satisfies the back door criterion relative to (X, Y ), but its proxy variables W and
Z do not. Since U is sufficient, the causal effect is identifiable from measurement on X , Y and
U , and can be written as

pr{y | do(x)} =
∑

u

pr(y | x, u)pr(u). (2)

However, since U is unobserved and both W and Z are noisy measurements of U , d-separation
tells us immediately that adjusting for W and/or Z is inadequate, as it leaves the back door path(s)
X←U→ Y unblocked. Therefore, regardless of sample size, the causal effect of X on Y cannot
be estimated without bias. It turns out, however, that if we are given or estimate the conditional
distribution pr(w | u) that governs the proxy mechanism, we can perform a modified adjustment
for W and Z that, in the limit of a very large sample, would amount to the same thing as observing
and adjusting for U itself, thus rendering the causal effect identifiable. The possibility of remov-
ing bias by modified adjustment is far from obvious, because the actual value of a confounder
U remains uncertain for each measurement W =w and Z = z, so one would expect to get either
a distribution over causal effects, or bounds thereof (MacLehose et al., 2005; Cai et al., 2008;
Kuroki & Cai, 2008). Instead, we can actually get a repaired point estimate of pr{y | do(x)} that
is asymptotically unbiased.

This result, which we will label effect restoration, has powerful consequences in practice
because, when pr(w | u) is not given or estimated, one can resort to a Bayesian or bounding anal-
ysis and assume a prior distribution or bounds on the parameters of pr(w | u), which would yield
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a distribution or bounds over pr{y | do(x)} (Greenland, 2005). Alternatively, if costs permit, one
can estimate pr(w | u) by re-testing U in a sampled subpopulation (Carroll et al., 2006). This is
normally done by re-calibration techniques (Greenland & Lash, 2008), called a validation study,
in which U is measured without error in a subpopulation and used to calibrate the estimates in
the main study (Selén, 1986). In our example of the Head Start Program, an estimate of pr(w | u)

could be obtained by measuring dozens of indicators which, according to professional consensus,
provide an accurate assessment of U .

On the surface, the possibility of correcting for measurement bias seems to undermine the
importance of accurate measurements. It suggests that as long as we know how bad our measure-
ments are, there is no need to improve them because they can be corrected post-hoc by analytical
means. This is not so. First, although an unbiased effect estimate can be recovered from noisy
measurements, sampling variability increases substantially with error. Second, even assuming
unbounded sample size, the estimate will be biased if the postulated pr(w | u) is incorrect. In
extreme cases, wrongly postulated pr(w | u) may even conflict with the data, and no estimate
will be obtained. For example, if we postulate a noninformative W , pr(w | u)= pr(w), and we
find that W strongly depends on X , a contradiction arises and no effect estimate will emerge
(Pearl, 2010).

Effect restoration can be analysed from either a statistical or causal viewpoint. Taking the
statistical view, one may argue that, once the causal effect is identified in terms of a latent variable
U and is given the estimand in equation (2), the problem is no longer one of causal inference, but
rather of regression analysis, whereby the expression EU {pr(y | x, U )} must be estimated from
a noisy measurement of U , given by W or {W, Z}. This is indeed the approach taken in the vast
literature on measurement error (e.g., Selén, 1986; Carroll et al., 2006).

The causal analytic perspective is different; it maintains that the ultimate purpose of the anal-
ysis is not the statistics of X , Y , and U , as is commonly assumed in the measurement-error lit-
erature, but the causal effect pr{y | do(x)} that is mapped into regression vocabulary only when
certain causal assumptions are deemed plausible. Awareness of these assumptions should shape
the way we deal with measurement error. For example, the very idea of modelling the error mech-
anism pr(w | u) requires causal considerations; errors caused by noisy measurements of U are
fundamentally different from those caused by random factors affecting U . Likewise, the reason
we seek an estimate of pr(w | u) as opposed to pr(u |w), be it from scientific judgments or from
pilot studies, is that we consider the former to be a more reliable and transportable parameter
than the latter. Transportability (Pearl & Bareinboim, 2011; 2013 technical report available from
author) is a causal notion that is hardly touched upon in the measurement-error literature, where
causal vocabulary is usually avoided and causal relations relegated to informal judgment (e.g.,
Carroll et al., 2006, pp. 29–32).

Viewed from this perspective, the measurement-error literature appears to be engaged unwit-
tingly in causal considerations, and can benefit from making the causal framework explicit.
The benefit can in fact be mutual; identifiability with partially specified causal parame-
ters as in Fig. 1 is rarely discussed in the causal inference literature; notable exceptions are
Goetghebeur & Vansteelandt (2005), Cai & Kuroki (2008), Hernán & Cole (2009) and Pearl
(2010), while graphical models are hardly used at all in the measurement-error literature.

In this paper, we will consider the mathematical aspects of effect restoration and will focus
on asymptotic analysis. Our aims are to understand the conditions under which effect restoration
is feasible, to assess the computational problems it presents, and to identify those features of
pr(w | u) and pr(x, y, w), or pr(x, y, w, z), that are major contributors to measurement bias. We
derive new conditions under which causal effects can be restored by observing proxy variables
of unmeasured confounders with/without external studies.
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2. EFFECT RESTORATION WITH EXTERNAL STUDIES

Guided by the graph shown in Fig. 1(a), we start with the joint probability pr(x, y, w, u) and
assume that W depends only on U , i.e., pr(w | x, y, u)= pr(w | u). This assumption is often
called nondifferential error (Carroll et al., 2006). We further assume that

(a) the distribution pr(w | u) of the error mechanism is available from external studies such as
pilot studies or scientific judgments, and

(b) W and the confounder U are discrete variables with a given finite number of categories k.

The main idea of recovering pr(x, y, u) from both pr(x, y, w) and pr(w | u), adapted from
Greenland & Lash (2008, p. 360) and Pearl (2010), which is called a matrix adjustment method
(Greenland & Lash, 2008), is as follows: for U and W such that u ∈ {u1, . . . , uk} and w ∈
{w1, . . . , wk}, we have

pr(y, w | x)=
k∑

i=1

pr(y, ui | x)pr(w | ui ). (3)

Then, for any specific values x and y, letting

Vxy(u)=

⎛
⎜⎝

pr(y, u1 | x)
...

pr(y, uk | x)

⎞
⎟⎠ , Vxy(w)=

⎛
⎜⎝

pr(y, w1 | x)
...

pr(y, wk | x)

⎞
⎟⎠ ,

M(w, u)=

⎛
⎜⎝

pr(w1 | u1) · · · pr(w1 | uk)
...

. . .
...

pr(wk | u1) · · · pr(wk | uk)

⎞
⎟⎠ ,

equations (3) can be written as matrix multiplication: Vxy(w)= M(w, u)Vxy(u). Now, assuming
that

(c) M(w, u) is invertible,

the elements pr(y, u | x) of Vxy(u) are estimable and are given by

Vxy(u)= M(w, u)−1Vxy(w). (4)

Similarly, the estimation of pr(x, u)= pr(u | x)p(x) can be achieved by replacing Vxy(u)

and Vxy(w) with Vx (u)= {pr(u1 | x), . . . , pr(uk | x)}′ and Vx (w)= {pr(w1 | x), . . . , pr(wk | x)}′
respectively, and the estimation of pr(u) can be achieved by replacing Vxy(u) and Vxy(w) with
V (u)= {pr(u1), . . . , pr(uk)}′ and V (w)= {pr(w1), . . . , pr(wk)}′ respectively, where primes
stand for a transposed vector/matrix. Thus, equation (4) enables us to reconstruct pr(y, u | x),
pr(u | x) and pr(u) from pr(x, y, w) and pr(w | u). In other words, each term on the right-
hand side of equation (2) can be obtained from pr(x, y, w) and pr(w | u) through equation (4)
and, assuming U is sufficient, the causal effect pr{y | do(x)} is estimable from the available
data. Explicitly, letting i(w, u) be the corresponding element of M(w, u)−1 that corresponds
to (W, U )= (w, u), we have

pr{y | do(x)}=
k∑

i=1

pr(y, ui | x)pr(ui )

pr(ui | x)
=

k∑
l=1

∑k
j=1 i(w j , ul)pr(y, w j | x)

∑k
j=1i(w j , ul)pr(w j )∑k

j=1 i(w j , ul)pr(w j | x)
.
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The same inverse matrix, M(w, u)−1, appears in all summations.
For full discussion of the proposed method in the case of a binary U and the application of the

propensity score method (Rosenbaum & Rubin, 1983) to multivariate U , see Pearl (2010).

3. EFFECT RESTORATION WITHOUT EXTERNAL STUDIES

In this section, we will tackle the more difficult problem of estimating causal effects without
prior knowledge of the noise statistics. We will show that, under certain conditions, causal effects
can be restored from proxy measurements alone.

Consider the causal diagrams shown in Figs. 1(b) and (c) that are obtained by adding an
observed variable Z to Fig. 1(a). We will show that pr(y, u | x), pr(u | x) and pr(u) can be recov-
ered from pr(x, y, z, w) under the following conditions:

Condition 1. Two proxy variables of U that are conditionally independent of each other given
U can be observed, e.g., W and Z in Fig. 1(b) and (c) and U satisfies both W {X, Y, Z} |U and
Y {W, Z} | {U, X}, as in Fig. 1(b) and (c);

Condition 2. W , Z and the confounder U are discrete variables with a given finite number of
categories, k.

We first rearrange pr(y | x, u1), . . . , pr(y | x, uk) in decreasing order and relabel {u1, . . . , uk}
as {u(1), . . . , u(k)} such that pr(y | x, u(1)) � · · ·� pr(y | x, u(k)) for a given x and y, and, then,
we recover pr(y, u | x), pr(u | x) and pr(u) from pr(x, y, z, w) using eigenvalue analysis.

From Figs. 1(b) and (c), with U , W and Z taking on values u ∈ {u1, . . . , uk} = {u(1), . . . , u(k)},
w ∈ {w1, . . . , wk} and z ∈ {z1, . . . , zk} respectively, we have

pr(z, w | x)=
k∑

i=1

pr(w | u(i))pr(z | x, u(i))pr(u(i) | x),

pr(y, w | x)=
k∑

i=1

pr(w | u(i))pr(y | x, u(i))pr(u(i) | x),

pr(y, z | x)=
k∑

i=1

pr(y | x, u(i))pr(z | x, u(i))pr(u(i) | x),

pr(y, z, w | x)=
k∑

i=1

pr(w | u(i))pr(z | x, u(i))pr(y | x, u(i))pr(u(i) | x).

Let

P(z, w)=

⎛
⎜⎜⎜⎝

1 pr(w1 | x) · · · pr(wk−1 | x)

pr(z1 | x) pr(z1, w1 | x) · · · pr(z1, wk−1 | x)
...

...
. . .

...

pr(zk−1 | x) pr(zk−1, w1 | x) · · · pr(zk−1, wk−1 | x)

⎞
⎟⎟⎟⎠ ,

Q(z, w)=

⎛
⎜⎜⎜⎝

pr(y | x) pr(y, w1 | x) · · · pr(y, wk−1 | x)

pr(y, z1 | x) pr(y, z1, w1 | x) · · · pr(y, z1, wk−1 | x)
...

...
. . .

...

pr(y, zk−1 | x) pr(y, zk−1, w1 | x) · · · pr(y, zk−1, wk−1 | x)

⎞
⎟⎟⎟⎠ ,
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U (w, u)=

⎛
⎜⎝

1 pr(w1 | u(1)) · · · pr(wk−1 | u(1))
...

...
. . .

...

1 pr(w1 | u(k)) · · · pr(wk−1 | u(k))

⎞
⎟⎠ ,

R(z, u)=

⎛
⎜⎝

1 pr(z1 | x, u(1)) · · · pr(zk−1 | x, u(1))
...

...
. . .

...

1 pr(z1 | x, u(k)) · · · pr(zk−1 | x, u(k))

⎞
⎟⎠ ,

and let �(u)= diag{pr(y | x, u(1)), . . . , pr(y | x, u(k))} and M(u)= diag{pr(u(1) | x), . . . ,

pr(u(k) | x)}, where diag(a1, . . . , ak) is a k×k dimensional diagonal matrix whose diagonal
entries starting in the upper left corner are a1, . . . , ak .

Assume further that

Condition 3. Both P(z, w) and Q(z, w) are invertible.

Condition 4. The probabilities pr(y | x, u1), . . . , pr(y | x, uk) take distinct values for given x
and y.

Then, writing P(z, w)= R(z, u)′M(u)U (w, u) and Q(z, w)= R(z, u)′M(u)�(u)U (w, u),
we have P(z, w)−1 Q(z, w)=U (w, u)−1�(u)U (w, u), Thus, the recovery problem of pr(w | u)

from U (w, u) rests on the eigenvalue decomposition of P(z, w)−1 Q(z, w). Once pr(w | u) is
known, we can evaluate causal effects by using the matrix adjustment method in § 2. Based on
this consideration, the following theorem can be obtained.

THEOREM 1. Under Conditions 1, 2, 3, and 4, if U is a sufficient confounder relative to
(X, Y ), then the causal effect pr{y | do(x)} of X on Y is identifiable.

The proof is provided in the Appendix.
Here, it should be noted that pr(y, u | x), pr(u | x) and pr(u) are not identifiable because

we do not know whether pr(y | x, ui )= pr(y | x, u(i)) holds for i = 1, . . . , k. That is, letting
{λ1, . . . , λk} be a set of eigenvalues of P(z, w)−1 Q(z, w) and Ik be a k-dimensional identity
matrix, we know that a set {λ1, . . . , λk} of solutions of | P(z, w)−1 Q(z, w)− λIk | = 0 is con-
sistent with a set {pr(y | x, u1), . . . , pr(y | x, uk)} of distributions, but we do not know which
solution of | P(z, w)−1 Q(z, w)− λIk | = 0 corresponds to each pr(y | x, ui )(i = 1, . . . , k). The
causal effect is nevertheless identifiable because it involves the summation over U = u, not the
individual solutions of | P(z, w)−1 Q(z, w)− λIk | = 0.

This derivation demonstrates that, whenever we observe two independent proxy variables asso-
ciated with an unmeasured confounder, the distribution of the latter can be constructed from
the proxies, which renders the causal effect identifiable. Thus, our result extends the range of
solvable identification problems (Tian & Pearl, 2002; Kuroki, 2007; Pearl, 2009, Chs. 3 and 4;
Shpitser & Pearl, 2006) to cases where discrete confounders are measured with error. However,
it should be noted that the identifiability criteria developed in Pearl (2009), Shpitser & Pearl
(2006) and Tian & Pearl (2002) apply to nonparametric models where the dimensionality of the
variables is assumed arbitrary, while our result applies to finite and discrete confounders, that is,
confounders such as gender and race that have known categories but remain unmeasured.
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4. EFFECT RESTORATION IN LINEAR STRUCTURAL EQUATION MODELS

4·1. Linear structural equation model

In this section, we assume that each child-parent family in the graph G represents a linear
structural equation model

Vi =
∑

Vj∈pa(Vi )

αvi v j V j + εvi (i = 1, . . . , n),

where the normal random disturbances εv1, . . . , εvn are assumed to be independent of each other
and have mean zero. In addition, αvi v j is a constant, and if nonzero is called a path coefficient or
a direct effect. For the details on linear structural equation models, see Bollen (1989).

The following notation will be used in our discussion. For univariates X , Y and a set Z
of variables, let σxy·z = cov(X, Y | Z = z) and σxx ·z = var(X | Z = z). In addition, let βyx ·z =
σxy·z/σxx ·z be the regression coefficient of x in the regression model of Y on X and Z . For dis-
joint sets X , Y and Z , let �xy·z and �xx ·z be the conditional covariance matrices of X and Y
given Z = z and the covariance matrix of X given Z , respectively. When Z is an empty set, it
will be omitted from the expressions above. Similar notation is used for other parameters. Then,
we have σxy·z = σxy −�xz�

−1
zz �zy and σxx ·z = σxx −�xz�

−1
zz �zx . Note the critical distinction

between path coefficients and regression coefficients. The former convey causal information, the
latter are regression coefficients, which are purely statistical measures.

The total effect τyx of X on Y is defined as the total sum of the products of the path coefficients
on the sequence of arrows along all directed paths from X to Y , and can often be identified from
graphs using the back door criterion. That is, if a set S of observed variables satisfies the back
door criterion relative to (X, Y ), then the total effect τyx of X on Y is identifiable, and is given
by the regression coefficient βyx ·s (Pearl, 2009). Another identification condition invokes an
instrumental variable (Brito & Pearl, 2002). Let {X, Y, Z} and S be disjoint subsets of V in a
directed acyclic graph G. If a set S ∪ {Z} of variables satisfies the following conditions, then Z
is said to be a conditional instrumental variable given S relative to (X, Y ) (Pearl, 2009, p. 366;
Brito & Pearl, 2002):

(i) S contains no descendants of X or Y in G, and
(ii) S d-separates Z from Y but not from X in the graph obtained by deleting all arrows emerg-

ing from X .

By a conditional instrumental variable, we mean a variable that becomes an instrument relative
to the target effect upon conditioning on a set S of variables. If an observed variable Z is a
conditional instrumental variable given S relative to (X, Y ), then the total effect τyx of X on Y
is identifiable, and is given by σyz·s/σxz·s (Brito & Pearl, 2002). Especially, when S is an empty
set, Z is called an instrumental variable (Bowden & Turkington, 1984).

4·2. Identification using proxy variables

In this section, we consider the linear version of the problem discussed in § 3, i.e., estimating
the total effect of X on Y when a sufficient confounder U is measured via proxy variables, as in
Fig. 1.

The linear structural equation model offers two advantages in handling measurement errors.
First, it provides a more transparent picture of the role of each factor in the model. Second, there
are quite a few graphical structures in which the causal effect is identifiable in linear models
but not in nonparametric models. To see this, consider the causal diagrams shown in Fig. 1(a).
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Since U is sufficient in Fig. 1(a), the total effect is identifiable from the measurement on X , Y
and U , and is given by τyx = βyx ·u . However, if U is unobserved and W is but a noisy measure-
ment of U , as in Fig. 1(a), knowledge of the error mechanism W = αwuU + εw from an external
study is needed in order to identify τyx = βyx ·u . However, knowledge of both αwu and σuu is not
necessary; the product α2

wuσuu is sufficient. To see this, we write

τyx = βyx ·u =
(

σxy − α2
wuσxuσyu

α2
wuσuu

) / (
σxx − α2

wuσ 2
xu

α2
wuσuu

)

and, from σxw = σxuαwu and σyw = σyuαwu , we have

τyx =
(

σxy − σxwσyw

α2
wuσuu

) / (
σxx − σ 2

xw

α2
wuσuu

)
. (5)

We see that, if α2
wuσuu is given, τyx is identifiable.

Next, we consider the identification of τyx without external information. We first show that
if U possesses two independent proxy variables, say W and Z as in Fig. 1(b), then α2

wuσuu is
identifiable. Indeed, writing σxw = αwuαxuσuu , σwz = αwuαzuσuu and σxz = αxuαzuσuu , we have
σxwσwz/σxz = α2

wuσuu . By substituting this equation into equation (5), we can see that τyx is
identifiable and is given by

τyx = βyx ·u = σxyσwz − σxzσyw

σxxσwz − σxwσxz
= σxyσwz − σxwσyz

σxxσwz − σxwσxz
, (6)

using σxzσyw = σxwσyz from the fact that {X, Y }, Z and W are independent of each other given
U . This result reflects the well-known fact (e.g., Bollen, 1989, p. 224) that, in linear structural
equation models, structural parameters are identifiable, up to a constant σuu , whenever each
latent variable has three independent proxies. We see that the nonidentifiability of σuu is not an
impediment for the identification of τyx .

We next relax the requirement that U possesses three independent proxies as in Fig. 1(b)
and consider a situation as in Fig. 1(c), where two of these proxies X and Z are dependent.
Here, we note that {X, U } d-separates Y , Z and W from each other. Therefore, given X , the
tuple Y , Z and W work as three independent indicators of U , i.e., Y, Z and W are conditionally
independent of each other given {X, U }. This will permit us to identify the key factor, α2

wuσuu

from the measurement of X, Y, Z and W , and obtain

α2
wuσuu = σyw·xσwz·x

σyz·x
+ σ 2

xw

σxx
. (7)

The derivation is as follows. Since σyw·x = σwu·xσyu·x/σuu·x , σwz·x = σwu·xσzu·x/σuu·x and
σyz·x = σyu·xσzu·x/σuu·x , we have σyw·xσwz·x/σyz·x = β2

wu·xσuu·x = β2
wuσuu·x from X W |U .

In addition, noting that βwu = αwu and σxw = βwuσxu = αwuσxu , we have α2
wuσuu·x = α2

wuσuu −
σ 2

xw/σxx . Using these results, equation (7) is obtained. The first term of equation (7) can be inter-
preted as the conditional modified adjustment of U through the proxy variable W given X , and
the second is a correction term, which transforms the conditional modified adjustment of U
through W given X to the unconditional modified adjustment of U through W .
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To derive an explicit expression for τyx , we substitute equation (7) into equation (5), and using
σyw·x = σyw − σxyσxw/σxx we have

τyx = σxyσyw·xσwz·xσxx + σyz·xσxw(σxyσxw − σywσxx )

σyw·xσwz·xσ 2
xx

= σxyσwz·x − σyz·xσxw

σwz·xσxx
. (8)

We see that τyx = βyx ·u is identifiable and is given by equation (6) or (8).
From Fig. 1(a), (b) and (c), we see that the pivotal quantity needed for the identification of τyx

is the product
α2

wuσuu = σww − σεwεw, (9)

which stands for the portion of σww that is contributed by variations of U . As seen from the con-
sideration above, if we are in possession of several proxies for U , then α2

wuσuu can be estimated
from the data as in equation (6) or (8), yielding equation (5). If however U has only one proxy
W , as in Fig. 1(a), the product α2

wuσuu must be estimated externally, using either a pilot study or
judgmental assessment. Judgmental assessment of the product α2

wuσuu can be made more mean-
ingful through the decomposition on the right-hand side of equation (9), since both αwu and εw

are causal parameters of the error mechanism W = αwuU + εw, αwu = d E(W | u)/du measures
the slope with which the average of W tracks the value of U , while σεwεw measures the dispersion
of W around that average; σww can, of course be estimated from the data.

In the noiseless case, i.e., σεwεw = 0, we have σuu = σww/α2
wu and equation (5) reduces to

τyx = σyx ·w
σxx ·w

= βyx ·w,

where βyx ·w is the regression coefficient of x in the regression model of Y on X and W , or
βyx ·w = ∂ E(Y | x, w)/∂x . As expected, the equality τyx = βyx ·u = βyx ·w assures a bias-free esti-
mate of τyx through adjustment for W , instead of U ; αwu plays no role in this adjustment.

Figure 1(d) represents a new challenge; although α2
wuσuu is not identifiable, the total effect

τyx is nevertheless identifiable without external studies. In the next section, we will discuss this
identification strategy.

4·3. Instrumental variable method with a proxy variable

In Fig. 1(d), if U can be observed, then both the condition of the conditional instrumental
variable and the back door criterion can be applied to evaluating the total effect simultaneously,
giving τyx = βyx ·u and τyx = σyz·u/σxz·u , respectively. We shall now show that equating these
two expressions to each other, together with the independence condition {X, Z} W |U, will
allow us to remove all terms involving u as a subscript. Indeed, starting with σxw = σxuσwu/σuu

and σwz = σzuσwu/σuu , we have σzu = σxuσwz/σxw. Then, using

τyx = βyx ·u = σxy·u
σxx ·u

=
(

σxy − σxuσyu

σuu

) / (
σxx − σ 2

xu

σuu

)
,

we have (
σxx − σ 2

xu

σuu

)
τyx = σxy − σxuσyu

σuu
,

and, from τyx = σyz·u/σxz·u and σzu = σxuσwz/σxw, we have

(
σxz − σxuσzu

σuu

)
τyx = σyz − σzuσyu

σuu
, that is,

(
σxz − σwz

σxw

σ 2
xu

σuu

)
τyx = σyz − σwz

σxw

σxuσyu

σuu
.
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Fig. 2. Causal diagram with unmeasured confounders.

By solving these equations for τyx , we obtain

τyx =
(

σyz − σxy
σwz

σxw

) / (
σxz − σxx

σwz

σxw

)
,

which is consistent with equation (6). This derivation demonstrates a more general approach that
differs from that of Cai & Kuroki (2008), which was based on latent factor analysis (e.g., Bollen,
1989; Stanghellini, 2004; Stanghellini & Wermuth, 2005). Our approach extends the identifica-
tion conditions to cases where the total effect cannot be identified by any single strategy but by
a combination of several strategies, in our example, the back door criterion combined with the
condition for conditional instrumental variables. In addition, unlike the discussion in § 4·2, the
identification of α2

wuσuu is not required; instead, we will require a proxy variable W such that U
d-separates W from {X, Z}.

The power of this approach can be demonstrated in the model of Fig. 2 where the sufficient set
{U1} ∪U2 is unobserved. Here, U1 is univariate but the number of variables in U2 can be arbitrary.
In this situation, the back door criterion cannot be used to identify the total effect of X on Y , and
the uncertain number of variables in U2 prevents us from identifying the total effect based on
latent factor analysis in which we need to know the number of unobserved variables. In addition,
because neither Z1 nor Z2 is independent of {U1} ∪U2, they cannot be used as the conditional
instrumental variables. Nevertheless, we will show that the total effect is identifiable, as follows:
since both Z1 and Z2 are conditional instrumental variables given U1 relative to (X, Y ), the
total effect is given by τyx = σyz1·u1/σxz1·u1 = σyz2·u1/σxz2·u1 . Moreover, since {Z1, Z2} W |U1
holds in the model, we have σzi w = σzi u1σwu1/σu1u1 (i = 1, 2), and we can write

σyz1 −
σyu1σz2u1

σu1u1

σz1w

σz2w

= τyx

(
σxz1 −

σxu1σz2u1

σu1u1

σz1w

σz2w

)
(10)

and

σyz2 −
σyu1σz2u1

σu1u1

= τyx

(
σxz2 −

σxu1σz2u1

σu1u1

)
.

By solving these equations for τyx , we have

τyx = σz1 yσz2w − σz2 yσz1w

σz1xσz2w − σz2xσz1w

. (11)

Even if Z2 is not a conditional instrumental variable given U1 relative to (X, Y ), when
Z2 {X, Y } |U1 holds, the total effect τyx of X on Y is still identifiable and is given
by equation (11) by substituting σxz2 = σxu1σz2u1/σu1u1 and σyz2 = σyu1σz2u1/σu1u1 into
equation (10).
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Fig. 3. Causal diagram of a study on the Head Start
Program.

We now summarize these considerations in a theorem.

THEOREM 2. Suppose that:

(i) a nonempty set {Z1, Z2} of distinct variables satisfies one of the following conditions: (i-a)
both Z1 and Z2 are conditional instrumental variables given a univariate U relative to
(X, Y ), (i-b) Z1 is a conditional instrumental variable given U relative to (X, Y ), and
Z2 = X and U satisfies the back door criterion relative to (X, Y ), (i-c) Z1 is a conditional
instrumental variable given U relative to (X, Y ), and U d-separates Z2 from {X, Y };

(ii) U d-separates {Z1, Z2} from an observed variable W .

Then the total effect τyx of X on Y is identifiable and is given by the formula (11).

Drton et al. (2011) proved that the linear structural equation model of interest is globally iden-
tifiable if and only if the graph lacks a convergent arborescence or a C-tree, in the nomenclature
of Shpitser & Pearl (2006), where ‘globally identifiable’ means that all path coefficients can be
estimated uniquely for any values taken by covariance parameters. Our results are applicable to
situations where C-trees exist. For example, although a confounding path (X←U2→ Y ) con-
stitutes a C-tree in Fig. 2, the total effect τyx is identifiable according to Theorem 2. Here, it
should be noted that the total effect cannot be estimated by our result when the denominator of
equation (11) is zero.

4·4. Example

In this section, as an example of Theorem 2, we consider again the Head Start Program
described in § 1. First, we constructed a causal diagram shown in Fig. 3 based on Kenny (1979).
Let U1 and U2 represent a socio-economic factor and an educational background factor, respec-
tively. In addition, let Z1, Z2, W1 and W2 be family income, father’s occupation, mother’s educa-
tion and father’s education, respectively. Z1 and Z2 are observed proxy variables of U1, and W1
and W2 are observed proxy variables of U2. Figure 3 differs from the model in Kenny (1979),
which did not consider the direct effects from W2 to Z2 and from Z1 to X . Although Kenny
(1979) stated that ‘no doubt father’s education causes father’s occupation,’ he did not consider
W2→ Z2, because he focused on the application of classical latent structure analysis. In addi-
tion, as stated in § 1, since family income is an important factor that determines whether or not
a child attended the Head Start Program, we added a direct effect from Z1 to X . Based on the
correlation matrix in Kenny (1979), the model chi-square test for Fig. 3 yields χ2 = 3·874 with
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Table 1. The estimated correlation matrix based on Fig. 3

W1 W2 Z1 Z2 X Y

W1 1·000 0·468 0·278 0·270 −0·117 0·276
W2 0·468 1·000 0·286 0·209 −0·091 0·214
Z1 0·278 0·286 1·000 0·407 −0·219 0·209
Z2 0·270 0·209 0·407 1·000 −0·180 0·222
X −0·117 −0·091 −0·219 −0·180 1·000 −0·094
Y 0·276 0·214 0·209 0·222 −0·094 1·000

3 degrees of freedom, which is not statistically significant; the p-value is 0·275. Thus, in this
section, we assume that the graph shown in Fig. 3 represents a causal diagram of this case study.
Based on the correlation matrix in Kenny (1979), we estimated the correlation matrix based on
Fig. 3, which is shown in Table 1. Here, in order to avoid discussion of sampling variability, we
assume that Table 1 is the correlation matrix from Fig. 3. Since Z1 is a conditional instrumen-
tal variable given {U1, W2}, and {U1, W2} d-separates Z2 from {X, Y } and {Z1, Z2} from W1 in
Fig. 3, when W2 is given, both conditions (i-c) and (ii) of Theorem 2 hold. Then, the total effect
τyx of X on Y is evaluated by a positive value 0·183 from equation (11). This shows that the
Head Start Program had a positive effect on child’s cognitive skills, which is consistent with the
results in Magidson (1977) and Kenny (1979).

On the other hand, since Magidson (1977) stated that a ‘various multifactor model could be
formulated’ for this case study, one may consider a causal diagram by adding a direct effect from
father’s occupation Z2 to family income Z1 and a direct effect from mother’s education W1 to the
Metropolitan Readiness Test Y in Fig. 3. Letting W1 in Fig. 3 be W in Fig. 2, Fig. 2 is a subgraph
of this causal diagram. Based on the correlation matrix in Kenny (1979), the model chi-square
test for Fig. 2 yields χ2 = 3·851 with one degree of freedom, which is statistically significant; the
p-value is 0·050. However, if we assume that this causal diagram reflects the true data generating
process, since both conditions (i-a) and (ii) in Theorem 2 hold given W , we obtain τyx = 0·001
by the similar procedure above. This shows that the Head Start Program had only a minor effect
on cognitive skills.

5. CONCLUSION

This paper focuses on the identification problem and stops short of dealing with the prob-
lem of estimating the derived estimands from finite samples. Since the effect restoration method
presented in § 3 can be considered an extension of the identification of latent structure mod-
els, known methods of estimation and variance analysis used in latent structure analysis (e.g.,
Bartholomew et al., 2011; Hu, 2008) are applicable to the estimands derived in this paper under
most situations.

In the nonparametric case, we assumed that the proxy variables and the unmeasured con-
founder are discrete variables with a given finite number of categories, k in § 2 and § 3. This
assumption can be relaxed by allowing the proxy variables to have more than k categories, or
even continuous support. In such cases, as Pearl (2010) pointed out, it may be difficult to obtain
reliable statistics of the recovered probabilities pr(x, y, u) due to data sparseness, and the use of
propensity score methods (Rosenbaum & Rubin, 1983) may be crucial.
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APPENDIX

Proof of Theorem 1

The proof of Theorem 1 is based on the following two-step procedure that recovers pr(x, y, u) from
pr(x, y, z, w).

Step 1. Solve an eigenvalue problem of P(z, w)−1 Q(z, w) to recover pr(w | u) from U (w, u).
Step 2. Recover pr(x, y, u) using the matrix adjustment method introduced in § 2.

Step 1. To find pr(w | u) encoded in U (w, u), in terms of observed probabilities, let us con-
sider the eigenvalue problem of P(z, w)−1 Q(z, w). First, we solve | P(z, w)−1 Q(z, w)− λIk | = 0
for λ to obtain the set of eigenvalues of P(z, w)−1 Q(z, w). In other words, λ should satisfy
|P(z, w)−1 Q(z, w)− λIk | = |�(u)− λIk | = 0. From this equation, letting λ1 > · · ·> λk for eigen-
values of P(z, w)−1 Q(z, w), we have λi = pr(y | x, u(i)) (i = 1, . . . , k), thus the elements of �(u)

are estimable. In order to obtain the eigenvector ηi for λi , letting H = (η1, . . . , ηk), we solve the
following simultaneous linear equations P(z, w)−1 Q(z, w)ηi = λiηi (i = 1, . . . , k) or, equivalently,
P(z, w)−1 Q(z, w)H = H�(u). Here, η1, . . . , ηk are uniquely determined except for a multiplica-
tive constant because λ1, . . . , λk take different values from condition (4) in § 3. On the other hand,
letting A=U (w, u)−1 E and E = diag(α1, . . . , αk) for any nonzero values of α1, . . . , αk , we have
{P(z, w)−1 Q(z, w)}A=U (w, u)−1�(u)E =U (w, u)−1 E�(u)= A�(u). This means that A is also a
matrix from eigenvectors of P(x, z)−1 Q(x, z) and we have A(=U (w, u)−1 E)= H by taking certain
values of α1, . . . , αk . Then, for the inverse H−1 = (hi j ) of the estimable matrix H , we have using
U (w, u)−1 E = H ,

U (w, u)=

⎛
⎜⎝

1 pr(w1 | u(1)) · · · pr(wk−1 | u(1))
...

...
. . .

...

1 pr(w1 | u(k)) · · · pr(wk−1 | u(k))

⎞
⎟⎠= E H−1 =

⎛
⎜⎝

α1h11 · · · α1h1k
...

. . .
...

αkhk1 · · ·αkhkk

⎞
⎟⎠ .

Equating the first column of both sides of the equation, the diagonal element α1 = 1/h11, . . . , αk = 1/hk1

of E can be obtained, which indicates that U (w, u) is identifiable from E H−1, since H−1 is estimable.
Thus, every element pr(w | u) of U (w, u) can be obtained.

Step 2. To express pr(x, y, u) in terms of observed probabilities, we use the matrix adjustment method
introduced in § 2. Since we have

pr(x, y, w)=
k∑

i=1

pr(x, y, ui )pr(w | ui )=
k∑

i=1

pr(x, y, u(i))pr(w | u(i)),

substitute elements of pr(wi | u( j)) (i, j = 1, . . . , k) obtained in Step 1 for M(w, u) in equation (4). Then,
since M(w, u) is invertible, we can obtain elements of Vxy(u). Thus, the causal effect

pr{y | do(x)} =
k∑

i=1

pr(y | x, ui )pr(ui )=
k∑

i=1

pr(y | x, u(i))pr(u(i))=
k∑

i=1

pr(x, y, u(i))

pr(x, u(i))
pr(u(i))

is identifiable.
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