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ARE THERE ALGORITHMS THAT DISCOVER CAUSAL
STRUCTURE?

ABSTRACT. There have been many efforts to infer causation from association by using
statistical models. Algorithms for automating this process are a more recent innovation. In
Humphreys and Freedman [(199B)itish Journal for the Philosophy of Sciend@, 113—

123] we showed that one such approach, by Spirtes et al., was fatally flawed. Here we put
our arguments in a broader context and reply to Korb and Wallace [(B#&h Journal

for the Philosophy of Sciend, 543-553] and to Spirtes et al. [(199Bitish Journal for

the Philosophy of Scienct8, 555-568]. Their arguments leave our position unchanged:
claims to have developed a rigorous engine for inferring causation from association are
premature at best, the theorems have no implications for samples of any realistic size, and
the examples used to illustrate the algorithms are indicative of failure rather than success.
The gap between association and causation has yet to be bridged.

1. INTRODUCTION

In Humphreys and Freedman (1996), we showed that the program of auto-
mated causal inference describeddausation, Prediction and Seardly
Spirtes, Glymour and Scheines (hereafter, SGS) is seriously — even fatally
— flawed. Here, we put our arguments into a broader context and reply
to the comments of Korb and Wallace (1997) and SGS (1997). To make
the present paper relatively self-contained, we describe the SGS program
and the critique in Section 1, along the lines of our earlier publicafions.
Section 2 replies to Korb and Wallace, while Section 3 replies to SGS.

We believe, along with many others, that identifying causal relations
requires thoughtful, complex, unrelenting hard work; substantive scientific
knowledge plays a crucial role. Claims to have automated that process re-
quire searching examination; indeed, the principal ideas behind automated
causal inference programs are hidden by layers of formal technique. There-
fore, it is important to make the ideas explicit and probe them carefully.
SGSillustrate the problem; these authors contend they have algorithms for
discovering causal relations based only on empirical data, with little or no
need for subject-matter knowledge. Their methods — which combine graph
theory, statistics and computer science — are supposed to allow quick, vir-
tually automated conversion of statistical association to causation. Their
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algorithms are held out as superior to methods already in use in the social
sciences (regression analysis, path models, factor analysis, hierarchical
linear models, and so on). According to SGS, researchers who use these
other methods are sometimes too timid, sometimes too bold, and often just
misguided.

Chapters 5 and 8 illustrate a variety of cases in which features of linear models that have
been justified at length on theoretical grounds are produced immediately from empirical
covariances by the procedures we describe. We also describe cases in which the algorithms
produce plausible alternative models that show various conclusions in the social scientific
literature to be unsupported by the data. (SGS 1993, 14)

In the absence of very strong prior causal knowledge, multiple regression should not be
used to select the variables that influence an outcome or criterion variable in data from
uncontrolled studies. So far as we can tell, the popular automatic regression search proced-
ures [like stepwise regression] should not be used at all in contexts where causal inferences
are at stake. Such contexts require improved versions of algorithms like those described
here to select those variables whose influence on an outcome can be reliably estimated by
regression. (SGS 1993, 257)

Such claims are quite exaggerated, and in fact there are no real examples
where the algorithms succeed. The algorithms themselves may well be of

some interest, but the technical apparatus is only tangentially related to

long-standing philosophical questions about the meaning of causation, or

to real problems of statistical inference from imperfect data.

This section will summarize the evidence. But first, we sketch the idea
of path models and the SGS discovery algorithms. Statistical relationships
are often displayed in graphical form, path models being one example.
These models represent variables as nodes in a graph. An arrowXfrom
to Y means thak is related toY, given the prior variable$.n Figure 1,
for example, the regression equation fon terms ofU, V, andX should
include only X the only arrow intoY is from X. However, the equation
for X in terms ofU andV should include both variables: there are arrows
into X from U andV.

Y
Figure 1. Directed acyclic graphs.
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We turn now to the SGS algorithms. Two of the central ideas are the
‘Markov condition’ for graphs, developed by Kiiveri and Speed (1982,
1986), and the ‘faithfulness assumption’ due to Pearl (1988)ese are
purely mathematical assumptions relating graphs and probabilistic inde-
pendence; there will be an informal discussion of these assumptions,
below. SGS focus on a special class of graphical models, the directed
acyclic graphs (DAGSs). Properties of these graphs are summarized in SGS
(1993, Chapter 2); the Markov condition and the faithfulness assumption
are also stated there. Starting from the joint distribution of the variables, the
Markov condition, and the faithfulness assumption, SGS have algorithms
for determining the presence or absence of arrows.

The Markov condition says, roughly, that certain nodes in the graph
are conditionally independent of other nodes, where independence is a
probabilistic concept. More precisely, a node in the graph stands for a
random variable, and it is the variables that may or may not be independent.
In Figure 1, for exampleY is independent o/ and V given X. With
DAGs, there is a mathematical theory that permits conditional independ-
ence relations to be read off the graph. The faithfulness assumption says
there are no ‘accidental’ relations: conditional probabilistic independence
holds according to presence or absence of arrows, not in virtue of specific
parameter values. Under such circumstances, the probability distribution is
said to be ‘faithful’ to the graph.If the probability distribution is faithful
to a graph for which the Markov condition holds, that graph can be inferred
(in whole or in part) from conditional independence relations, and the ob-
ject of the SGS algorithms is to reconstruct the graph from independence
relations.

There is no coherent ground, however, for thinking that the graphs rep-
resent causation. The connection between arrows and causes is made on the
basis of yet another assumption, the ‘causal Markov condition’ (SGS 1993,
Chapter 3). Moreover, according to the ‘causal representation convention’
(SGS 1993, 47), causal graphs are DAGs where arrows represent causa-
tion. In short, the causal Markov condition is just the Markov condition,
plus the assumption that arrows represent causation. Thus, causation is not
a consequence of the theory, it is just another assumption. To compound
the confusion, SGS (1993, 56) also make the convention that the ‘Markov
property’ means the ‘causal Markov property’.

Properly developed, formal theories either use uninterpreted formulas
as axioms, or define classes of abstract structures by the axiomatization
itself. These axiomatic approaches make a clear distinction between a
mathematical theory and its interpretations. SGS do not use these ap-
proaches, and positively invite the confusion that axiomatics are supposed
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to prevent. Indeed, SGS seem to have no real concerns about interpretative
issues:

Views about the nature of causation divide very roughly into those that analyze causal

influence as some sort of probabilistic relation, those that analyze causal influence as
some sort of counterfactual relation (sometimes a counterfactual relation having to do with

manipulations or interventions), and those that prefer not to talk of causation at all. We

advocate no definition of causation, but in this chapter attempt to make our usage system-
atic, and to make explicit our assumptions connecting causal structure with probability,

counterfactuals and manipulations. With suitable metaphysical gyrations the assumptions
could be;ndorsed from any of these points of view, perhaps including even the last. (SGS
1993, 41

SGS do not give a reductive definition of tausesB’ in non-causal terms.

And their apparatus requires that you already understand what causes are.
Indeed, the causal Markov condition and the faithfulness assumption boil
down to this: causes can be represented by arrows when the data are
faithful to the true causal graph that generates the data. Thus, causation
is defined in terms of causation, with little value addéthe mathematics

in SGS will not be of much interest to philosophers seeking to clarify the
meaning of causality.

The SGS algorithms for inferring causal relations from data are em-
bodied in a computer program called TETRAD Il. We give a rough
description. The program takes as input the joint distribution of the vari-
ables, and it searches over DAGs. In real applications, of course, the full
joint distribution is unknown, and must be estimated from sample data.
In its present incarnation, TETRAD can handle only two kinds of sample
data, governed by conventional and unrealistic textbook models: (i) in-
dependent, identically distributed multivariate Gaussian observations; or
(i) independent, identically distributed multinomial observations. These
assumptions are not emphasized in SGS, but appear in the computer
documentation and the computer output.

In essence, TETRAD begins with a ‘saturated’ graph, where any pair of
nodes are joined by an edge. If the null hypothesis of independence cannot
be rejected — at, say, the 5% level, using some variation ontibgt — the
edge is deleted. The statistical test is relevant only because of the statistical
assumptions. After examining all pairs of nodes, TETRAD moves on to
triples, and so forth. According to the faithfulness assumption, independ-
ence cannot be due to the cancellation of conditional dependencies. That
is why an edge, once deleted, never returns.

TETRAD also orients the edges left in the graph. (Orienting an edge
between two variables says which is the cause and which the effect.) Take
the graph in Figure 2. It/ andV are conditionally independent given,
the arrows cannot go froi andV to X — that would violate the faithful-
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X
Figure 2. Orienting the edges.

ness assumption: thug, andV are the effectsX is the cause. However,
it is exact independence that is relevant, and exact independence cannot
be determined from any finite amount of sample data. Consequently, the
mathematical demonstrations in SGS (e.g., Theorem 5.1 on p. 405) do not
cope with the most basic of statistical ideas. Even if all the assumptions
hold, statistical tests make mistakes. The tests have to make mistakes,
because sample data do not determine the joint distribution. The problem
is compounded when, as here, multiple tests are made. Therefore, the SGS
algorithms can be shown to work only when the exact conditional inde-
pendencies and dependencies are given. Similarly, with the faithfulness
condition, it is only exact conditional independence that protects against
confounding. As a result, the SGS algorithms must depend quite sensit-
ively on the data and even on the underlying distribution: tiny changes in
the circumstances of the problem have big impacts on causal infefénces.
Exact conditional independence cannot be verified, even in principle,
by statisticians using real data. Approximate conditional independence —
which is knowable — has no consequences in the SGS scheme of things.
That is one reason why the SGS theory is unrelated to the real problems of
inference from limited data. The artificiality of the assumptions is the other
reasor?. For the moment, let us set these theoretical issues to the side, and
look at the evidence cited for the success of the algorithms. SGS seem to
offer abundant empirical proof for the efficacy of their methods: their book
is studded with examples. However, the evidence is illusory. Many of the
examples turn out to be simulations, where the computer generates the
data. For instance, the ALARM network (pp. 11 and 145ff.) is supposed to
represent causal relations between variables relevant to hospital emergency
rooms, and SGS claim (p. 11) to have discovered almost all of the adjacen-
cies and edge directions ‘from the sample data’. However, these ‘sample
data’ are simulated; the hospitals and patients exist only in the computer
program. The assumptions made by SGS are all satisfied by fiat, having
been programmed into the computer: the question of whether they are
satisfied in the real world is not addressed. After all, computer programs
operate on numbers, not on blood pressures and pulmonary ventilation
levels (two of the many evocative labels on nodes in the ALARM network).
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These kinds of simulations tell us very little about the extent to which
modeling assumptions hold true for substantive applications. Moreover,
arguments about causation seem out of place in the context of a computer
program. What can it mean for one computer-generated variable to ‘cause’
another?

SGS use the health effects of smoking as a running example to illustrate
their theory (1993, 18, 19, 75ff., 172ff., 179ff.). However, that only creates
another illusion. The causal diagrams are all hypothetical, no contact is
made with data, and no substantive conclusions are drawn. Does smoking
cause lung cancer and heart disease, among other illnesses? SGS appear
not to believe the epidemiological evidence. They make their case using a
rather old-fashioned method — a literature review with arguments in ordin-
ary English (1993, 291-302). Causal models and search algorithms have
disappeared. Thus, SGS elected not to use their analytical machinery on
one of their leading examples. This is a remarkable omission. In the end,
SGS do not make bottom-line judgments on the effects of smoking. Their
principal conclusion is methodological: nobody besides them understood
the issues.

Neither side understood what uncontrolled studies could and could not determine about
causal relations and the effects of interventions. The statisticians pretended to an under-
standing of causality and correlation they did not have; the epidemiologists resorted to
informal and often irrelevant criteria, appeals to plausibility, and in the worst caae to
hominem .. .While the statisticians didn’t get themnection between causality and prob-
ability right, the. ... ‘epidemiological criteria for caub®y’ were an intellectual disgrace,

and the level of argument . .. was sometimes more worthigeséry critics than scientists.

(SGS 1993, 301-302)

In this passage among others, scorn is heaped on investigators who have
discovered important causal relations, like the health effects of smoking.
The attitudes struck by SGS are quite extraordinary.

On pages 132-152 and 243-250, SGS use their algorithms to analyze a
number of real examples, mainly drawn from the social-science literature.
What are the scoring rules? Apparently, SGS count a win if the algorithms
more or less reproduce the original findings (rule #1); but they also count
a win if their algorithms yield different findings (rule #2). This sort of
empirical test is not particularly hardh Even so, the SGS algorithms are
successful only if one is very selective in reading the computer output. We
ran TETRAD on the four most solid-looking examples in SGS. The results
were similar, and we report on one example HérRindfuss et al. (1980)
developed a model to explain the process by which a woman decides how
much education to get, and when to have her first child. The variables in
the model are defined in Table 1.
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TABLE |
Variables in the modél?

ED Respondent’s education
(years of schooling completed at first marriage)
AGE Respondent’s age at first birth
DADSOCC Respondent’s father’s occupation
RACE Race of respondent (black = 1, other = 0)
NOSIB Respondent’s number of siblings
FARM Farm background
(coded 1 if respondent grew up on a farm, else 0)
REGN Region where respondent grew up (south = 1, other = 0)
ADOLF Broken family
(coded 0 if both parents present at age 14, else 1)
REL Religion (Catholic = 1, other = 0)
YCIG Smoking
(coded 1 if respondent smoked before age 16, else coded 0)
FEC Fecundability

(coded 1 if respondent had a miscarriage before first birth; else coded 0)

The statistical assumptions made by Rindfuss et al., let alone the
stronger conditions used by SGS, may seem rather implausible if examined
at all closely*® Here, we focus on the results of the data analysis. SGS
report only a graphical version of their model:

Given the prior information that ED and AGE are not causes of the other variables, the PC
algorithm (using the .05 significance level for tests) directly finds the model [in the left-
hand panel of Figure 3] where connections among the regressors are not pictured. (SGS
1993, 139)

Apparently, the left-hand panel in Figure 3 is close to the model in Rind-
fuss et al. (1980), and SGS claim a victory under rule #1. However, this
graph (published itCausation, Prediction, and Searcp. 140) is not the

one actually produced by TETRAD Il. The unedited graph is shown in the
right-hand panel of Figure 3. This graph says, for instance, that race and
religion cause region of residence. Comments on the sociology may be un-
necessary, but consider the arithmetic. REGN takes only two values (Table
), so it cannot be a linear combination of prior variables with an additive
Gaussian error, as required by TETRAD's statistical assumptions. FARM
creates a similar problem. So does NOSIB. In short, the SGS algorithms
have produced a model that fails the most basic test — internal consistency.
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Figure 3. The left-hand panel shows the model reported by SGS (1993, 140). The

right-hand panel shows the whole graph produced by the SGS search program TETRAD
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Even by the relaxed standards of the social science literature, Figure 3 is a
minor disaster.

SGS seem to endorse the Automation Principle: the only worthwhile
knowledge is the knowledge that can be taught to a computer. This
principle is perverse. Despite SGS’s agnosticism, the epidemiologists dis-
covered an important truth — smoking is bad for yé@The epidemiologists
made this discovery by looking at the data and using their brains, two
skills that are not readily automated. SGS, on the other hand, taught their
computer to discover Figure 3. The examples in SGS count against the
Automation Principle, not for it.

2. KORB AND WALLACE

Most of the arguments in Section 1 were presented by Humphreys and
Freedman (1996); there were responses by Korb and Wallace (1997) and
by Spirtes et al. (1997). We consider these responses in turn, replying
only to a reasonable cross-section of the arguments. Although they seek
to defend SGS, Korb and Wallace (1997) agree with us in many respects.
The effort by researchers in artificial intelligence to automate the causal
discovery process ‘promises in its most glorious moments to be as revolu-
tionary to societyas might have beea philosopher’s stone’ (1997, 543,
emphasis supplied); ‘the idea of automating induction perhaps appears
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Figure 4. VariablesX, Y, Z are observabldy is not observed; arrows represent causation;
the lower-case letters next to the arrows quantify causal effects.

merely foolish’, ‘the exaggerations of Herbert Simon and Allen Newell
... are notorious’ (1997, 544), and

The search for the philosopher’s stone of an algorithm for induction may be a kind of
perversion, but that is no more reason to end it now than the like charge would have been
to prematurely end alchemy or Aristotelian physics when they were young. The search for
a new science of induction is a glorious perversion. (1997, 551-552)

2.1. Small Correlations and Instability

There are some minor points of disagreement. For instance, we say that
the SGS algorithms depend quite sensitively on the data and the underlying
distributions; a correlation of 0.000 precludes certain kinds of confounding
while a correlation of 0.001 has no such consequences. Korb and Wallace
(1997, 549) respond that ‘the significance of weak [correlations] depends
upon the size of the sample.. For small samples correlations equal

to 0.001 have no implications for causal inference as they will not be
detectable; for sufficiently large samples.. they will be unavoidably
obvious'. This is a technical misunderstanding: (i) to make a correlation of
0.001 ‘unavoidably obvious’, sample sizes in excess of 1,000,000 would
be needed® and (ii) the difficulty remains even if population data are
available, so that estimation is unnecessary because the joint distribution
is known. Point (ii) is somewhat technical: to explain it, we have to outline
the SGS scheme for handling unmeasured confounders.

Consider, for instance, the path diagram in FigutéHere, X, Y, Z are
measured{/ is an unmeasured ‘confounder’. The parameter of interest is
b, the causal effect of on Z. Suppose — as is the case most favorable
to the SGS algorithms — that the joint distribution (@f, Y, Z) is known
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without error, i.e., population-level correlations can be determined. On
the other hand, the full joint distribution afx, Y, Z, U) is not known,
corresponding to the idea that is unmeasured. Ordinarily, cannot be
determined from the joint distribution @, Y, Z) because the influences
of U andY on Z cannot be separated. Suppose, however, Xhahd Z

are conditionally independent giveft the correlation betweeX and Z
givenY is exactly 0, at the population level. Suppose also that the joint
distribution of (X, Y, Z, U) is ‘faithful’ to the graph in Figure 4. Theh

can indeed be computed, by regressifign Y. On the other hand, if the
conditional correlation is 0.001 rather than 0.000 exactly, the regression
coefficient can be biased to any arbitrary dedfee.

For such reasons, the faithfulness assumption and exact conditional
independence play a large role in the SGS theory. Of course, exact condi-
tional independence cannot be determined from any finite sample. Instead,
SGS test the ‘null hypothesis’ of independence, at some conventional sig-
nificance level like 0.05. Unless the null hypothesis can be rejected, SGS
adopt it — although there is substantial probability of error here, depending
on the size of the sample and the values of the various parameters in the
model!® Korb and Wallace have not responded to the point: correlations
of 0.000 and 0.001 — at the population level — play very different roles in
the SGS theory. A sample of realistic size cannot distinguish between such
correlations.

2.2. Testing the Algorithms: Simulations

Computer simulations can reveal the operating characteristics (e.g., error
probabilities) of statistical procedures, given assumptions about the pro-
cess generating the data. But simulations can hardly reveal whether the
assumptions hold for real data sets. Among other things, what can it mean
for one computer variable to ‘cause’ another? Korb and Wallace make two
responses (1997, 546-547): (i) assumptions like linearity and independ-
ence give a reasonable starting point, used by working social scientists;
and (ii) ‘there is certainly no difficulty understanding how the values of
some variables within computer programs may stochastically affect the
values of other variables, for that is an elementary matter of computer
programming’.

The first is a well-worn argument: you have to learn to walk before you
can run. The reasoning would be stronger if the modelers could more easily
be seen to be making real progress. Point (ii) is assertion not explanation,
and the problem is by no means ‘elementary’. Computer programs rep-
resentarithmeticrelations between variables. Although the programs are
(in principle) deterministic, they can simulate random quantities, so that
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independent draws can be generated from a normal distribution. Thus, one
can generatéX, Y) to be jointly normal, by setting

(@H) Y=a+bX +e,

whereX ande are independent normal variables and the latter has mean 0.
In Equation (1) andb are parameters — numerical constants to be chosen
by the programmer. Korb and Wallace might say tiatstochastically
affects’ Y. But this is too hasty. It would be trivial to rewrite the program
so that(X, Y) have the same joint distribution, but are generated as

(2) X =c+dY +5$,

3 being independent of and having mean 0. Now ‘stochastically af-

fects’ X. In short, the program does not determine caus&fioFhe big

point is this. The ability of an algorithm to infer causation must be tested
on real examples not simulations — because the issue, in the end, is the
extent to which the assumptions behind the algorithm hold for real data.
After all, computer simulations are entirely under the control of the pro-
grammers, and can be designed so that statistical assumptions hold true.
The real world is not so plastfc.

2.3. Real Examples

To show the limitations of the SGS (1993) algorithms, we discussed work
of Rindfuss et al. (1980) on the process by which a woman decides how
much education to get (ED) and when to have her first child (AGE). Other
variables are defined in Table I. Rindfuss et al. (1980) concluded that the
sort of woman who drops out of school to have children would drop out
anyway: the line of causation runs from ED to AGE, not AGE to ED. Two-
stage least squares was used to estimate the model. SGS (1993) reanalyzed
the data using their computerized search algorithm ‘TETRAD II'. Figure 3
shows on the left the model reported by SGS (1993, 140), and on the right
the model we found using TETRAD ##.

Among other difficulties, the arrows from RACE and REL to REGN
make no sense on substantive grounds and are impossible on arithmetic
grounds. Indeed, the graph implies the equation

(3) REGN=a+ bRACE+ cREL + ¢,

where by prior assumptioa is normal with mean 0 and is independent
of RACE and REL. This is self-contradictory, because the left side of
Equation (3) is 0 or 1, while the right side must take all real values.
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Korb and Wallace (1997, 550-1) have two main objections to this
line of argument: (i) we should have told TETRAD II not to permit the
troublesome causal arrows; and (i) Equation (3) is fine: ‘The fact that
the true causal relationship is not linear does not mean that it cannot be
detected using tests that assume linearity’. They conclude that Figure 3 is
a success, showing that ‘TETRAD Il can recover structural causal relation-
ships’. These arguments have a certain ingenuous charm. Causal discovery
algorithms succeed when they are prevented from making mistakes. If the
algorithms work, they worklespitefailures in assumptions — and if they do
not work, that isoecause ofailures in assumptions. Arithmetic impossib-
ility is brushed aside, and silliness is taken for truth. SGS used TETRAD
Il on the data and declared victory; Korb and Wallace endorse the claim.
But TETRAD Il generated absurd conclusions. It recovered some causal
relationships that may be true, and it also recovered some that are plainly
false. This is not a reliable algorithm; and the standards used by Korb and
Wallace to evaluate such algorithms are far too elastic.

2.4. Unarticulated Objections

Korb and Wallace characterize our objections to the causal discovery
research program as unarticulated:

... we wish the objectors would advance their reasons openifythese objectors would

share their reasons then they might be subjected to the open criticism which seems to
be necessary to the advancement of human knowledge. In the meantime, we suggest that
causal theories as they have been presented in the causal discovery literature (supposing
that the limitations of the simplifying assumptions are later overcome) are fully satisfactory

to do the work we can reasonably expect of causal knowledge — namely, understanding,
manipulating, and predicting events in the physical world. (1997, 551)

We applaud the test — ‘understanding, manipulating, and predicting events
in the physical world’. But the argument will not do. The parenthetical
supposition begs the central question. The linear-models approach to social
science and its limitations have been debated at least since the Keynes-
Tinbergen exchang€. The assumptions in SGS (1993) only compound
the difficulties®* Let Korb and Wallace respond to the objections that have
already been published. Even better, let them bring to the table some real
examples showing the success of causal discovery algorithms.

3. SGS

SGS (1997) defend themselves mainly by asserting that our summary of
their work (Humphreys and Freedman 1996) is incomplete or unfair. To
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make the argument, however, they do violence both to our position and to
their own. We provide a number of illustrations, but it would take too long

to answer each and every charge. SGS also raise substantive issues, and we
respond to the main ones.

3.1. Circular Definitions

We say,

SGS do not give a reductive definition of ‘A causes B’ in non-causal terms. And their
axiomatics require that you already understand what causes are. Indeed, the Causal Markov
condition and the faithfulness assumption boil down to this: direct causes can be represen-
ted by arrows when the data are faithful to the true causal graph that generates the data. In
short, causation is defined in terms of causation. (Humphreys and Freedman 1996, 116)

SGS (1997, 558) respond to this passage as if it accused them of taking
the causal Markov condition and the faithfulness assumption as part of the
meaning of causation. We can try to make our point more clearly. In the
SGS setup, the directed acyclic graphs and associated random variables
are mathematical objects. The Markov condition and the faithfulness as-
sumption simply constrain these objects. The causal Markov condition, in
contrast, requires a graph to be causal (SGS 1993, 54). Thus, to understand
what counts as a causal graph, you must already understand what it is to
be a cause (SGS 1993, 43, 45, 4%).

3.2. The Automation Principle

According to the Automation Principle, the only worthwhile knowledge is
the knowledge that can be taught to a computer. SGS (1997) disavow this
idea: ‘We have never advocated such a principle, it plays no role in any
argument that we have ever made[1997, 558, fn. 4]' And they take us
sternly to task for not providing citations. However, SGS (1993) do try to
make the case that computerized algorithms are the preferred methods for
model selection, with social science theory having little role to play in this
endeavor (see especially pp. 127, 133, 137-138, 242). For instance:

In the social sciences there is a great deal of talk about the importance of ‘theory’ in
constructing causal explanations In many of these cases the necessity of theory is badly
exaggerated. (1993, 133)

Assuming the right variables have been measured, there is a straightforward solution to
these problems [of model selection and causal inference]: apply the PC, FCI, or other
reliable algorithm, and appropriate theorems from the preceding chapters, to determine
which X variables influence the outcome Y, which do not, and for which the question
cannot be answered from the measurementdNo extra theory is required.1993, 242,
emphasis supplied)
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For more recent material along the same lines, see Glymour (1997, 214—
215, 246). One passage deserves special attention:

... the general case for automated search is overwhelming: anything the human researcher
actually knows before considering an actual data sample can be elicited and told to a
computer; anything further the researcher can infer from examining a data sample can

be inferred by a computer, and the computer can otherwise avoid the inconsistencies and
the biases of humans. (1997, 246)

That is the automation principle which SGS claim never to have advocated.

3.3. Reporting Some Findings But Not Others

In Figure 3, some of the output from TETRAD Il conforms to the findings

in Rindfuss et al., but some of the output is nonsensical. The latter was not
reported by SGS in their book. SGS (1997, 565) find it appropriate to look
only at the part of the output confirming their theses: ‘the part of the model
that we displayed (SGS 1993, 140) passes all of these tests’. Indeed, SGS
assert that displaying the rest of the output is ‘irrelevant’ and runs ‘against
common sense and the advice we give both in the book and in the program
manual’ (1993, 565). This position must be rejected. Suppose that a model
selection algorithm produces the following pair of equations,

(4a) Y =aX +6,
(4b)y Z=0bU +cV +e.

And it is believed on substantive grounds that Equation (4a) is correct
while Equation (4b) is incorrect. SGS want to report only Equation (4a)
—and count a success for the algorithm. That is bad science. The evidence,
considered as a whole, shows you cannot depend on the algorithm to se-
lect equations that are correct. Sometimes the algorithm picks a winner,
sometimes it does not.

In Humphreys and Freedman (1996), we ran the algorithm at the .05
significance level, following SGS (1993, 139). Now SGS (1997, 565) sug-
gest that the algorithm be run at significance levels 0.01, 0.05, 0.1 and
0.15. Presumably, arrows found at all these levels are ‘robust’, while others
are suspect. We have followed their advice. Many of the arrows reported
by SGS (1993, 140) are suspect, including those from RACE, NOSIB,
REGN and YCIG to ED. By comparison, troublesome arrows from REL
and RACE to REGN are robust (right-hand panel of Figure 3). The failures
may be more robust than the successes.
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3.4. Which Version of the Program Did We Use?

SGS (1997, 559) note that their computer package is called ‘TETRAD II’
not ‘TETRAD'. On this point, we concede errgrThey find some incon-
sistency between the right-hand panel of Figure 3, which we computed
using TETRAD II, and the output from ‘the commercial version of the
program’, although they are not quite sure why that is; they conjecture that
we used ‘a beta test version of the program’ (564). Back in the old days,
after their book came out, we asked SGS for a copy of TETRAD II. Peter
Spirtes kindly mailed us a copy on 8 October 1993 (the book was published
earlier in 1993). The program is well-behaved in many ways; among other
things, it writes an identifier at the top of every output file:

COPYRIGHT (C) 1992

by Peter Spirtes, Richard Scheines,
Christopher Meek, and Clark Glymour.
All Rights Reserved

TETRAD Il Version 2.1

SGS (1997, 559) also ask which of their algorithms we used; generally, we
have specified the program module that produced the otitpuit.

3.5. Other Examples

3.5.1. Smoking

As we point out, SGS (1993, 291-302) appear not to accept the standard
epidemiological view that smoking causes lung cancer, heart disease, and
many other illnesses. SGS (1997, 566) now reply that

we never said thevidencedid not support the conclusions; we said #rgumentdid not
support the conclusions. (emphasis in original).

This is a very nice distinction; in context, too nice. What can it mean?
Perhaps SGS reviewed the underlying literature, reanalyzed the data, and
found compelling new arguments to demonstrate the effects of smoking
on health? Not so. In a previous response to this sort of criticism, Spirtes
and Scheines (1997, 174) say ‘We did not apply the algorithms to smoking
and lung cancer data because we happened not to possess any such data.’
If SGS write again on this topic, we would like them to answer two simple
questions. Do they agree that cigarettes kill? If so, why?

3.5.2. Armed Forces Qualification Test (AFQT)
Army recruits take a battery of 10 ‘subtests’, including MC (Mechanical
Comprehension), AR (arithmetic reasoning), WK (for word knowledge),
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GS (General Science), etc. The AFQT is a composite; but which subtests
go into the composite? SGS (1993, 243—-44) contend that: (i) this problem
cannot be solved by ordinary regression methods; and (ii) the problem can
be solved by TETRAD II. The first claim is fal$€ Now SGS (1997, 563)
renew the second claim, ignoring the difficulties pointed out by Freedman
(1997, 134): (i) left to its own devices, TETRAD Il concludes that AFQT

is the common cause of all the subtests; and (ii) If instructed not to make
this particular mistake, TETRAD Il finds a cycle in the graph:

MC —- AR - WK — GS— MC.

In short, according the SGS algorithms, Mechanical Comprehension
causes itself (Freedman 1977, 133).

3.5.3. Spartina

Spartinais a salt tolerant marsh grass with two forms, tall and short. Bio-
mass (BIO) is in part a measure of the relative prevalence of the tall form.
There are observational studies and a greenhouse experiment relating BIO
to other factors, such as PH (low PH is acid, 7 is neutral, high PH is al-
kaline) and concentrations of various metallic salts, including magnesium,
potassium, and phosphorus. SGS (1993, 244-248) have reanalyzed data
from one of the observational studies, and count the results as a success
for their methods. SGS (1997) now reiterate the claim:

PH was the controlling cause of the Spartina grass biomass (which was partially confirmed
by experiment). (1997, 563)

In 1993, SGS were actually a bit more cautious about this example:

... the only variable that may directly influence biomass in this population is.PHPH
and only PH can be directly connected with BIO. the definition of the population in this
case is unclear, and must in any case be drawn quite narrowly. (SGS 1993, p. 347)

Indeed, most the data were collected at PH below 5 or above 7, so results
‘cannot be extrapolated through PH values that approach neutrality’ (1993,
348). We have run TETRAD Il on the data, and there is good reason to
be cautious. The program cannot orient the edge between PH and BIO.
In other words, the program cannot tell whether PH causes BIO, or BIO
causes PH. However, two ‘robust’ conclusions can be drawn from the
computer output: sodium causes magnesium, Hrartinadoes not need
phosphorus to survivé.
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3.6. Clinical Trials

SGS (1997, 558) assert that the causal Markov and faithfulness conditions
are ‘very widely (if implicitly) assumed in statistical and experimental
reasoning, for example, in the design and interpretation of randomized
clinical trials’. This claim is often made by SGS. See, for instance, SGS
(1997, 555, 562); also see Spirtes and Scheines (1997, 167) or Scheines
(1997, 191). However, it is not at all clear what the claim means. We pur-
sued this question at some length with Richard Scheines and Peter Spirtes.
As best we can see, they have two arguments.

(i) Suppose a clinical trial finds no significant difference between the
treatment group and the control group; on average over the subjects
in the study, treatment has no detectable effect. However, a stronger
inference is wanted: there is no effect of treatment on subgroups of
subjects (older men, women with higher blood pressures, etc.). To
justify this stronger inference from a finding of no overall effect, the
faithfulness condition could indeed be used. However, when the clin-
ical trials literature draws inferences about subgroups, it does so not
by making aggregate comparisons, and certainly not by appealing to
the faithfulness assumption. Instead, there is disaggregation — a direct
comparison between subgroup members who are in the treatment and
in the control conditiong?

(i) Suppose a clinical trial finds an effect for subjects in the study, and
investigators wish to bolster the case by analyzing observational data.
Then, according to Spirtes and Scheines, the causal Markov and faith-
fulness assumptions would come into play. That is quite debatable —
ordinary working epidemiologists base conclusions on the strength of
the effect they get, or its statistical significance, and on explicit control
of confounders, but not on the basis of conditional independence. In
any case, this second argument is diversionary, because it shifts ground
from experiments to observational studfés.

As shown by Fisher and Neyman, and explained in many textbooks, ran-
domization provides a secure basis for causal inference and statistical
testing. There is no need for the faithfulness assumption or the rest of the
SGS analytical apparatus. SGS can scarcely be serious when they assert
(1997, 556) that much of what we say about their methods ‘would equally
be objections’ to randomized clinical trials.
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3.7. Statistical Issues

3.7.1. Consistency vs. oracles

Statisticians have a concept of ‘consistency’: as more and more data come
in, a consistent statistical estimator will get closer and closer to truth.
This is widely viewed as a threshold criterion. There is another notion
of ‘Fisher consistency’: when the estimator is applied to population data,
it returns the parameter of interest. That notion is rarely used. SGS (1993)
write as if they have proved their algorithms to be consistent (see, e.g., pp.
103-104); however, their theorems suggest Fisher consistency rather than
consistency. In other words, their theorems say nothing about behavior
with large, finite samples. This point was discussed by Freedman (1997,
144-145, 180-181). The response by Spirtes and Scheines (1997, 170)
does not clarify the issue.

Echoes of that debate may be found here. The SGS theorems require
that exact conditional independence be known for the population. For this
reason, SGS (1997, 560-561) want an ‘oracle’, although the oracle segues
into ‘a large sample limit’ and then a test based on a finite sample — thereby
evading the basic question. They do concede (p. 560) that the theorems will
‘not guarantee success on finite samples’. That is progress, but we would
like an even bigger concession: the theorems do not show a probability of
success tending to 1 as more and more data corffe in.

3.7.2. Assumptions behind tests
We say,

The SGS algorithms for inferring causal relations from data are embodied in a computer
program called TETRAD... The program takes as input the joint distribution of the vari-
ables, and it searches over DAGs. In real applications, of course, the full joint distribution
is unknown, and must be estimated from sample data. In its present incarnation, TETRAD
can handle only two kinds of sample data, governed by conventional and unrealistic text-
book models: (i) Independent, identically distributed multivariate Gaussian observations,
or (ii) Independent, identically distributed multinomial observations. These assumptions
are not emphasized in SGS, but appear in the computer documentation and the computer
output. (Humphreys and Freedman, 1996, 116)

SGS appear to deny this — but in fact they concede it, for the ‘fully
automated parts of the program’, i.e., the algorithms they are using on
the real examples (Rindfuss et al., AF(Bparting etc.). SGS also seem
to deny our claim that TETRAD Il handles only ‘independent identically
distributed samples’; they must be referring to the passage quoted above,
although they substitut€ausation, Prediction, and Searétr TETRAD —
and comment that more general samples are discussed at various points in
the book. However, they again make the key concession: ‘statistical tests
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for conditional independence’ are ‘not developed’ except in the cases we
mention33 In short, our account of the assumptions still seems to be right.

3.8. Are Causal Relations Linear?

SGS (1997, 560) make this claim: ‘The normal family is almost coex-
tensive with linear models, and so it is very odd that Humphreys, who has
claimed thagll causal relations are linear (Humphreys 1989), should make
such an objection.” No page reference is given. In fact, no page reference
could be given, for such a claim was never made. What Humphreys (1989,
30-31) actually said was this: ‘for these reasons, | shall focus only on
the case ofi;(X;) = b;X; in order to recover the linear models, while
recognizing that this is a special case of causal relations’; ‘violations of
linearity do not themselves preclude quantitative causal attributions’.

3.9. Conclusion

SGS (1993) substantially overstates its case. The mathematical develop-
ment has some technical interest, and the algorithms could find a limited
role as heuristic devices for empirical workers — here is an alternative
model to consider, there is a possible contradiction to ponder. Any much
larger role could lead to considerable mischief, while claims to have de-
veloped a rigorous engine for inferring causation from association would
be premature at best. The theorems require an infinite amount of data,
the assumptions are problematic, and the examples are unconvincing. We
cannot agree that SGS have materially advanced the understanding of
causality.

NOTES

1 For more details, see Freedman (1997) and Humphreys (1997). Section 1 is a close
paraphrase of Humphreys and Freedman (1996).

2 In this review, we try to give the intuition not the rigor; mathematical definitions are
only sketched.

3 Historical note.Statistical models for causation, in the sense of effects of hypothetical
interventions, go back to Neyman (1923); also see Scheffé (1936) or Hodges and Lehmann
(1964, Section 9.4). These writers were considering experiments, but the same models
can be used to analyze observational studies — on the assumption that nature has random-
ized subjects to treatment or control. See, for instance, Rubin (1974) or Holland (1986,
1988). There is an extension to time-dependent concomitants and treatment strategies with
indirect effects in Robins (1986, 1987a,b). For discussion from various perspectives, see
Pearl (1995). Path models go back to Wright (1921), and were used by Blau and Duncan
(1967) to analyze social science data. Graphical models for non-linear covariation were
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developed in Darroch et al. (1980). DAGs, conditional independence, and the Markov prop-
erty were discussed in Kiiveri and Speed (1982, 1986); also see Carlin et al. (1984). The
‘d-separation’ theorem expresses a graphical condition for conditional independence. See
Pearl (1986) or Geiger et al. (1990). Lauritzen et al. (1990) gave an alternative condition,
which is easier to use in some examples. The ‘faithfulness assumption’ was introduced by
Pearl (1988), and used for causal inference by Rebane and Pearl (1987); also see Pearl and
Verma (1991). The ‘manipulability theorem’ appeared as the ‘g-computation algorithm’

in Robins (1986, 1987a,b); also see Robins (1993). For a review of graphical models, see
Lauritzen (1996). For a discussion of inferred causation, see Greenland et al. (1999).

4 For causal inference, it is not enough that the distribution be faithfsbtoegraph; the
distribution must be faithful to the true causal graph that generates the data, the latter being
a somewhat informal idea in SGS’s framework. See Freedman (1997, Section 12.3).

5 SGS (1993) justify their lack of an explicit definition by noting that probability theory
has made progress despite notorious difficulties of interpretation. However, the lack of
clarity in the foundations of statistics may be one source of difficulty in applying the
techniques. For a discussion, sciological Methodology (1991)

6 The causal representation conventigays: ‘A directed graplG = (V, E) represents

a causally sufficient structur€ for a population of units when the vertices Gfdenote

the variables inC, and there is a directed edge frafnto B in G if and only if A is a

direct cause of3 relative toV’ (SGS 1993, 47, footnote omitted). Following the chain of
definitions, we have that ‘A sat of variables iscausally sufficientfor a population if

and only if in the population every common cause of any two or more variablgsisn

in V or has the same value for all units in the population’ (1993, 45, footnote omitted).
What constitutes a direct cause? is adirect causeof A relative toV just in caseC is a
member of some sé included inV\{A} such that: (i) the events i@ are causes of;

(i) the events inC, were they to occur, would cause no matter whether the events in
V\({A}UC) were or were not to occur; and (iii) no proper subseCchatisfies (i) and (i)’

(1993, 43). This is only intelligible if you already know what causation means.

7 The most interesting examples are based on the assumption of a multivariate Gaussian
distribution, and we focus on those examples. The documentation for TETRAD Il is Spirtes
et al. (1993); point 2 on p. 71 gives the statistical assumptions, which also appear on the
computer printout. The algorithms are discussed in SGS (pp. 112ff., 165ff. and 183ff.):
these include the ‘PC’ and ‘FCI’ algorithms used in TETRAD II.

8 Thus, a correlation that equals 0.000 precludes certain kinds of confounding and permits
causal inference; a correlation that equals 0.001 has no such consequences. For examples
and discussion, see Freedman (1997, Section 12.1), which develops work by J. Robins.
Also see Section 2.1 and note 32 below.

9 The statistical assumptions — i.e., conditions on the joint distribution — include the
Markov property and faithfulness, as noted in the text. For the algorithms to work effi-
ciently and give meaningful output, the graph must be sparse, i.e., relatively few pairs of
nodes are joined by arrows. Observations are assumed independent and identically distrib-
uted; the common distribution is multivariate Gaussian or multinomial. There is the further,
non-statistical, assumption that arrows represent direct causes. This non-statistical assump-
tion may be the most problematic: see the 1987 Summer issieuafal of Educational
Statistics,or the 1995 Winter issue ¢oundations of Science.

10sGs (1993) eventually do acknowledge some drawbacks to their rules: ‘With simulated
data the examples illustrate the properties of the algorithms on samples of realistic sizes. In
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the empirical cases we often do not know whether an algorithm produces the truth’ (1993,
132-133).

11 The other examples are AFQSparting Timberlake and Williams (1984). The first two

are discussed below.

12The data are from a probability sample of 1766 women 35-44 years of age residing
in the continental United States; the sample was restricted to ever-married women with
at least one child. DADSOCC was measured on Duncan’s scale, combining information
on education and income; missing values were imputed at the overall mean. SGS (1993)
give the wrong definitions for NOSIB and ADOLF; the covariance matrix they report has
incorrect entries (1993, 139).

13 See Freedman (1997, pp. 124ff.).

14 The right-hand panel is computed using the BUILD module in TETRAD II. BUILD
asks whether it should assume ‘causal sufficiency’. Without this assumption (note 6), the
program output is uninformative; therefore, we told BUILD to make the assumption. Ap-
parently, that is what SGS did for the Rindfuss example. Also see Spirtes et al. (1993,
13-15). Data are from Rindfuss et al. (1980), not SGS; with the SGS covariance matrix,
FARM ‘causes’ REGN and YCIG ‘causes’ ADOLF.

15see Cornfield et al. (1959), International Agency for Research on Cancer (1986), U.S.
Department of Health and Human Services (1990).

16 with sample of sizex from a bivariate normal distribution, the sample correlation coef-
ficient has a standard error on the order ¢{/Z. In the social sciences, samples of size
1,000,000 are few and far between.

17 This diagram is an hypothetical, representing three regression equations:

X =dU + 34,
Y =eU +e,
Z=aX+DbY+ fU +n.

The variabledJ, X, Y, Z are normal with mean 0 and variance 1; the ‘disturbance terms’

3, €, andn are also normal with mean 0, independent of each other atid ©hese are all
assumptions.

18 As discussed above, ‘faithfulness’ is yet another assumption, precluding algebraic re-
lations among the parametedsh, d, e, f. For details, see Freedman (1997, 114-119,
138-142, 148-149); also see SGS (1993, 35), Scheines (1997, 193-94) or Glymour (1997,
209). On the degrees of possible bias, see Freedman (1997, 148-149).

19The chance of ‘Type | error’ — rejecting the null hypothesis when the latter holds true —
is controlled to the level of 0.05. The chance of ‘Type Il error’ — accepting the null when
the latter is false — is then uncontrolled. Great sensitivity to the data must result from this
approach: see note 32 below for the technical argument.

20 The parameters andd in Equation (2) can be obtained by regression, not by solving
Equation (1) forX in terms ofY. The calculation is standard; for details, see Freedman
(1997, 138-139, 157-159). If there are more variables and the faithfulness condition is
imposed, the argument is more complicated (Freedman, 1997, 150-151).

21 Korb and Wallace object to testing algorithms on real data, where difficulties are —
apparently — only to be expected: ‘Humphreys and Freedman neglect to note that this is
the natural outcome of their disfavor for testing with simulated data [550]'. Also see pp.
547-8.
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22 Humphreys and Freedman (1996, pp. 119-21); Freedman (1997, pp. 121-32).

23 Keynes (1939, 1940) and Tinbergen (1940). Other illustrative citations include Liu
(1960), Meehl (1978), Lucas (1976), Manski (1993), Pearl (1995), Abbott (1997) or Goldt-
horpe (1998). Also see Humphreys (1989), Freedman et al. (1983), Daggett and Freedman
(1985) and Freedman (1985, 1987, 1991, 1995). One major difficulty is specification of
functional form: should the equations be linear, log linear, or something else? Behavior
of error terms is another problem: should these be assumed independent with common
variance, or different variances, or dependent, and if the latter, in what way? Identifying
and measuring the relevant confounders is yet another issue.

24 Freedman (2997), Humphreys (1997), Woodward (1997) and Robins and Wasserman
(1999).

25 Indeed, SGS are not in the business of defining causes: in their own words, they ‘advoc-
ate no definition of causation’ (SGS 1993, 41; 1997, 558). On the causal Markov condition,
see SGS (1993, 54), Scheines (1997, 196) and Glymour (1997, 206). The definitional issues
have substantive correlates. For one thing, the SGS treatment of examples (like Figures
3 and 4 above) takes for granted the causal Markov condition and faithfulness. More
generally, imposing the causal Markov condition means that SGS cannot infer causation
from association; at best, they can make causal inferences from prior assumptions about
causation, and certain observed patterns of association in the data. SGS (1997) are clearer
about this — and the statistical assumptions — than SGS (1993); see, for instance, SGS
(1997, 559). We may also be coming closer to agreement with SGS on another matter. We
have pressed them to be more specific about their idea of causation: see, e.g., Humphreys
(1997). SGS seem to be shifting to the stance that theirs is a manipulability account of
causation: see Scheines (1997, 185) or Glymour (1997, 201).

26 3GS are also correct in saying their algorithms use not-iest but thez-test (SGS

1997, 559, 561; 1993, 128). However, differences between ‘observed significance levels’
(P-values) from the two tests are generally minute. Take the Rindfuss et al. (1980) data.
The correlation between DADSOC and YCIG-9.043 withn = 1766 sample points, so

t = —1.808 andP = 0.0707 whilez = —1.807 andP = 0.0708. The correlation between

ED and AGE is 0.380, so= 17.25 whilez = 16.80; either way,P is 0 to many decimal
places. In this contex® represents the chance of getting a sample correlation as extreme as
or more extreme than the observed one, assuming the ‘null hypothesis’ that the population
correlation is 0. The null hypothesis is rejectedPifis below some predetermined level.
Absolute values of or z are used to measure size, and the normal curve is used to compute
the chance.

27 For instance, note 16 in Humphreys and Freedman (1996) explains that the graph for
the Rindfuss et al. data was computed using the BUILD module in TETRAD I, with
the assumption of causal sufficiency. That corresponds to the PC algorithm as used by
SGS (1993, 139-140). On the discrepancies between our output and theirs, see the notes
to Figure 4.10 in Freedman (1997). Finally, if SGS write again on this topic, we have

a question for them: which version of TETRAD Il did they use for the data analysis in
Causation, Prediction, and Searzh

28 Freedman (1997, 133); for further arguments, see Spirtes and Scheines (1997, 174) and
Freedman (1997, 178).

29 presumably, ifSpartinacannot grow in a certain environment, BIO is 0. SGS (1993,
247) recommend using the PC algorithm with significance levels of 0.05, 0.10, 0.15 and
0.20. At these levels, there is an arrow from sodium to magnesium. At the 0.05 and 0.10
level, phosphorus is an isolated node in the graph; at 0.15 and 0.20, it is separated from
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BIO. Spartinais a tough plant, but not that tough. If it can grow without a source of
phosphorus, then it does not need DNA or RNA. (These molecules are built around a
‘backbone’ consisting of sugars and phosphates.) At the 0.20 level, and that level only,
PH causes BIO. SGS give no reasons to justify their choice of significance levels; at the
0.01 level, BIO is an isolated node in the graph: Spartina’s ability to grow is unaffected by
any external causes. The sample size in this studyi®95= 45 (SGS 1993, 244); reliable
inferences from the algorithms cannot be expected (SGS 1997, 563); i.e., correct inferences
as well as incorrect ones must be largely the result of chance. Why then do SGS present
this example as a success? For more discussion, see Spirtes and Scheines (1997, 173) and
Freedman (1997, 179). We thank Jeff Fehmi for background informati@partina

30 Of course, experiments are sometimes interpreted via regression models. For instance, it
may be assumed that the responseXst €, whereX is 1 if the subject is in treatment and

0 otherwise, while is an error term. This assumption does not follow from randomization;

if it is granted, theru = 0 does entail a universal finding of no effect; but it is hard to see
where the faithfulness assumption comes into play.

313GS (1997, 562) now have a new argument: the statistical tests used in clinical trials,
like the tests used by SGS, are valid only asymptotically. For instance, the ‘level’ of a test
—the chance of rejecting the null hypothesis when the latter is true — may be set to 0.05; but
in many cases, the calculation is only approximate, the approximation getting better and
better as the sample size increases. FHest used by SGS does have this characteristic,
like the r-test often used in experiments. On the other hand, in many experiments, exact
‘non-parametric’ tests can be used. And the large-sample problems in the SGS program
are in principle quite different from those in clinical trials. For example, in a wide variety

of cases, the estimators in clinical trials are consistent; such theorems are not available for
the SGS procedures, as discussed below. On the contrast between the SGS approach and
ordinary epidemiologic approach, see Robins and Wasserman (1999).

32710 get such a theorem, one would need to make a sequence of tests with level tending
to 0 and power tending to 1, calibrated to sample size and complexity of model. There is a
further technical difficulty, because the output of the algorithm cannot depend continuously
on the data: presence or absence of an arrow is binary (1 or 0), and the only continuous
maps of Euclidean space inf0, 1} are trivial, because Euclidean space is connected. The
comments on page 566 of SGS (1997) are not responsive to the technical issues.

33 points 4 and 6 of SGS (1997, 559-560).
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