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Abstract. An infinite binary word can be identified with a branch in the full binary tree. We consider
sets of branches definable in monadic second-order logic over the tree, where we allow some extra
monadic predicates on the nodes. We show that this class equals to the Boolean combinations of
sets in the Borel classΣ0

2
over the Cantor discontinuum. Note that the last coincides with the Borel

complexity ofω-regular languages.
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1. Introduction

It is well known that a great part of automata theory extends quite well from words to trees. But, not
surprisingly, the analogous results become often more difficult in the tree case, as trees have a richer
structure than words. A celebrated example is decidabilityof SkS, i.e., the monadic second order (MSO)
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theory of the fullk-ary treetk = 〈{1, . . . , k}∗, succ 1, . . . , succ k〉, wheresucc i(w) = wi. Rabin’s
proof [10] for k ≥ 2 needed an essentially new insight into the subject, although it built on an idea
of reducing formulas to automata, previously used by Büchiin his proof of decidability of S1S. The
increase of conceptual difficulty is also reflected by the computational complexity of the related decision
problems. For example, the non-emptiness problem for automata with the Rabin acceptance criterion
over infinite words is in P, while the analogous problem for trees is NP-complete [4].

A good context where the two kinds of objects can be compared is topology. Indeed both trees and
words can be naturally represented as elements of the Cantordiscontinuum{0, 1}ω . Then the complexity
of respective concepts is compared in the frame of the classical hierarchies of set-theoretic topology. For
instance, finite-state recognizable sets of infinite words are known to be on the 3rd level of the Borel
hierarchy, more precisely they are Boolean combinations ofsets inΣ0

2 [7] (see also [14]). In contrast,
finite-state automata on infinite trees can recognize some Borel sets on any finite level [12], as well as
some non-Borel sets in∆1

2 [9].

In this context, we consider the following question. Since an infinite word α over an alphabet
{1, . . . , k} can be represented as a branch in ak-ary tree, it is possible to define a language of infi-
nite words by an MSO formula with one free set variable interpreted in the structuretk as the set of
prefixes ofα. It is easy to see that a language definable that way must beω-regular, i.e., recognizable
by a Büchi automaton. This of course need not be the case if weextend the tree structuretk by some
additional monadic predicates. Recently, Bárány, Kaiser, and Rabinovich [1] considered languages de-
finable in that way in context of an uncountability quantifierover trees, and discovered that they are
always Borel. In the present paper we show that these languages of infinite words have the same Borel
complexity asω-regular languages, that is, they are in the classBoole

(

Σ
0
2

)

of the Boolean combinations
of sets inΣ0

2. Moreover, if we range over all possible predicates, the languages in consideration exhaust
the whole classBoole

(

Σ
0
2

)

.

To this end, we observe that our languages can be captured by non-deterministic automata with the
Büchi acceptance condition, additionally equipped with an advicetelling which transitions are recom-
mended after reading a finite prefix of an infinite word. We notethat a similar concept of automata
recognizing languages offinite words has been recently considered by Fratani [5] who showedan anal-
ogous characterization for languages of finite words definable in tree structures. A useful property is
the determinization result which, for infinite words, is analogous to the McNaughton Theorem [8] for
the ordinary Büchi automata: the automata with advice can be made deterministic if we replace Büchi
condition by some more general acceptance criteria, like the parity acceptance condition (see also [14]).

To complete the proof we note that the languages recognized by automata with advice are closed
under continuous reductions. As they also form a Boolean algebra and containΣ0

2-complete sets (which
is well-known already for the ordinaryω-regular languages), we obtain the desired characterization.

Finally we note that the MSO definability of sets of infinite words in ak-ary tree with predicates
cannot be reduced to definability in the structure〈ω, succ 〉 (i.e., the underlying structure of S1S) with
additional predicates; we exhibit a language definable in the former sense but not in the latter.

For simplicity, we present our proofs for binary trees; an extension of the results tok-ary trees, for
k ≥ 2, is routine.
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2. Borel complexity of Büchi automata with advice

In this section, we consider an extension of non-deterministic Büchi automata on infinite words by the
concept of advice, and show that the topological complexityof the recognized languages is the same as
for ordinary Büchi automata.

Topological preliminaries Throughout the paper,ω denotes the set of natural numbers which we iden-
tify with the first infinite ordinal. (Thus the writingsn < ω andn ∈ ω are equivalent.) For a setX, X∗

denotes the set of finite words overX, including the empty wordε, andXω the set of infinite words, i.e.,
mappingsω → X. When applied to words, the symbol≤ denotes prefix ordering. The length of a finite
word w is denoted by|w|. Them-th letter of a wordu ∈ Xω is denotedu(m) or um interchangeably.
The prefix of lengthm of a wordu will be denotedu ↾ m, that is

u ↾ m = u(0)u(1) . . . u(m − 1) = u0u1 . . . um−1,

(in particular,u ↾ 0 = ε). determined by the context. We considerXω with a topology induced by the
metric given by the distance function

d(u, u′) =

{

0 if u = u′

2−n with n = min{i : u(i) 6= u′(i)} otherwise.
(1)

Note that the open sets are of the formWXω, for some set of finite wordsW ⊆ X∗. It is easy to see that
if X is finiteand contains at least two elements thenXω is homeomorphic with theCantor discontinuum
{0, 1}ω . (For the concepts of set-theoretic topology, see, e.g., [6].)

We use the notationΣ0
n andΠ

0
n, with 1 ≤ n < ω, for finite levels of the Borel hierarchy over

{0, 1}ω . That is,Σ0
1 andΠ

0
1 are classes of open and closed sets, respectively. Next,Σ

0
n+1 consists of

countableunions of sets inΠ0
n, andΠ

0
n+1 consists of countable intersections of sets inΣ

0
n. Note that

the sets inΠ0
n are complements of the sets inΣ0

n.

2.1. Advised automata

A Büchi automaton on infinite words over an input alphabetA can be presented byB = 〈A,Q, qI , F,Tr〉,
whereQ is a finite set ofstateswith an initial state qI and a subset ofaccepting statesF ⊆ Q, and
Tr ⊆ Q × A × Q is a set of (non-deterministic)transitions. We writeq

a
→ p to mean〈q, a, p〉 ∈ Tr .

A run of B on a wordu ∈ Aω is a wordr ∈ Qω such thatr0 = qI , and, form < ω, rm
um→ rm+1. It

is accepting ifrm ∈ F , for infinitely many values ofm. The languageL(B) recognized byB consists
of those wordsu ∈ Aω which have an accepting run. Languages of infinite words recognized by Büchi
automata are calledω-regular.

We now generalize the above concept of automata, so that the transition relation will depend on the
prefix of a word read so far. We note that a similar concept of automata running on finite words has been
considered by Séverine Fratani [5] (calledautomates̀a oraclesthere) in the context of automata with
nested pushdown stores.

A non-deterministic Büchiautomaton with advice(or advised automaton) can be presented byB =
〈A,Q, qI , F, ρ〉, whereQ, qI , andF are as above, andρ : A∗ → ℘(Q × A × Q) is the advice function
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which associates a set of transitions with each finite word overA. We writev, q
a
→ p to mean〈q, a, p〉 ∈

ρ(v). A run of B on a wordu = u0u1 . . . ∈ Aω is a wordr ∈ Qω such thatr0 = qI , and, form ∈ ω,

u0 . . . um−1, rm
um−→ rm+1.

The concept of acceptance is defined similarly as in the previous case. An ordinary Büchi automaton as
presented above can be viewed as an automaton with advice defined by

ρ(w) = Tr , for w ∈ A∗.

Parity automata An ordinary (non-deterministic)parity automaton1 differs from a Büchi automaton
only by the acceptance condition which, instead ofF , takes form of aranking function rank : Q → ω.
A run r is considered accepting if the highest rank occurring infinitely often iseven, in other words,
lim supn→∞ rank(rn) is even. Note that a Büchi automaton can be viewed as a parityautomaton with
rank (q) = 2, for q ∈ F , andrank (q) = 1 otherwise.

A parity automaton with adviceis defined analogously to the Büchi automaton, with the acceptance
given in terms of the ranking function.

It is well known that non-deterministic parity automata accept onlyω-regular languages. We note
that a straightforward transformation from parity to Büchi automata applies also to automata with advice.

Lemma 2.1. For any parity automaton with advice, there exists a Büchi automaton with advice accepting
the same language.

Proof:
Let B = 〈A,Q, qI , rank , ρ〉, and suppose thatrank takes the values in{0, 1, . . . ,m}. We construct a
Büchi automatonB′ with the set of states

Q ∪
⋃

2i≤m

{q : rank (q) ≤ 2i} × {i}.

The initial state remainsqI , and the accepting states areF = {(q, i) : rank (q) = 2i}. The advise ofB′

is given by the following rules:

• v, p
a
→ q, whenever it was the case inB,

• v, p
a
→ (q, i), wheneverv, p

a
→ q in B, andrank (q) ≤ 2i,

• v, (p, i)
a
→ (q, i), wheneverv, p

a
→ q in B, andrank(q) ≤ 2i.

Intuitively, in some moment of the computation, the automaton “decides” that the highest rank to occur
infinitely often should be2i. Since that moment on, the automaton cannot enter the stateswith higher
rank, and it accepts if the rank2i occurs infinitely often. The equivalence ofB andB′ follows readily
from the definition. ⊓⊔

1Currently most frequently used in the literature, the parity acceptance criterion is well-known to be equivalent to thehistorically
previous Muller and Rabin criteria, see [14].
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Determinization An ordinary Büchi automaton isdeterministicif Tr represents a function fromQ×A

toQ; that is, for eachq anda, there is exactly onep, such thatq
a
→ p. It is easy to see that Büchi automata

cannot, in general, be determinized, but from the celebrated McNaughton Theorem [8], we know that
any Büchi automaton is equivalent to a deterministic automaton with parity condition; an elegant and
optimal construction has been provided by Safra [11] (see also [14]).

By analogy, an advised automaton is deterministic if eachρ(v) is a function fromQ × A to Q;
consequently, for eachq, a, andv, there is exactly onep, such thatv, q

a
→ p. As for the ordinary

automata, this guarantees that the automaton has exactly one run on each wordu ∈ Aω. In particular,
for eachv ∈ A∗, there is exactly one state, sayρ′(v), which the automaton reaches after readingv,
starting from the initial state. This leads to a simpler presentation of deterministic automata: instead
of ρ : A∗ → ℘(Q × A × Q), we can consider the functionρ′ : A∗ → Q defined above that we call
state-advice. Indeed, the functionρ′ fully determines the language recognized by the automaton,as a
word u is accepted if and only if the sequenceρ′(u ↾ n), n < ω, forms an accepting run. On the other
hand,any functionf : A∗ → Q is a state-advice of some automaton, it is enough to let

v, f(v)
a
→ f(va)

(transitions forq 6= f(v) may be defined arbitrarily). Since now on, we usually presentdeterministic
automata by state-advices.

We now show that the determinization result carries over to automata with advice. A similar results
for languages of finite words has been shown by Fratani [5].

Proposition 2.1. For any advised Büchi automaton, there is a deterministic advised parity automaton
accepting the same language.

Proof:
Let B = 〈A,Q, qI , F, ρ〉 be a non-deterministic Büchi automaton with advice. We saythat an infinite
wordα ∈ ℘(Q×A×Q)ω favoursan infinite wordu = u0u1 . . . ∈ Aω, whenever there exists a sequence
of statesq0, q1, . . ., such that

1. q0 = qI ,

2. 〈qn, un, qn+1〉 ∈ αn, for all n < ω,

3. qn ∈ F , for infinitely manyn’s.

For anyu ∈ Aω, let ρ(u) be an infinite word over the alphabet℘(Q × A × Q), defined by

ρ(u)(n) = ρ(u ↾ n).

Note thatu is accepted byB if and only if ρ(u) favoursu.

For anyu ∈ Aω andα ∈ ℘(Q×A×Q)ω , letu⋆α be the word over the product alphabetA×℘(Q×
A × Q)ω, defined by

u ⋆ α(n) = 〈u(n), α(n)〉.
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The crucial property is that the set
{u ⋆ α : α favoursu}

is ω-regular in the usual sense. Indeed, a suitable non-deterministic Büchi automaton (over the alphabet
A × ℘(Q × A × Q)ω) can borrowQ,F , andqI from B, and assume the transitions

q
〈a,R〉
−→ p,

whenever〈q, a, p〉 ∈ R. By the McNaughton Theorem, there is an equivalent deterministic automaton
with parity condition, sayM. We are ready to define a deterministic advised parity automaton recogniz-
ing L(B). Its set of states and ranking function are the same as inM. The state-advice sends each finite
wordu0u1 . . . un on the unique state that the automatonM reaches after reading the word

〈u0, ρ(ε)〉, 〈u1, ρ(u0)〉, 〈u2, ρ(u0u1)〉, . . . , 〈un, ρ(u0u1 . . . un−1)〉

(the empty wordε is sent on the initial state ofM). Hence the run this automaton assumes on an infinite
word u ∈ Aω coincides with the run of the automatonM on u ⋆ ρ(u). But M acceptsu ⋆ ρ(u) if and
only if B acceptsu. ⊓⊔

Note that, by the above proof, the increase of the number of states induced by determinization is the
same as in the classical construction.

Borel complexity We first note that automata with advice are not more powerful than ordinary au-
tomata as far as the Borel complexity is concerned. Indeed, let B be a deterministic parity automaton
with a state-adviceρ : A∗ → Q, and a ranking functionrank : Q → {0, 1, . . . ,m}. Let us abbrevi-
atem = {0, 1, . . . ,m}. We can simplify the automaton further, by takingm as the set of states with
rank (i) = i, and the state-advice given byrank ◦ ρ; clearly the new automaton is equivalent to the
previous one. This further induces a continuous (even Lipschitz) mapping fromAω to mω

u 7→ rank (ρ(u ↾ 0)), rank (ρ(u ↾ 1)), rank (ρ(u ↾ 2)), . . .

Clearly the setL(B) is an inverse image under this mapping of the set of strings satisfying the parity
criterion

Paritym =
{

α ∈ mω : lim sup
n→∞

αn is even
}

.

The last set is a Boolean combination of sets defined by the conditions “i occurs only finitely often”, and
hence is in the Boolean closure of the Borel classΣ

0
2. (This also follows from the Landweber bound on

theω-regular languages [7].) Hence, any set of infinite words recognized by a non-deterministic parity
automaton with advice has at most this Borel complexity.

It turns out that the converse is also true.

Theorem 2.1. A languageL ⊆ Aω is presentable as a Boolean combination of sets inΣ
0
2 if and only

if it is recognized by a deterministic parity automaton withadvice, and consequently also by a (non-
deterministic) Büchi automaton with advice.



A. Rabinovich et al. / On the Borel complexity of MSO definablesets of branches 7

Proof:
Theif implication has been observed above. To show theonly if part, we will use deterministic automata
with the states coinciding with their ranks. A state-adviceof the formρ : A∗ → m may be viewed as a
coloring of the treeA∗ by the ranks inm. Therefore, for the sake of this proof, we call the set recognized
an automaton arainbow. The strategy of the proof is to show that rainbows comprise the whole classΣ0

2

and are closed under Boolean operations.
We first show that each continuous reduction induces a rainbow.

Lemma 2.2. Let f : Aω → mω be a continuous function andK = f−1(Paritym). ThenK is a
rainbow.

Proof:
Forw ∈ A∗, let f̂(w) be the largest common prefix of the words in{f(wu) : u ∈ Aω}. Note that it can
be finite or infinite (if the prefixw determines the value off ). It follows from continuity off that, for
anyu ∈ Aω, the sequence of lengths|f̂(u ↾ n)| diverges to infinity (it may also reach it, for somen).
Hence there is a unique infinite word having allf̂(u ↾ n)’s as prefixes, which must bef(u).

To define a state-adviceρ for an automaton recognizingK, we proceed by induction on the length of
an argumentw. Let ρ(ε) = 0. Forw > ε, we consider two cases. If̂f(w) is an infinite word, we let

ρ(w) = lim sup
n→∞

f̂(w)(n).

Otherwise letw = w′a, with a ∈ A. Clearly f̂(w) = f̂(w′)∆, for some∆ ∈ m∗. If ∆ = ε, we let
ρ(w) = ρ(w′). Otherwise, if∆ = δ1 . . . δk, for somek ≥ 1, we let

ρ(w) = max{δ1, . . . , δk}.

Now it is enough to show that, for eachu ∈ Aω,

lim sup
n→∞

ρ(u ↾ n) = lim sup
n→∞

f(u)(n).

If, for somen, f̂(u ↾ n) is infinite then it must equalf(u). Then the sequence on the left-hand side
stabilizes on the value that equals precisely to the right-hand side. Otherwise,f(u) can be decomposed

f(u) = ∆0∆1 . . .

wheref̂(u ↾ n + 1) = f̂(u ↾ n)∆n. Then the claim follows from a simple observation that if in a
sequenceα ∈ mω we replace any number of (pairwise disjoint) subwords by their maxima, thelim sup
remains the same. ⊓⊔

It follows from the above lemma that rainbows are closed under continuous reductions, i.e., iff : Aω →
Aω is a continuous mapping andK ⊆ Aω a rainbow thenf−1(K) is also a rainbow. Indeed, ifρ : A∗ →
m is an advice recognizingK then the mapping

u 7→ ρ(f(u) ↾ 0), ρ(f(u) ↾ 1), . . .

is a continuous reduction off−1(K) to Paritym, hencef−1(K) is a rainbow by Lemma 2.2. Hence, to
show that rainbows comprise the whole classΣ

0
2, it is enough to exhibit a rainbow complete in this class
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(w.r.t. continuous reductions). It is well known that thereare (ordinary)ω-regular languages complete
in Σ

0
2. For concreteness, suppose thatA contains letters0, 1, and consider the setParity1 which is

then included inAω. It is straightforward to see thatParity1 cannot be recognized by a deterministic
Büchi automaton and hence, by Landweber’s characterization [7] (see also [13], Theorem 5.3) belongs
to Σ

0
2 − Π

0
2. By the result of Wadge (see [6], Theorem 22.10), this implies thatParity1 is complete in

Σ
0
2. (A direct proof of this fact is also not difficult.)

To conclude the proof of the theorem, it is enough to show thatrainbows form a Boolean algebra.
It is easy to see that ifρ : A∗ → m is an advice for an automaton recognizingK then the formula
ρ̃(w) = ρ(w) + 1 gives an adviceρ : A∗ → m recognizing the complement ofK. Next it suffices to
show that rainbows are closed under binary union. IfK1 andK2 are rainbows, it is straightforward to
construct a non-deterministic automaton with advice recognizing K1 ∪K2. By Proposition 2.1, it can be
determinized, henceK1 ∪ K2 is a rainbow. This remark completes the proof. ⊓⊔

3. Defining words in trees

In this section, we show that a set of infinite words is MSO definable in ak-ary tree if and only if it
is recognizable by a parity automaton with advice. Togetherwith Theorem 2.1, this yields the desired
topological characterization.

We restrict our considerations to binary trees; extension of the results tok-ary trees, fork ≥ 2, is
routine. (Fork = 1 the result is trivial.)

Monadic second-order logic A (relational)signatureis a finite setτ of relation symbols; eachR in τ

given with a (finite)arity ar(R) ≥ 1. The formulas ofmonadic second order (MSO) logicover signature
τ use two kinds of variables :individual variablesx0, x1, . . ., andset variablesX0,X1, . . .. Atomic
formulas arexi = xj, R(xi1 , . . . , xi

ar(R)
), andXi(xj). The other formulas are built using propositional

connectives∨,¬, and the quantifier∃ ranging over both kinds of variables.
Formulas are interpreted in relational structures over thesignatureτ , which we present byA =

〈A, {RA : R ∈ τ}〉, whereA is theuniverseof A, andRA ⊆ Aar(R) is anar(R)-ary relation onA. A
valuationis a mappingv from the set of variables (of both kinds), such thatv(xi) ∈ A, andv(Xi) ⊆ A.
Thesatisfaction relationof a formulaϕ in a structureA under the valuationv is defined by induction on
ϕ in the usual manner and denotedA, v |= ϕ (see, e.g., [3]).

A variable (of any kind) isfree in ϕ if it has an occurrence not bound by a quantifier. We write
ϕ(ξ1, . . . , ξk) to indicate that the free variables ofϕ are amongξ1, . . . , ξk. Clearly, the satisfaction of a
formula depends only on the valuation of its free variables.We writeA |= ϕ[α1, . . . , αk] to mean that
A, v |= ϕ, for a valuationv, such thatv(ξi) = αi, for i = 1, . . . , k.

A (binary) tree with predicatesis a structure with the universe{1, 2}∗, over the signature consisting
of binary symbolssucc 1, succ 2, and unary symbolsP1, . . . , Pm, for somem < ω. It can be presented

t =
〈

{1, 2}∗, P t

1 , . . . , P t

m, succ t

1, succ t

2

〉

.

We further assume that the symbolssucc i are interpreted as thesuccessorrelationssucc t

i = {(w,wi) :
w ∈ {1, 2}∗}, whereas the symbolsPi are interpreted as arbitrary setsP t

i ⊆ {1, 2}∗, which we usually
call predicates.
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We refer to finite words over the alphabet{1, 2} as tonodesof the tree, with the empty wordε
coinciding with the root. An infinite wordu ∈ {1, 2}ω can be viewed as a path in the tree. As far as
MSO definability is concerned, it is convenient to identify it with the set of nodes

û = {u ↾ n : n ∈ ω}.

Definition 3.1. A setL ⊆ {1, 2}ω is MSO definable int, if there exists an MSO formulaϕ(X), such
that, for any setZ ⊆ {1, 2}∗,

t |= ϕ[Z] iff Z = û, for someu ∈ L.

Automata on trees A non-deterministic (binary) tree automaton with a parity acceptance condition is
presented byD = 〈A,Q, qI ,Tr , rank 〉, whereA is a finite alphabet of input symbols,Q is a finite set
of states with an initial stateqI , Tr ⊆ Q × A × Q × Q is a set of transitions, andrank : Q → ω is the
ranking function. A transition(q, a, p1, p2) is usually writtenq

a
→ p1, p2.

An input to an automaton is an infinite (binary)A–valued tree, which can be presented as mapping
t : {1, 2}∗ → A. We letTA denote the set of all such trees. Arun of D on a treet ∈ TA is itself aQ–

valued treer : {1, 2}∗ → Q such thatr(ε) = qI , and, for eachw ∈ dom (r), r(w)
t(w)
→ r(w1), r(w2) is

a transition inTr . A pathP = p0p1 . . . ∈ {1, 2}ω in r is acceptingif lim supn→∞ rank (r(p0p1 . . . pn))
is even.

A run is acceptingif so are all its paths. The tree languageL(D) recognizedby D consists of those
trees inTA which admit an accepting run.

The correspondence between MSO formulas and automata constitutes a key step in Rabin’s proof
of decidability of S2S ([10], see also [13]). For a setZ ⊆ {1, 2}∗, a characteristic mappingχZ :
{1, 2}∗ → {0, 1} is given byχZ(v) = 1 if v ∈ Z, andχZ(v) = 0, otherwise. For a vector of sets
Z1, . . . , Zk ⊆ {1, 2}∗, acharacteristic treet~Z

: {1, 2}∗ → {0, 1}k is given by

t~Z
(v) = 〈χZ1(v), . . . , χZk

(v)〉.

Rabin proved [10] that, for an MSO formulaϕ without predicate symbols and with the free variables
amongX1, . . . ,Xk, one can always construct an automatonDϕ over the input alphabet{0, 1}k , such
that, for allZ1, . . . , Zk ⊆ {1, 2}∗,

t2 |= ϕ[Z1, . . . , Zk] iff t~Z
∈ L(Dϕ), (2)

wheret2 is the full binary tree without predicates (see also [13]).
Now, let us replace some variables inϕ, sayX1, . . . ,Xm (m ≤ k), by the monadic relation symbols

P1, . . . , Pm, thus obtaining a new formulaϕ′ over an extended signature. Then, for a treet, where the
new symbols are interpreted by predicatesP t

1 , . . . , P t
m, we have

t |= ϕ′[Zm+1, . . . , Zk] iff t2 |= ϕ[P t

1 , . . . , P t

m, Zm+1, . . . , Zk]. (3)

The equivalences (2) and (3) allow us to rephrase Definition 3.1 in terms of automata. Namely, a set
L ⊆ {1, 2}ω is MSO definable in a treet (with predicatesP t

1 , . . . , P t
m) iff there exists a tree automaton

D over the alphabet{0, 1}m+1, such that, for any setZ ⊆ {1, 2}∗,

tP t

1 ,...,P t
m,Z ∈ L(D) iff Z = û for someu ∈ L. (4)
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This last characterization is useful to prove the followingcharacterization. We note that a similar results
for languages of finite words has been shown by Fratani (see chapter 4 in [5]).

Proposition 3.1. A set L ⊆ {1, 2}ω is MSO definable in a tree with predicates if and only if it is
recognized by a parity automaton with advice.

Proof:
Only if. SupposeL is definable in a treet = 〈{1, 2}∗, P t

1 , . . . , P t
m, succ t

1, succ t
2, 〉, and let an automaton

D = 〈A,Q, qI ,Tr , rank 〉 witness this definability in the sense of (4). The automatonB recognizingL

will have the same set of states asD, the same initial state and therank function. The advice function
will depend on the values of the predicatesP t

i . At first, for each nodev ∈ {1, 2}∗, we fix the set of states
from which the automatonD would accept the subtree oftP t

1 ,...,P t
m,û rooted inv, provided that the path

û did not enter this subtree. More specifically, lett∅v : {1, 2}∗ → {0, 1}k be a tree defined by

t∅v(w) = 〈P t

1 (vw), . . . , P t

m(vw), 0〉,

whereP t
i (x) equals1 if x ∈ P t

i , and0 otherwise. LetDq, with q ∈ Q, be an automaton which coincides
with D, except for that its initial state isq. We let

acc (v) = {q : t∅v ∈ L(Dq)}.

The advice functionρ of the automatonB is defined by the following rule:

• v, p
1
→ q, whenever the automatonD has a transitionp

〈P t

1 (v),...,P t
m(v),1〉

→ q, q′, for someq′ ∈
acc (v2),

• v, p
2
→ q, whenever the automatonD has a transitionp

〈P t

1 (v),...,P t
m(v),1〉

→ q′′, q, for someq′′ ∈
acc (v1).

Intuitively, for an inputu, the automatonB follows a hypothetical run ofD on the characteristic tree
tP t

1 ,...,P t
m,û, along the patĥu. Note that the input letters for the automatonB correspond to directions in

the tree (not to labels). For a transitionp → q, q′ of D, the automatonB “chooses” one direction: left
or right, depending on its actual input letter:1 or 2, respectively. The advice makes sure that the run
corresponds indeed to an accepting run ofD.

We now show thatB accepts an infinite wordu if and only ifD accepts the treetP t

1 ,...,P t
m,û. Let r be

an accepting run ofD on this tree. Consider the sequence of states

r(ε), r(u0), r(u0u1), r(u0u1u2), . . .

It follows directly from the definitions that this is an accepting run ofB onu.

Conversely, lets = s0s1s2 . . . be an accepting run ofB on a wordu. By assumption,s0 = qI

andu ↾ n, sn
un→ sn+1, for n < ω. We construct a runr of D on tP t

1 ,...,P t
m,û, as follows. We first let

r(u ↾ n) = sn, for n < ω. That is, the states assumed along the pathu are the same as in the runs. Note
that, wheneverun = 1, there is a transition

sn

〈P t

1 (u↾n),...,P t
m(u↾n),1〉

−→ sn+1, q,
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for someq ∈ acc ((u ↾ n)2). Hence, we can define an accepting run starting fromq on the subtree of
tP t

1 ,...,P t
m,û rooted in(u ↾ n)2, which coincides with the treet∅(u↾n)2. Similarly, if un = 2 then we can

extend the run on the subtree rooted in(u ↾ n)1. Thus we obtain an accepting run ofD on tP t

1 ,...,P t
m,û,

as desired.

If. By Proposition 2.1 and the subsequent considerations, we may assume thatL is recognized by
a deterministic automaton with a state-adviceρ : {1, 2}∗ → m, for somem. Consider a treet with
predicatesP t

1 , . . . , P t
m, defined by

v ∈ P t

i iff ρ(v) = i.

Clearly,u ∈ L if and only if the highesti, such thatP t
i (u ↾ n) holds for infinitely manyi’s, is even. This

last property is readily expressible by an MSO formula overt. ⊓⊔

Remark Note that, in the proof of the implicationIf of the above proposition, the modelt depends
on the adviceρ, but the actual MSO formula depends only onm. Hence, we have in fact a sequence
of formulasϕm (expressing the parity condition), such that each MSO definable set of infinite words is
definable by someϕm.

By combining Proposition 3.1 with Theorem 2.1, we obtain thefollowing.

Corollary 3.1. A set L ⊆ {1, 2}ω is MSO definable in a tree with predicates if and only if it is pre-
sentable as a Boolean combination of sets inΣ

0
2 w.r.t. the Cantor topology on{1, 2}ω .

As we have mentioned above, the extension of this result to the alphabet{1, 2, . . . , k}, for anyk < ω, is
completely routine.

We complete our considerations by an observation that definability in binary trees with extra predi-
cates in nevertheless more powerful than definability inω with extra predicates, in the following sense.

Consider the structure
N = 〈ω,PN

1 , . . . , PN

m , succ N〉,

wheresucc N = {(n, n + 1) : n < ω}, andPN

i ⊆ ω, for i = 1, . . . ,m, are arbitrary monadic predicates
overω. We are now interested in definability of languages of infinite words in this structure in the usual
sense, i.e., by viewing words as characteristic functions of tuples of sets. More specifically, for a vector
of setsZ1, . . . , Zk ⊆ ω, its characteristic wordis an infinite wordu~Z

: ω → {0, 1}k , defined by

u~Z
(n) = 〈Z1(n), . . . , Zk(n)〉,

whereZi(n) = 1 if n ∈ Zi, andZi(n) = 0 otherwise.

Definition 3.2. A languageL ⊆
(

{0, 1}k
)ω

is MSO definable inN if there exists an MSO formula
ϕ(X1, . . . ,Xk)), such that, for any setsZ1, . . . , Zk ⊆ ω,

N |= ϕ[Z1, . . . , Zk] iff u~Z
∈ L.
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Let ω denote the structureN without any predicates. We use the correspondence between MSO
formulas overω and Büchi automata analogous to (2), originally established by Büchi [2] in his proof of
decidability of S1S (see also [13]). We then have the following analogue to the equivalence (4) above.
For a languageL ⊆

(

{0, 1}k
)ω

definable by a formulaϕ(X1, . . . ,Xk) interpreted in a structureN with
predicatesPN

1 , . . . , PN
m , we can find a non-deterministic Büchi (or deterministic parity) automatonB

over the alphabet{0, 1}m+k , such that, for anyZ1, . . . , Zk ⊆ ω,

uPN

1 ,...,PN
m ,Z1,...,Zk

∈ L(B) iff u~Z
∈ L. (5)

Note that the topological complexity ofL is not higher than that ofL(B), as the mappingu~Z
7→

uPN

1 ,...,PN
m ,Z1,...,Zk

(for fixed PN
i ’s) is a continuous reduction. Hence, by Corollary 3.1, any language

definable in the sense of Definition 3.2, is also definable in the sense of Definition 3.1, adapted, if neces-
sary, toℓ-ary trees, for sufficiently largeℓ < ω.

We note that the converse is not true. Let

L0 = {(0n1)ω : n < ω}.

Proposition 3.2. The languageL0 is definable in the sense of Definition 3.1 (up to a renaming), but not
in the sense of Definition 3.2.

Proof:
For the first part of the claim, we renameL0 to the language{(1n2)ω : n < ω}. It is easily definable,
e.g., in a tree with one predicateP holding precisely in the nodesv ∈ (1n2)∗, for n < ω. The defining
formula ensures that the predicate holds infinitely often onthe path.

For the second part, suppose the contrary and letB be a deterministic parity automaton satisfying
(5). Like in the proof of Proposition 2.1, we use notationu ⋆ α for the product of wordsu ∈ ({0, 1}m)ω

andα ∈ {0, 1}ω . Let u~P
be the characteristic word of the tuplePN

1 , . . . , PN
m . ThenB acceptsu~P

⋆ α iff
α = αn =def (1n2)ω, for somen. But then we can easily fool the automaton by swapping the prefixes
of equal length of two different accepted words. More specifically, letK be greater than the number of
states ofB. Then there are0 ≤ i < j ≤ K, such that the automaton assumes the same stateq after
reading the prefix of length2K of the wordsu~P

⋆ αi andu~P
⋆ αj . Decomposeαi = (αi ↾ 2K) βi. Then

the automaton would also accept the wordu~P
⋆ (αj ↾ 2K) βi, violating (5). ⊓⊔
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