In search of the shortest description

Damian Niwiński
Faculty of Mathematics, Informatics, and Mechanics
University of Warsaw
Philosophers' Rally, Gdańsk, June 2012

Shortening is art

SCĖNE PREMIÈRE - CHIMÈNE, ELVIRE
CHIMÈNE
Elvire, m'as tu fait un rapport bien sincère ?
Ne déguises-tu rien de ce qu'a dit mon père?
In translation by Stanisław Wyspiański:
SZIMENA
Wiȩc mówił. . ?
After Tadeusz Boy Żeleński

Shortening is technology

Shortening is mathematics

$7,625,597,484,987$
$3^{3^{3}}$
0110100110010110100101100110100110010110011010010110100110010110...
$0 \rightarrow 01$
$1 \rightarrow 10$

$3.1415926535897932384626433832795028841971693993751058209 \ldots$
program generating π

To find a short description, we need to understand an idea behind an object.

Photo MITO SettembreMusica

But is it always possible to shorten a number ?
Not always!
Lemma. If, for each $n \in \mathbb{N}$, short (n) is a word over r symbols and $\operatorname{short}(n) \neq \operatorname{short}\left(n^{\prime}\right)$ whenever $n \neq n^{\prime}$, then for infinitely many n 's, we have

$$
\operatorname{short}(n) \geq\left\lfloor\log _{r} n\right\rfloor
$$

In this case short is not better than the standard positional notation.

This comes from simple calculation.
If r^{k} objects are described by r symbols then at least one of them has a description of length at least k.

This is because the number of words shorter than k is

$$
1+r+r^{2}+\ldots+r^{k-1}=\frac{r^{k}-1}{r-1}<r^{k}
$$

\bigcirc	\square	\diamond	\triangle	∇	\&	\varnothing	ค
\downarrow							
ε	0	1	00	01	10	11	$\underline{000}$
\downarrow							
10	0	ε	11	$\underline{101}$	00	$\underline{011}$	01

Andrey N. Kolmogorov introduced (in 1960s) the following concept:

number $n \quad \mapsto \quad$| $x:=10$ |
| :--- |
| For $i=1 . .10$ do |
| $x:=x \star x$ |
| Return x |

the shortest program generating n (in a fixed programming language, e.g., Pascal)

This program can be viewed as an ideal shortening of n.

Remark. The length of the program depends on the choice of a programming language, but only up to additive constant.

By the Lemma,

For some n 's, the best what we can do is

$$
9346296618342597 \quad \mapsto \quad \text { Write (9346296618342597) }
$$

i.e., the program is as long as the number itself.

Kolmogorov called such numbers random.

More precisely, the celebrated Kolmogorov complexity of a number n a is:

$$
\begin{aligned}
K(n)=\quad & \text { the length of the shortest binary program } \\
& \text { generating } n .
\end{aligned}
$$

A number n is random whenever

$$
K(n) \geq\left\lfloor\log _{2} n\right\rfloor
$$

There are infinitely many random numbers.

Random numbers exist in Nature, but can neither be computed nor recognized.

Let m_{n} be the least such that $n \leq K\left(m_{n}\right)$. Then m_{n} is random !
(Indeed, some $i \in\left\{0,1, \ldots, 2^{n}-1\right\}$ must satisfy $\left\lfloor\log _{2} i\right\rfloor \leq n \leq K(i)$, whereas $m_{n} \leq i$ implies $\left.\left\lfloor\log _{2} m_{n}\right\rfloor \leq\left\lfloor\log _{2} i\right\rfloor \leq n \leq K\left(m_{n}\right).\right)$

But no program $P(x)$ can compute the function $n \mapsto m_{n}$, for all n.
Otherwise, for given n, the program $P(\underline{n})$ computes m_{n} and has the length

$$
\log _{2} n+\text { const }<n
$$

A contradiction!

Note a reminiscence of Berry's paradox:

Let m_{1000} be \begin{tabular}{l}

the least natural number, which
cannot be described in English
with less than 1000 symbols.

\hline
\end{tabular}

Consequently, the function $n \mapsto K(n)$ cannot be computed, as otherwise we could use it

$$
\begin{aligned}
& x:=0 \\
& \text { While } K(x)<n \text { do } x:=x+1 \\
& \text { Return } m_{n}=x
\end{aligned}
$$

Neither there is a computable way to verify if a given number m is random:
The set of random numbers is not computable.
Otherwise

```
Input n
count := i:= 0
While count < n do
    if Random(i) then count }:=\mathrm{ count + 1 fi
    i:=i+1
Return i
```

computes the nth random number. Take, e.g., $2^{2^{n}}$ to obtain a contradiction.

In general, we can only prove non-randomness, e.g.,
314159265358979323846264338327950288419716939937510 58209749445923078164062862089986280348253421170679 82148086513282306647093844609550582231725359408128 48111745028410270193852110555964462294895493038196 98336733624406566430860213949463952247371907021798 60943702770539217176293176752384674818467669405132 00056812714526356082778577134275778960917363717872
is not random.

In about the same time (1960s), Gregory Chaitin (born 1947), then a high school student in New York, discovered independently the main concepts of the Kolmogorov complexity.

He found an alternative proof of the
Gödel Incompleteness Theorem.
If a theory T is a consistent extension of the Peano arithmetics PA then T is incomplete.

Proof. The property n is not random is semi-representable in PA.
But it is not possible that, for each $n \in \mathbb{N}$,
$T \vdash n$ is random or $\quad T \vdash n$ is not random,
as otherwise the set of random numbers would computable.

Shannon

Claude Shannon led the foundations of information theory in his landmark paper of 1948

A Mathematical Theory of Communication.
In the subsequent paper of 1951
Prediction and Entropy of Printed English,
he related his theory to computational linguistics.

Examples from Shannon's original paper and Lucky's book.

Quoted from T.M.Cover, J.A.Thomas, Elements of Information Theory.
The symbols are independent and equiprobable.
XFOML RXKHRJFFJUJ ZLPWCFWKCYJ
FFJEYVKCQSGYD QPAAMKBZAACIBZLHJQD
The symbols are independent. Frequency of letters matches English text.
OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH BRL

The frequency of pairs of letters matches English text.
ON IE ANTISOUTINYS ARE T INCTORE ST B S DEAMY
ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO
TIZIN ANDY TOBE SEACE CTISBE

The frequency of triplets of letters matches English text.
IN NO IST LAT WHEY CRATICT FROURE BERS GROCID PONDENOME OF DEMONSTURES OH THE REPTAGIN IS REOGACTIONA OF CRE

The frequency of quadruples of letters matches English text.
Each letter depends previous three letters.
THE GENERATED JOB PROVIDUAL BETTER TRAND THE DISPLAYED CODE, ABOVERY UPONDULTS WELL THE CODERST IN THESTICAL IT DO HOCK BOTHE MERG. (INSTATES CONS ERATION. NEVER ANY OF PUBLE AND TO THEORY. EVENTIAL CALLEGAND TO ELAST BENERATED IN WITH PIES AS IS WITH THE)

Example of 20 question game

Question game

Answerer chooses a challenge from some known set of objects.
The challenge is kept secrete.
Questioner asks questions: does the challenge belong to the set of objects S ?
Answerer answers: yes or no.
Questioner wishes to guess the challenge ASP.

Default strategy

Number of questions is $\log _{2} \mid$ Objects \mid.

Knowing the probability distribution, we can do better.
$\operatorname{Pr}($ sleeps $)=\frac{1}{2}, \operatorname{Pr}($ rests $)=\frac{1}{4}, \operatorname{Pr}($ eats $)=\operatorname{Pr}($ works $)=\frac{1}{8}$.

The expected number of questions:

$$
1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}+3 \cdot\left(\frac{1}{8}+\frac{1}{8}\right)=\frac{7}{4}<2=\log _{2} 4
$$

Knowing the probability distribution, we can do better.
$\mathrm{p}($ sleeps $)=\frac{1}{2}, \quad \mathrm{p}($ rests $)=\frac{1}{4}, \quad \mathrm{p}($ eats $)=\mathrm{p}($ works $)=\frac{1}{8}$.

The expected number of questions:

$$
1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}+3 \cdot\left(\frac{1}{8}+\frac{1}{8}\right)=\frac{7}{4}<2=\log _{2} 4
$$

The number of questions to guess an object with probability q is $\log _{2} \frac{1}{q}$.

Shannon's entropy

In general, if p is a probability distribution on the set of objects S, the Shannon entropy is

$$
H(S)=\sum_{s \in S} p(s) \cdot \log _{2} \frac{1}{p(s)}
$$

It can be viewed as the average number of questions to be asked in an optimal strategy in the question game.

The number of questions to identify an object s is $\log _{2} \frac{1}{p(s)}$.
$\mathrm{p}($ sleeps $)=\frac{1}{2}, \mathrm{p}($ rests $)=\frac{1}{4}, \mathrm{p}($ eats $)=\mathrm{p}($ works $)=\frac{1}{8}$.

In the example above $H(S)=$

$$
\begin{array}{llllllllllll}
= & p(s) & \log \frac{1}{p(s)} & + & p(r) & \log \frac{1}{p(r)} & + & p(e) & \log \frac{1}{p(e)} & + & p(w) & \log \frac{1}{p(w)} \\
= & \frac{1}{2} & 1 & + & \frac{1}{4} & 2 & + & \frac{1}{8} & 3 & + & \frac{1}{8} & 3 \\
= & \frac{7}{4} & & & & & & & & & &
\end{array}
$$

$$
H(S)=\sum_{s \in S} p(s) \cdot \log _{2} \frac{1}{p(s)} .
$$

The number of questions to identify an object s is $\log _{2} \frac{1}{p(s)}$.
The definition of entropy conforms to the Weber-Fechner law of cognitive science: the human perception (P) of the growth of a physical stimuli (S), is proportional to the relative growth of the stimuli rather than to its absolute growth,

$$
\partial P \approx \frac{\partial S}{S}
$$

consequently, after integration,

$$
P \approx \log S
$$

This has been observed in perception of weight, brightness, sound (both intensity and height), and even one's economic status.

Good !

Good!

Good!

Good!

Good!

Intuitively, the Shannon entropy tells us how difficult is it to find an object.

The Kolmogorov complexity tells us, how difficult is it to create it. Is there a link between them ?

Chaitin's constant

$$
\Omega=\sum_{P \downarrow} 2^{-|P|}
$$

where P ranges over binary programs, and $P \downarrow$ means that P halts.
Ω can be interpreted as probability that by tossing a coin, we find a binary program, which moreover halts.

$\underbrace{01101011011001101010101010101101001101010} \ldots$

this is a program which halts

Every prefix of Ω is Kolmogorov random.
Knowledge of Ω would suffice to reconstruct any computation.

For $n \in \mathbb{N}$, let $P \downarrow n$ means that P halts and produces n.
Let

$$
p(n)=\sum_{P \downarrow n} 2^{-|P|}
$$

This can be interpreted as probability that by tossing a coin, we find a binary program, which halts and produces n.

Theorem.

$$
K(n) \approx \log _{2} \frac{1}{p(n)}
$$

More precisely, there exists a constant c, such that, for all n,

$$
K(n)-c \leq \log _{2} \frac{1}{p(n)} \leq K(n)+c
$$

$$
\begin{aligned}
& \quad K(n) \\
& \text { Kolmogorov } \\
& \hline x:=10 \\
& \text { For } i=1 \ldots 10 \text { do } \\
& x:=x \star x \\
& \text { Return } x
\end{aligned}
$$

$\log _{2} \frac{1}{p(n)}$
Shannon

Researchers who have contributed to the theory: C.E.Shannon, A.N.Kolmogorov, R.Solomonoff, G.Chaitin, P.Martin-Löf, L.A.Levin, P.Gacs, and many others.

Literature.

Thomas M. Cover, and Joy A. Thomas,
Elements of Information Theory, John Wiley \& Sons, 1991.
Ming Li and Paul Vitanyi,
An Introduction to Kolmogorov Complexity and Its Applications, Springer, 2008.
D.Niwiński, M.Strojnowski, M.Wojnarski, Teoria informacji,
http://wazniak.mimuw.edu.pl/

