Algorithmic aspects of game theory

Damian Niwiński
University of Warsaw

Spring semester 2021/2022

Determinacy of games

As noted by Zermelo 1913, in the game of chess, either

- White has a strategy to win, or
- Black has a strategy to win, or
- both players have strategies to force at least a draw.

This holds for any perfect-information games (finitely winning).
But to find a strategy is another matter. . .

Games on graphs

A general model of a turn-based game.

Idea: $0 \longrightarrow \mathbf{w} 0$ means that Adam pays w to Eve.
The result: asymptotic mean payoff.
The quest for an optimal strategy is in NP \cap co-NP.

Parity games

Eve wants to visit even priorities infinitely often. Adam wants to visit odd priorities infinitely often. Maximal priority wins.

For this special case, a quasi-polynomial $\left(n^{\log n}\right)$ algorithm was found in 2017.

Complexity of games

Finding a polynomial-time algorithm for parity/mean-payoff games remains a big open challenge.

Photo from Wikipedia, author: chil, license: Creative Commons.

Nash equilibria

Rock, paper, scissors game

A related problem is to find a mixed Nash equilibrium (also in $N P \cap$ co-NP).

This problem is hard in a new complexity class PPAD (Constantinos Daskalakis, Nevanlinna Prize 2018).

Example of a homework

Barman-Client game

Barman and Client wear blue or read ties.
If they happen to wear both a blue tie, Client gets one drink.
If they happen to wear both a read tie, Client gets two drinks.
Otherwise Client pays Barman \mathbf{x} and gets nothing.

	\mathbf{B}	\mathbf{R}
\mathbf{B}	1	$-x$
\mathbf{R}	$-x$	2

What should be \mathbf{x}, so that the game would be fair ?

