
On the Deterministic Horn Fragment
of Test-free PDL
Linh Anh Nguyen

abstract. We study the deterministic Horn fragment of test-free proposi-
tional dynamic logic (PDL(0)). This fragment adopts the restriction that,
in bodies of program clauses and goals, special universal modal operators
which are a kind of combination of ! and " are used instead of !. The
fragment contains deterministic positive logic programs and deterministic
negative clauses, whose negations form serial positive formulae. A least
Kripke model for a deterministic positive logic program in PDL(0) may
not exist, because PDL(0) is a non-serial modal logic. In this work, we
present an algorithm that, given a deterministic positive logic program P

in PDL(0), constructs a least pseudo-model of P . A pseudo-model is similar
to a Kripke model except that it contains two sets of accessibility relations,
one for dealing with existential modal operators and the other for dealing
with universal modal operators. A least pseudo-model M of P has the
property that, for every serial positive formula ϕ, P |= ϕ iff M |= ϕ. Fur-
thermore, checking whether M |= ϕ is solvable in polynomial time in the
sizes of M and ϕ. Our algorithm runs in exponential time and returns a

pseudo-model with size 2O(n2). We give a deterministic positive logic pro-
gram in PDL(0) such that every pseudo-model characterizing it must have
size 2Ω(n).

keywords: PDL, finite automata, Horn logic, minimal models

1 Introduction

Modal logic programming extends classical logic programming with modali-
ties. There are two approaches in modal logic programming: the translation
approach [3, 10] and the direct approach [1, 2, 8, 9]. In the translation ap-
proach, both the functional translation method of Debart et al. [3] and
the semi-functional translation method of Nonnengart [10] assume that the
base modal logic is serial, i.e. it contains axiom !i! for every modal in-
dex i. Using the direct approach for modal logic programming, Balbiani et
al. [1] considered only serial modal logics, and in our previous works [7, 8, 9],
we considered only serial or almost serial modal logics. In [2] Baldoni et
al. studied modal logic programming using the direct approach for grammar
logics, which are non-serial normal modal logics with axioms of the form
[t1] . . . [tn]ϕ → [s1] . . . [sm]ϕ. However, they considered only modal logic
programs without existential modal operators.

Seriality has thus played an important role in the theory of modal logic
programming. It is an essential assumption for the functional and semi-
functional translation methods. For the direct approach, let us consider the

Advances in Modal Logic, Volume 6. c© 2006, Linh Anh Nguyen.

378 Linh Anh Nguyen

following program in the modal logic K:

"p ←

q ← !p

s ← "r

The problem is whether there exists a world accessible from the actual world.
If there exists then "p implies !p, which then implies q. If there does
not then "r holds and implies s. The program is thus “nondeterministic”
because the accessibility relation is not serial. In the above program, "r
does not follow from the program, but it may unwantedly become true when
there are no worlds accessible from the actual world. To overcome this
problem, instead of the program clause s ← "r we can use s ← !r, where
! has the semantics defined by !ϕ ≡ ("ϕ∧!ϕ) or !ϕ ≡ ("ϕ∧!!). One
can say that allowing modal operators like ! is not a “solution” for dealing
with non-seriality because ! contains “seriality” itself. Our justifications
for using modal operators like ! are as follows:

• If the base modal logic is deliberately chosen to be K, then adopting
! is an appropriate solution. Note that we will still allow " to appear
in contexts and heads of program clauses.

• While seriality is a natural assumption in some applications, e.g. to
state that knowledge and belief are consistent, it cannot be assumed
in some cases. For example, if a is an action, we may not want a to be
always admissible. That is, we may not want to adopt axiom 〈a〉!,
and in that case [a]ϕ does not imply 〈a〉ϕ.

• Finally, program clauses like s ← !r are more acceptable than
s ← "r. In s ← !r, the premise !r guarantees that "r actually
follows from the program, while in s ← "r, the premise "r may “ac-
cidentally” be true.

In this work, we study the deterministic Horn fragment of test-free propo-
sitional dynamic logic (PDL(0)), which is a non-serial modal logic and can
express Kn. This fragment adopts the restrictions that: i) in bodies of pro-
gram clauses and goals, modal operators like ! are used instead of universal
modal operators like "; ii) implicit disjunction such as 〈π ∪ π′〉 and 〈π∗〉 is
not allowed in heads of program clauses. The deterministic Horn fragment
of PDL(0) contains deterministic positive logic programs and determinis-
tic negative clauses. Negation of a deterministic negative clause is a serial
positive formula. In general, a serial positive formula is a positive formula
which may contains modal operators like ! but not modal operators like ".

Constructing a least Kripke model for a given positive modal logic pro-
gram in a serial propositional modal logic L is a useful starting point for
developing semantics for positive modal logic programs in the corresponding
first-order modal logic L. We have demonstrated this in [7, 8] for the basic

On the Deterministic Horn Fragment of Test-free PDL 379

serial monomodal logics KD, T , KDB, B, KD4, S4, KD5, KD45, S5.
In [7], we presented algorithms that, given a positive propositional modal
logic program P , construct a least L-model of P , where L is one of the listed
modal logics. As a continuation of [7], in [8] we have developed the least
model semantics, fixpoint semantics, and SLD-resolution calculi for positive
modal logic programs in the corresponding first-order modal logics L.

In PDL(0), a least Kripke model of a deterministic positive logic program
P may not exist.1 However, we can talk about least “pseudo-models” of P .
A pseudo-model is similar to a Kripke model except that it contains two sets
of accessibility relations, one for dealing with existential modal operators
and the other for dealing with universal modal operators. Informally, M is
a least pseudo-model of P if it satisfies P and for every pseudo-model M ′

of P , M is less than or equal to M ′. A least pseudo-model M of P has
the property that, for every serial positive formula ϕ, P |= ϕ iff M |= ϕ.
Furthermore, checking whether M |= ϕ is solvable in polynomial time in
the sizes of M and ϕ.

In this work, we present an algorithm that, given a deterministic positive
logic program P , constructs a least pseudo-model of P . Our algorithm runs
in exponential time and returns a pseudo-model with size 2O(n2). We give
a deterministic positive logic program in PDL(0) such that every pseudo-
model characterizing it must have size 2Ω(n).

From the view of the theory of complexity and expressiveness, the de-
terministic Horn fragment of PDL(0) does not have interesting properties.
However, this fragment and our method for it are useful for the following
reasons:

L1. If a knowledge base is represented by a deterministic positive logic
program P and the given query is a serial positive formula ϕ, then
having a least pseudo-model M of P , checking whether P |= ϕ can
be reduced to checking whether M |= ϕ. This method is especially
useful when the knowledge base rarely changes.

L2. Our method for answering whether P |= ϕ by constructing a least
pseudo-model of P is bottom-up. It does not create choice points,
while the traditional tableaux method for this problem would inten-
sively use the “or” splitting rule and we know that a wrong choice
when exploring tableaux, e.g. one near the root of the search tree,
would cost much. Hence, our bottom-up method is more efficient
than the traditional tableaux method, even though both the methods
can give an algorithm with EXPTIME complexity.

1In [7], we showed that the logic program {!p} does not have any least K-model.
This imply that the deterministic positive logic program {[σ]p} does not have any least
Kripke model in PDL(0). The only reason is the non-seriality of PDL(0). It can be shown
that adding the seriality axiom [π]ϕ → 〈π〉ϕ to PDL(0) causes that every positive logic
program without implicit disjunctions 〈π′ ∪ π′′〉 and 〈π′∗〉 in heads of program clauses
has a finite least model in the resulting logic.

380 Linh Anh Nguyen

L3. The deterministic Horn fragment of PDL(0) eliminates nondetermin-
ism (of PDL(0)). How much important is this property? In [6], Hus-
tadt et al. proved that the data complexity of query answering in
the Horn fragment Horn-SHIQ of the description logic SHIQ is in
PTIME, while in the full description logic SHIQ it is complete in
coNP.2 Here, we can also prove that the data complexity of query
answering in the deterministic Horn fragment of the PDL(0)-like de-
scription logic is in PTIME (see Section 6 for more details). This is
an interesting property for practical applications. Also note that our
deterministic Horn fragment of PDL(0) is more relaxed than the Horn-
SHIQ fragment in the aspect that the constructor ∀R.C (a [π]-like
constructor) is disallowed in bodies of program clauses and queries of
Horn-SHIQ, while we allow [π] in the form [π]# to appear in bodies
of program clauses and queries of the deterministic Horn fragment of
PDL(0).

L4. As mentioned earlier, we can extend the method of this work for deal-
ing with logic programming in PDL(0).

Our algorithm uses formulae with automaton-modal operators, which are
similar to formulae of automaton propositional dynamic logic (APDL) [5].
In [4], Goré and Nguyen also used such formulae for developing analytic
tableau calculi with the superformula property for regular grammar logics.
In both [4] and this work, formulae with automaton-modal operators are
used to record the potentiality inherited from predecessor worlds, which
guarantees that when a world w is created from u, the content of w can be
computed from the content of u. This technique plays an essential role in
constructing finite models.

The rest of this paper is structured as follows. In Section 2, we define
PDL(0), the deterministic Horn fragment of PDL(0), automaton-modal op-
erators, pseudo-models, and introduce an ordering of pseudo-models. In
Section 3, we present our algorithm. In Section 4, we give characterizations
of least pseudo-models of deterministic positive logic programs in PDL(0).
In Section 5, we study the lower bound of sizes of such pseudo-models.
Further work and concluding remarks are given in Section 6.

2 Preliminaries

2.1 Test-free Propositional Dynamic Logic

The language of test-free propositional dynamic logic (PDL(0)) is built from
two disjoint sets: Π0 is a countable set of atomic programs and Φ0 is a
countable set of atomic propositions. We use σ to denote an element of Π0

and p to denote an element of Φ0. Programs and formulae are recursively

2When measuring the data complexity, the TBox of the considered knowledge base is
treated as the intensional part, while the ABox is treated as the extensional part.

On the Deterministic Horn Fragment of Test-free PDL 381

defined using the BNF grammar below:

Π * π ::= σ | π ∪ π | π;π | π∗

Φ * ϕ ::= ! | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | [π]ϕ | 〈π〉ϕ

(The version PDL with test contains also the construction ϕ? as a pro-
gram.3) We use π, α, β to denote elements of Π. A word σ1 . . . σk over
alphabet Π0 will also be treated as the program σ1; . . . ;σk. An operator [π]
is called a universal modal operator, while 〈π〉 is called an existential modal
operator.

A program of PDL(0) is a regular expression over the alphabet Π0.
Such an expression π generates a regular language L(π) specified as fol-
lows: L(σ) = {σ}, L(π ∪ π′) = L(π) ∪ L(π′), L(π;π′) = L(π).L(π′), and
L(π∗) = (L(π))∗, where if L and M are sets of words then L.M = {αβ |
α ∈ L, β ∈ M} and L∗ =

⋃
n≥0 Ln with L0 = {ε} and Ln+1 = L.Ln, where

ε denotes the empty word.
The semantics of PDL(0) comes from the semantics of modal logic. The

structures over which programs and formulae of PDL(0) are interpreted are
called Kripke structures. A Kripke structure, also called a (Kripke) model,
is a tuple M = 〈W, τ, (Rσ)σ∈Π0 , h〉, where W is a set of states, τ ∈ W is the
current state, Rσ for σ ∈ Π0 is a binary relation on W (representing the
set of input/output pairs of states of the program σ), and h is a function
mapping states to sets of atomic propositions. For w ∈W , the set of atomic
propositions “true” at w is h(w).

Given a Kripke model M = 〈W, τ, (Rσ)σ∈Π0 , h〉, define Rπ∪π′ = Rπ∪Rπ′ ,
Rπ;π′ = Rπ◦Rπ′ , Rπ∗ = R∗

π, where R∗
π =

⋃
n≥0 Rn

π with R0
π = {(w, w) | w ∈

W} and Rn+1
π = Rπ◦Rn

π . It is easily seen that for π ∈ Π, Rπ =
⋃

α∈L(π) Rα.
Given a Kripke model M = 〈W, τ, (Rσ)σ∈Π0 , h〉, a state w ∈ W , and a

formula ϕ, the satisfaction relation M, w |= ϕ is defined as usual for the
classical connectives and that:

M, w |= p iff p ∈ h(w)

M, w |= [π]ϕ iff ∀v ∈ W.Rπ(w, v) implies M, v |= ϕ

M, w |= 〈π〉ϕ iff ∃v ∈ W.Rπ(w, v) and M, v |= ϕ

We say that M satisfies ϕ and ϕ is true in M , written M |= ϕ, if M, τ |=
ϕ. Let Γ be a formula set. We write M |= Γ to denote that M |= ϕ for
every ϕ ∈ Γ. If M |= Γ then we call M a model of Γ and say that Γ is
satisfiable. We write Γ |= ϕ to denote that every model of Γ satisfies ϕ.

2.2 The Deterministic Horn Fragment of PDL(0)

We extend the primitive language with universal modal operators [π]#,
which have the same role as the modal operator ! discussed in the In-
troduction. The semantics of [π]# is defined as follows: M, w |= [π]#ϕ

3The semantics of ϕ? w.r.t. a Kripke model M = 〈W, τ, (Rσ)σ∈Π0 , h〉 is specified by
Rϕ? = {(w, w) | M, w |= ϕ}.

382 Linh Anh Nguyen

iff M, w |= [π]ϕ and for every α, β ∈ Π∗
0, σ ∈ Π0, if ασβ ∈ L(π) then

M, w |= [α]〈σ〉!.
Note that [σ]#ϕ ≡ [σ]ϕ ∧ 〈σ〉! like the case of !, but in general we do

not have that [π]#ϕ ≡ [π]ϕ∧〈π〉!. Informally, 〈π〉! means that there exists
a run of π (with the stop property), while the additional condition of [π]#
(w.r.t. [π]) means that every partial run of π is not blocked. Also note that
formulae of the form [π]#ϕ are expressible in PDL(0).4

A positive formula is a formula (in the extended language) without the
connectives → and ¬. A serial positive formula is a positive formula which
may contain modal operators 〈π〉 and [π]# but not [π] (and [A] defined later
for a finite automaton A).

A deterministic Horn formula in PDL(0) is a formula of one of the forms:

• ! or an atomic proposition;

• ¬ϕ or ϕ → ψ, where ϕ is a serial positive formula and ψ is a deter-
ministic Horn formula;

• ϕ ∧ ψ, where ϕ and ψ are deterministic Horn formulae;

• [π]ϕ or [π]#ϕ, where ϕ is a deterministic Horn formula;

• 〈π〉ϕ, where ϕ is a deterministic Horn formula and π is a program
without ∪ and ∗.

A deterministic program clause in PDL(0) is a formula of one of the forms:

B1 ∧ . . . ∧Bn → A

[π](B1 ∧ . . . ∧Bn → A)

and a deterministic negative clause in PDL(0) is a formula of one of the
forms:

B1 ∧ . . . ∧Bn → ⊥

[π](B1 ∧ . . . ∧Bn → ⊥)

where n ≥ 0, B1, . . . , Bn are formulae of the form p, [α]#p, [α]#!, 〈α〉p,
or 〈α〉!, A is a formula of the form p, [α]p, 〈β〉p, or 〈β〉!, where β is a
program without ∪ and ∗, and ⊥ denotes ¬!.

A deterministic Horn clause in PDL(0) is either a deterministic program
clause or a deterministic negative clause. (This notion is used for Proposi-
tion 1 and Corollary 2 given below.)

A deterministic positive logic program in PDL(0) is a finite set of deter-
ministic program clauses.

4Let A = 〈Π0, Q, qI , δ, F 〉 be a deterministic finite automaton equivalent to π. Let
S ⊆ Q×Π0 be the set of pairs (q, σ) such that δ(q, σ) is productive in A. For (q, σ) ∈ S,
let πq,σ be the regular expression equivalent to the automaton 〈Π0, Q, qI , δ, {q}〉. Then
[π]$ϕ is expressible in PDL(0) as [π]ϕ ∧

V

(q,σ)∈S[πq,σ]〈σ〉*.

On the Deterministic Horn Fragment of Test-free PDL 383

PROPOSITION 1. Every set of deterministic Horn formulae can be trans-
formed into a set of deterministic Horn clauses preserving satisfiability.

Sketch of the proof Apply the technique of [7], which is based on replacing
a complex formula by a fresh atomic proposition and adding a formula
defining that atomic proposition. For example, [π]([π′]#ϕ → ψ), where
ϕ is not ! or an atomic proposition, is replaced by [π]([π′]#p → ψ) and
[π;π′](ϕ→ p), where p is a fresh atom proposition. !

COROLLARY 2. Every finite set Γ of deterministic Horn formulae can
be transformed into a deterministic positive logic program P and a serial
positive formula ϕ such that Γ is unsatisfiable iff P |= ϕ.

For the proof, just note that [π](B1 ∧ . . .∧Bn → ⊥) ≡ ¬〈π〉(B1 ∧ . . .∧Bn).

2.3 Automaton-Modal Operators

Recall that a finite automaton A is a tuple 〈Σ, Q, I, δ, F 〉, where Σ is the
alphabet, Q is a finite set of states, I ⊆ Q is the set of initial states, δ ⊆
Q×Σ×Q is the transition relation, and F ⊆ Q is the set of accepting states.
A run of A on a word σ1 . . . σk is a finite sequence of states q0, q1, . . . , qk

such that q0 ∈ I and δ(qi−1, σi, qi) holds for every 1 ≤ i ≤ k. It is an
accepting run if qk ∈ F . We say that A accepts word w if there exists an
accepting run of A on w. The set of all words accepted/recognized by A is
denoted by L(A).

If A is a finite automaton then we call [A] a (universal) automaton-modal
operator. If A is a finite automaton and ϕ is a formula in the primitive
language, i.e. ϕ ∈ Φ, then we call [A]ϕ a formula in the extended language.

The semantics of formulae with automaton-modal operators are de-
fined as follows: M, w0 |= [A]ϕ if M, wk |= ϕ for every path
w0Rσ1w1 . . . wk−1Rσk

wk with k ≥ 0 and σ1 . . . σk ∈ L(A).
It is well known that every regular expression π is equivalent to a finite

automaton A (with the same alphabet) in the sense that L(π) = L(A). It
is easy to see that if π is equivalent to A then M, w |= [π]ϕ iff M, w |= [A]ϕ.
For every regular expression π, let Aπ = 〈Π0, Qπ, Iπ, δπ, Fπ〉 be a fixed finite
automaton equivalent to π. Aπ can be constructed from π in linear time.
We assume that every state of Qπ is reachable from some state of Iπ via a
path using the transition relation δπ.

If A is a finite automaton and Q is a subset of the states of A, then
by (A, Q) we denote the finite automaton obtained from A by using Q as
the set of initial states, and we will write [A, Q] for the automaton-modal
operator [(A, Q)].

For a finite automaton A = 〈Π0, QA, IA, δA, FA〉 and α ∈ Π∗
0, define

δA(Q, σ) = {q′ | ∃q ∈ Q.(q, σ, q′) ∈ δA},

δ̃A(Q, ε) = Q,

δ̃A(Q,ασ) = δA(δ̃A(Q,α), σ).

384 Linh Anh Nguyen

We have that M, w0 |= [A, Q]ϕ iff M, wk |= ϕ for every path

w0Rσ1w1 . . . wk−1Rσk
wk with k ≥ 0 and δ̃A(Q, σ1 . . . σk) ∩ FA 5= ∅.

2.4 Pseudo-models for Dealing with Non-seriality

A pseudo-model is a tuple M = 〈W, τ, (Rσ)σ∈Π0 , (Sσ)σ∈Π0 , h〉, which is sim-
ilar to a model except that for every σ ∈ Π0, there are two accessibility
relations Rσ and Sσ. We require that Rσ ⊆ Sσ for every σ ∈ Π0. The
accessibility relations Rσ, resp. Sσ, are used to deal with existential, resp.
universal, modal operators.

Given a pseudo-model M = 〈W, τ, (Rσ)σ∈Π0 , (Sσ)σ∈Π0 , h〉, for π ∈ Π,
define Sπ analogously as for Rπ; and for w ∈W , define the relation M, w |=
ϕ in the usual way for classical connectives and:

• M, w |= 〈π〉ϕ iff there exists v ∈W such that Rπ(w, v) and M, v |= ϕ;

• M, w |= [π]ϕ iff for every v ∈ W , Sπ(w, v) implies M, v |= ϕ;

• M, w |= [π]#ϕ iff M, w |= [π]ϕ and for every α, β ∈ Π∗
0, σ ∈ Π0, if

ασβ ∈ L(π) then M, w |= [α]〈σ〉!;

• M, w |= [A]ϕ iff M, wk |= ϕ for every path w0Sσ1w1 . . . wk−1Sσk
wk

with k ≥ 0 and σ1 . . . σk ∈ L(A).

Other related definitions remain unchanged.
If M |= Γ then we say that M is a pseudo-model of Γ.
Every model is also a pseudo-model, with Sσ = Rσ for every σ ∈ Π0.

PROPOSITION 3. The problem of checking M |= ϕ for a given pseudo-
model M and a given formula ϕ is solvable in polynomial time in the sizes
of M and ϕ.

This proposition can be proved by induction on the construction of ϕ.
To deal with modal operators, we can run corresponding automata along
paths in M .

2.5 Ordering Pseudo-models

In [7] we introduced an ordering between Kripke models. In this subsection,
we provide an analogue for ordering pseudo-models. A pseudo-model M is
said to be less than or equal to a pseudo-model M ′, write M ≤ M ′, if for
every positive formula ϕ (in the extended language with [π]# and [A]), if
M |= ϕ then M ′ |= ϕ. This relation ≤ is a pre-order.5 We write M ≡ M ′

to denote that M ≤M ′ and M ′ ≤ M .
A pseudo-model M is a least pseudo-model of a deterministic positive

logic program P if M |= P and M ≤ M ′ for every pseudo-model M ′ of P .
Let M = 〈W, τ, (Rσ)σ∈Π0 , (Sσ)σ∈Π0 , h〉 and M ′ = 〈W ′, τ ′, (R′

σ)σ∈Π0 ,
(S′

σ)σ∈Π0 , h′〉 be pseudo-models. We say that M is less than or equal to M ′

w.r.t. a binary relation r ⊆ W ×W ′, and write M ≤r M ′, if the following
conditions hold:

5i.e. a reflexive and transitive binary relation

On the Deterministic Horn Fragment of Test-free PDL 385

L1. r(τ, τ ′)

L2. ∀σ ∈ Π0 ∀x, x′, y Rσ(x, y) ∧ r(x, x′)→ ∃y′ R′
σ(x′, y′) ∧ r(y, y′)

L3. ∀σ ∈ Π0 ∀x, x′, y′ S′
σ(x′, y′) ∧ r(x, x′) → ∃y Sσ(x, y) ∧ r(y, y′)

L4. ∀x, x′ r(x, x′)→ h(x) ⊆ h(x′)

In the above definition, the first three conditions state that r is a forward-
backward bisimulation of the frames of M and M ′.6 Intuitively, r(x, x′)
states that the state x is less than or equal to x′.

LEMMA 4. If M ≤r M ′ then M ≤ M ′.

Proof. Let M = 〈W, τ, (Rσ)σ∈Π0 , (Sσ)σ∈Π0 , h〉 and M ′ = 〈W ′, τ ′,
(R′

σ)σ∈Π0 , (S′
σ)σ∈Π0 , h′〉 be pseudo-models and suppose that M ≤r M ′. We

prove that for every positive formula ϕ and every u, u′ such that r(u, u′), if
M, u |= ϕ then M ′, u′ |= ϕ. We do this by induction on the construction of
ϕ. Suppose that r(u, u′) holds and M, u |= ϕ.

The cases when ϕ = p or ϕ = ψ ∧ ζ or ϕ = ψ ∨ ζ are trivial.
Case ϕ = 〈π〉ψ: Since M, u |= 〈π〉ψ, there exists v ∈W such that Rπ(u, v)

holds and M, v |= ψ. There exist σ1, . . . , σk ∈ Π0 such that σ1 . . . σk ∈ L(π)
and Rσ1;...;σk

(u, v) holds. Let u0 = u, u1, . . . , uk−1, uk = v be states such
that Rσi(ui−1, ui) holds for 1 ≤ i ≤ k. Let u′

0 = u′. For every 1 ≤ i ≤ k, by
the condition L2, there exists a state u′

i ∈ W ′ such that R′
σi

(u′
i−1, u

′
i) and

r(ui, u′
i) hold. Hence, R′

π(u′, v′) and r(v, v′) hold for v = u′
k. Since r(v, v′)

holds and M, v |= ψ, by the inductive assumption, M ′, v′ |= ψ. Hence
M ′, u′ |= 〈π〉ψ.

Case ϕ = [π]ψ: Let v′ be an arbitrary state of W ′ such that S′
π(u′, v′)

holds. There exist σ1, . . . , σk ∈ Π0 such that σ1 . . . σk ∈ L(π) and
S′

σ1;...;σk
(u′, v′) holds. Let u′

0 = u′, u′
1, . . . , u′

k−1, u′
k = v′ be states such

that S′
σi

(u′
i−1, u

′
i) holds for 1 ≤ i ≤ k. Let u0 = u. For every 1 ≤ i ≤ k, by

the condition L3, there exists a state ui ∈ W such that Sσi(ui−1, ui) and
r(ui, u′

i) hold. Hence, Sπ(u, v) and r(v, v′) hold for v = uk. Since Sπ(u, v)
holds and M, u |= [π]ψ, we have that M, v |= ψ. Since r(v, v′) holds and
M, v |= ψ, by the inductive assumption, M ′, v′ |= ψ. Hence M ′, u′ |= [π]ψ.

The case ϕ = [A]ψ is similar to the case ϕ = [π]ψ.
The proof for the case ϕ = [π]#ψ is a combination of the proofs of the

case ϕ = [π]ψ and the case ϕ = 〈π〉ψ. !

3 Constructing Finite Least Pseudo-models

In this section, we present an algorithm that, given a deterministic positive
logic program P in PDL(0), constructs a finite least pseudo-model of P .

Let X be a set of formulae, which may contain modal operators of the
form [π]# or [A, Q]. The saturation of X , denoted by Sat(X), is defined to
be the least extension of X such that:

6The condition L2 corresponds to the forward direction, while the condition L3 cor-
responds to the backward direction.

386 Linh Anh Nguyen

• ! ∈ Sat(X),

• if 〈π;π′〉ϕ ∈ Sat(X) then 〈π〉〈π′〉ϕ ∈ Sat(X),

• if [π]ϕ ∈ Sat(X) then [Aπ, Iπ]ϕ ∈ Sat(X),

• if [Aπ, Q]ϕ ∈ Sat(X) and Q ∩ Fπ 5= ∅ then ϕ ∈ Sat(X).

The transfer of X through 〈σ〉, where σ ∈ Π0, is defined as follows:

Trans(X,σ) = Sat({[Aπ, δπ(Q, σ)]ϕ | [Aπ, Q]ϕ ∈ X}).

The compact form CF(X) of X is the least set of formulae obtained as
follows:

• if ϕ ∈ X and ϕ is not of the form [Aπ, Q]ϕ then ϕ ∈ CF(X),

• if [Aπ, Q]ϕ ∈ X and Q1, . . . , Qk are all the sets such that [Aπ , Qi]ϕ ∈
X for 1 ≤ i ≤ k, then [Aπ, Q1 ∪ . . . ∪Qk]ϕ ∈ CF(X).

We use the following data structures:

• W : a set of states, where τ ∈W is the current state.

• H : for every w ∈ W , H(w) is a set of formulae called the content
of w.

• Next : W × {〈σ〉ϕ | σ ∈ Π0, ϕ ∈ Φ} → W , a partial function inter-
preted as follows: Next(u, 〈σ〉ϕ) = v means 〈σ〉ϕ ∈ H(u), ϕ ∈ H(v),
and 〈σ〉ϕ is “realized” at u by going to v via Rσ.

• NextS : W ×Π0 →W , where NextS(u, σ) = v implies Sσ(u, v).

Using the above data structures, we define:

• h to be the restriction of H such that h(u) = H(u) ∩ Φ0 for u ∈W ;

• Rσ, for σ ∈ Π0, to be {(u, v) | Next(u, 〈σ〉ϕ) = v for some ϕ};

• Sσ, for σ ∈ Π0, to be Rσ ∪ {(u, v) | NextS(u, σ) = v};

• M = 〈W, τ, (Rσ)σ∈Π0 , (Sσ)σ∈Π0 , h〉.

In the algorithm given below, we use the function Find(X) defined as
follows: if there exists a state u ∈ W with H(u) = X then return u, else
add a new state u to W with H(u) = X and return u.

A pseudo-model of P is constructed by building a “pseudo-model graph”
for P . At the beginning the pseudo-model graph contains only one state
with content P . Then for every state u and every formula ϕ belonging to
the content of u, if ϕ is not true at u then the algorithm makes a change to
satisfy it. There are three main forms for ϕ: [Aπ, Q]ψ, (B1∧ . . .∧Bk → A),
and 〈σ〉ψ (the form [π]ψ is reduced to [Aπ , Iπ]ψ, and the form 〈π〉ψ is
reduced to 〈σ〉ψ′). For the case when ϕ is of the form [Aπ, Q]ψ, for every

On the Deterministic Horn Fragment of Test-free PDL 387

σ ∈ Π0, we would like to add [Aπ, δπ(Q, σ)]ψ to the content of every state
w accessible from u via Sσ. But such an action may affect other states
involved with w. So, instead of adding the formula to the content of w, we
discard the connection Sσ(u, w) and connect u via Sσ (in an appropriate
way using Next or NextS) to a state w∗ with an appropriate content, which
is created if necessary. That is we use w∗ to replace the role of w. For the
case of (B1 ∧ . . .∧Bk → A), if all B1, . . . , Bk are “certainly” true at u (the
truth of [π]#p at u is checked in a special way) then we would like to add
A to the content of u. But analogously as for the previous case, instead
of modifying the content of u, we just redirect connections appropriately.
States are cached and never deleted. For the case when ϕ is of the form
〈σ〉ψ, to satisfy ϕ at u, we connect u via Rσ to the state with content
consisting of ψ and the formulae “inherited” from u via Rσ. To guarantee
the constructed pseudo-model to be smallest, for every u ∈W and σ ∈ Π0,
we connect u via Sσ using NextS to the state with content inherited from u
via Sσ. Such connections are also useful for checking the truth of formulae
of the form [π]#p in a state.

ALGORITHM 5.
Input: A deterministic positive logic program P in PDL(0).
Output: M = 〈W, τ, (Rσ)σ∈Π0 , (Sσ)σ∈Π0 , h〉 :

a finite least pseudo-model of P .

L1. W := {τ}; H(τ) := CF(Sat(P));

L2. for every u ∈W and every ϕ ∈ H(u)

(a) case ϕ = [Aπ, Q]ψ :
for every w ∈ W and σ ∈ Π0 such that Sσ(u, w) holds:

i. w∗ := Find(CF(H(w) ∪ Trans({ϕ}, σ)));

ii. for every ξ ∈ Φ,
if Next(u, 〈σ〉ξ) = w then Next(u, 〈σ〉ξ) := w∗;

iii. if NextS(u, σ) = w then NextS(u, σ) := w∗;

(b) case ϕ = (B1 ∧ . . . ∧Bk → A) :
if

for every 1 ≤ i ≤ k, M, u |= Bi and if Bi = [π]#p then for
every w ∈ W and σ ∈ Π0, if Sα(u, w) holds and ασβ ∈ L(π)
for some α, β ∈ Π∗

0, then NextS(w, σ) is defined,

then

i. u∗ := Find(CF(H(u) ∪ Sat({A})));

ii. for every v ∈ W , σ ∈ Π0, and ψ ∈ Φ,
if Next(v, 〈σ〉ψ) = u then Next(v, 〈σ〉ψ) := u∗;

iii. for every v ∈ W and σ ∈ Π0,
if NextS(v, σ) = u then NextS(v, σ) := u∗;

iv. if τ = u then τ := u∗;

388 Linh Anh Nguyen

(c) case ϕ = 〈σ〉ψ :
if Next(u, 〈σ〉ψ) is not defined then

Next(u, 〈σ〉ψ) := Find(CF(Trans(H(u), σ) ∪ Sat({ψ})));

L3. for every u ∈W and every σ ∈ Π0,
if NextS(u, σ) is not defined then

NextS(u, σ) := Find(CF(Trans(H(u), σ)));

L4. while some change occurred, go to step L2.

PROPOSITION 6. Algorithm 5 terminates in 2O(n2) steps and returns a
pseudo-model with 2O(n2) states, where n is the size of P (i.e. the sum of
the lengths of the clauses of P).

Proof. For each u ∈ W and ϕ ∈ H(u), there are three cases: i) ϕ is a
subformula of a clause of P , ii) ϕ is a formula of the form [Aπ, Q]ψ with
[π]ψ being a subformula of a clause of P , iii) ϕ is a formula of the form 〈π〉ψ,
where ψ is a subformula of a clause of P and π is a subprogram occurring
in P . There are less than n possible values for ψ and π, and less than 2n

possible values for Q. Hence, due to the compact form, there are no more
than 2O(n2) possible values for H(u). Since the states of W have different

contents, the size of W is 2O(n2).
The if condition of the step L2b can be checked in 2O(n2) steps.
The steps L2c and L3 make a change no more than 2O(n2).n.n = 2O(n2)

times. For the steps L2a and L2b, note that the content of u∗ (resp. w∗)
is “bigger” than the content of u (resp. w). Hence Next and NextS are

modified by the steps L2a or L2b no more than 2O(n2).n.n.2O(n2) = 2O(n2)

times, and τ is modified no more than 2O(n2) times.
Therefore, Algorithm 5 terminates in 2O(n2) steps and returns a pseudo-

model with 2O(n2) states, where each state is of size O(n). !

LEMMA 7. Let P be a deterministic positive logic program in PDL(0) and
M the pseudo-model constructed by Algorithm 5 for P . Then M |= P .

Proof. We will refer to the data structures used in Algorithm 5.
For u, u′ ∈ W , we write H(u) ≤ H(u′) to denote that, for every ϕ ∈ H(u),

either ϕ ∈ H(u′) or ϕ = [Aπ , Q]ψ and there exists [Aπ , Q′]ψ ∈ H(u′) with
Q′ ⊇ Q. Observe that, for every v, σ, ψ, if Next(v, 〈σ〉ψ) or NextS(v, σ)
changes its current value from u to u′ then H(u) ≤ H(u′).

To prove that M |= P , we show that for every u ∈ W reachable from τ
via a path using the accessibility relations (Sσ)σ∈Π0 and for every formula
ϕ ∈ H(u) without automaton-modal operators, M, u |= ϕ. We prove this
by induction on the structure of ϕ.

Consider the case when ϕ = [π]ψ. Suppose that Sπ(u, w) holds. By the
inductive assumption, it is sufficient to show that ψ ∈ H(w). There exist
w0, . . . , wk in W with w0 = u, wk = w, and σ1, . . . , σk ∈ Π0 such that
σ1 . . . σk ∈ L(π) and Sσi(wi−1, wi) holds for 1 ≤ i ≤ k. Since [π]ψ ∈ H(w0),

On the Deterministic Horn Fragment of Test-free PDL 389

we have [Aπ , Q]ψ ∈ H(w0) for some Q ⊇ Iπ . Hence, for every 1 ≤ i ≤ k,

there exists [Aπ , Qi]ψ ∈ H(wi) with Qi ⊇ δ̃π(Iπ , σ1 . . . σi). Since σ1 . . . σk ∈
L(π), δ̃π(Iπ , σ1 . . . σk) ∩ Fπ 5= ∅, and hence Qk ∩ Fπ 5= ∅ and ψ ∈ H(w).

Consider the case when ϕ = (B1 ∧ . . . ∧ Bk → A) and the steps L2(b)ii,
L2(b)iii, L2(b)iv are executed. As no changes occur (at the end) and u is
reachable from τ via a path using the accessibility relations (Sσ)σ∈Π0 , we
have that u∗ = u. Thus, by the inductive assumption, M, u |= A, and hence
M, u |= ϕ.

The case ϕ = 〈π〉ψ is reduced to the case ϕ = 〈σ〉ψ′, which is trivial. !

LEMMA 8. Let P be a deterministic positive logic program in PDL(0) and
M ′ = 〈W ′, τ ′, (R′

σ)σ∈Π0 , (S
′
σ)σ∈Π0 , h

′〉 be an arbitrary pseudo-model of P .
Consider a moment after executing a numerated step in an execution of
Algorithm 5 for P . Let r = {(x, x′) ∈ W ×W ′ | M ′, x′ |= H(x)}. Then the
following conditions hold:

• r(τ, τ ′)

• ∀x, y, x′, y′, σ, ψ
r(x, x′)∧(Next(x, 〈σ〉ψ) = y)∧R′

σ(x′, y′)∧(M ′, y′ |= ψ) → r(y, y′)

• ∀x, y, x′, y′, σ r(x, x′) ∧ (NextS(x, σ) = y) ∧ S′
σ(x′, y′) → r(y, y′)

Proof. By induction on the number of executed steps.
The base case occurs after executing step L1 and the assertions clearly

hold. Consider some latter step of the algorithm. As induction hypothesis,
assume that the assertions hold before executing that step. Suppose that
after executing the step we have r2, W2, H2, Next2, NextS2, R2,σ, S2,σ (for
σ ∈ Π0), and M2 in the places of r, W , H , Next, NextS , Rσ, Sσ, and M .
We prove that:

• r2(τ, τ ′)

• ∀x, y, x′, y′, σ, ψ
r2(x, x′) ∧ (Next2(x, 〈σ〉ψ) = y) ∧R′

σ(x′, y′) ∧ (M ′, y′ |= ψ)→
r2(y, y′)

• ∀x, y, x′, y′, σ r2(x, x′) ∧ (NextS2(x, σ) = y) ∧ S′
σ(x′, y′) → r2(y, y′)

It suffices to consider steps L2(a)ii, L2(a)iii, L2(b)ii-L2(b)iv, L2c, and L3.
Consider the step L2(a)ii. It suffices to show that if r(u, u′) ∧

(Next(u, 〈σ〉ψ) = w) ∧ R′
σ(u′, w′) ∧ (M ′, w′ |= ψ) then M ′, w′ |= H(w∗).

Suppose that the premise holds. By the inductive assumption, r(w, w′)
holds and M ′, w′ |= H(w). Since r(u, u′) holds and [Aπ, Q]ψ ∈ H(u),
we have that M ′, u′ |= [Aπ , Q]ψ. Hence M ′, w′ |= [Aπ , δπ(Q, σ)]ψ (since
R′

σ(u′, w′) holds). Hence M ′, w′ |= H(w∗).
Consider the step L2(a)iii. It suffices to show that if r(u, u′) ∧

(NextS(u, σ) = w) ∧ S′
σ(u′, w′) holds then M ′, w′ |= H(w∗). This can

be proved analogously as for the step L2(a)ii.

390 Linh Anh Nguyen

Consider the steps L2(b)ii-L2(b)iv. Let u′ be a state of W ′ such that
r(u, u′) holds. It is sufficient to show that r2(u∗, u′) holds. We need only to
show that M ′, u′ |= A. Since r(u, u′) holds, M ′, u′ |= (B1 ∧ . . . ∧Bk → A).
Hence, it is sufficient to show that M ′, u′ |= Bi for every 1 ≤ i ≤ k. Fix
such an index i. There are three cases to consider:

• Case Bi = p : Since M, u |= Bi, we have that p ∈ H(u). Since r(u, u′)
holds, it follows that M ′, u′ |= Bi.

• Case Bi = 〈π〉p : There exists w ∈ W such that Rπ(u, w) holds and
p ∈ H(w). Thus, there exist w0, . . . , wk in W with w0 = u, wk = w,
and σ1, . . . , σk ∈ Π0 such that σ1 . . . σk ∈ L(π) and Rσi(wi−1, wi)
holds for 1 ≤ i ≤ k. Let ψ1, . . . , ψk be formulae such that
Next(wi−1, 〈σi〉ψi) = wi for 1 ≤ i ≤ k. Let w′

0 = u. Since r(w0, w′
0)

holds and 〈σ1〉ψ1 ∈ H(w0), we have that M ′, w′
0 |= 〈σ1〉ψ1. Hence,

there exists w′
1 ∈ W ′ such that R′

σ1
(w′

0, w
′
1) holds and M ′, w′

1 |= ψ1.
By the inductive assumption, r(w1, w′

1) holds. Analogously, there ex-
ist w′

2, . . . , w
′
k ∈ W ′ such that R′

σi
(w′

i−1, w
′
i) and r(wi, w′

i) hold for ev-
ery 1 ≤ i ≤ k. Thus R′

π(w′
0, w

′
k) holds. Since p ∈ H(w), w = wk, and

r(wk, w′
k) holds, we have M ′, w′

k |= p. It follows that M ′, w′
0 |= 〈π〉p,

which means M ′, u′ |= Bi.

• Case Bi = [π]#p :

– We first show that M ′, u′ |= [π]p. Suppose that S′
π(u′, w′) holds.

There exist σ1, . . . , σk ∈ Π0 and w′
0 = u′, w′

1, . . . , w
′
k ∈ W ′ such

that σ1 . . . σk ∈ L(π) and S′
σi

(w′
i−1, w

′
i) holds for every 1 ≤ i ≤ k.

Let w0 = u and wi = NextS(wi−1, σi) for 1 ≤ i ≤ k. The “if”
condition of step L2b guarantees the existence of the states wi.
By the inductive assumption, r(wi, w′

i) holds for 1 ≤ i ≤ k. Since
M, u |= [π]#p, we have that p ∈ H(wk). Since r(wk, w′

k) holds, it
follows that M ′, w′

k |= p, which means M ′, w′ |= p. This implies
that M ′, u′ |= [π]p.

– Suppose that ασβ ∈ L(π) and S′
α(u′, w′) holds, where α, β ∈ Π∗

0

and σ ∈ Π0. We show that M ′, w′ |= 〈σ〉!. Let α = σ1 . . . σk.
There exist w′

0, . . . , w
′
k such that w′

0 = u′, w′
k = w′, S′

σi
(w′

i−1, w
′
i)

holds for every 1 ≤ i ≤ k. Let w0 = u and wi = NextS(wi−1, σi)
for 1 ≤ i ≤ k. The “if” condition of step L2b guarantees the
existence of the states wi. By the inductive assumption, r(wi, w′

i)
holds for 1 ≤ i ≤ k. Since M, u |= [π]#p, we have that M, wk |=
〈σ〉!. Hence there exists v ∈ W such that Rσ(wk, v) holds.
Thus v = Next(wk, 〈σ〉ζ) for some ζ, and 〈σ〉ζ ∈ H(wk). Since
r(wk , w′

k) holds, by the definition of r, M ′, w′
k |= 〈σ〉ζ. Hence

M ′, w′ |= 〈σ〉!.

Consider the step L2c. Let w denote the state Find(CF(Trans(H(u), σ) ∪
Sat({ψ}))). Suppose that r(u, u′) and R′

σ(u′, w′) hold and M ′, w′ |= ψ. It
suffices to show that M ′, w′ |= H2(w). Since r(u, u′) holds, M ′, u′ |= H(u).

On the Deterministic Horn Fragment of Test-free PDL 391

It follows that M ′, w′ |= Trans(H(u), σ) (since R′
σ(u′, w′) holds). Hence

M ′, w′ |= H2(w).
Consider the step L3. Let w denote the state Find(CF(Trans(H(u), σ))).

Suppose that r(u, u′) and S′
σ(u′, w′) hold. It suffices to show that M ′, w′ |=

H2(w). Since r(u, u′) holds, M ′, u′ |= H(u). It follows that M ′, w′ |=
Trans(H(u), σ) (since S′

σ(u′, w′) holds). Hence M ′, w′ |= H2(w). !

LEMMA 9. Let P be a deterministic positive logic program in PDL(0), M
be the pseudo-model constructed by Algorithm 5 for P , and M ′ = 〈W ′, τ ′,
(R′

σ)σ∈Π0 , (S′
σ)σ∈Π0 , h′〉 be an arbitrary pseudo-model of P . Then M ≤M ′.

In particular, if r is the relation defined as in Lemma 8, then M ≤r M ′.

Proof. We will refer to the data structures used in Algorithm 5. Let r be
the relation specified in Lemma 8 for the end of an execution of Algorithm 5
for P . By definition, ∀x, x′ r(x, x′) → h(x) ⊆ h(x′) is true. By Lemma 8,
r(τ, τ ′) holds.

We prove that ∀σ, x, x′, y Rσ(x, y) ∧ r(x, x′) → ∃y′ R′
σ(x′, y′) ∧ r(y, y′).

Suppose that Rσ(x, y) and r(x, x′) hold. There exists ζ such that y =
Next(x, 〈σ〉ζ). We have that 〈σ〉ζ ∈ H(x). Since r(x, x′) holds, M ′, x′ |=
〈σ〉ζ. There thus exists y′ ∈ W ′ such that R′

σ(x′, y′) holds and M ′, y′ |= ζ.
By Lemma 8, r(y, y′) holds.

We now prove that ∀σ, x, x′, y′ S′
σ(x′, y′)∧r(x, x′)→ ∃y Sσ(x, y)∧r(y, y′).

Suppose that S′
σ(x′, y′) and r(x, x′) hold. Let y = NextS(x, σ). By

Lemma 8, r(y, y′) holds.
We have prove that M ≤r M ′. Therefore M ≤M ′. !

THEOREM 10. Let P be a deterministic positive logic program in PDL(0).
The pseudo-model M constructed by Algorithm 5 for P is a least pseudo-
model of P .

This theorem follows from Lemmas 7 and 9.

4 Characterizations of Least Pseudo-models

In classical propositional logic, if M is the least model of a positive logic
program P then for every positive formula ϕ, P |= ϕ iff M |= ϕ. Similarly,
in a basic serial monomodal logic L, if M is a least L-model of a positive
modal logic program P then for every positive (modal) formula ϕ, P |=L ϕ
iff M |= ϕ (see [7]). In this section, we extend such an assertion for the
deterministic Horn fragment of PDL(0). The main result says that if P is a
deterministic positive logic program in PDL(0), M is a least pseudo-model
of P , and ϕ is a serial positive formula, then P |= ϕ iff M |= ϕ.

Given a pseudo-model M = 〈W, τ, (Rσ)σ∈Π0 , (Sσ)σ∈Π0 , h〉, let M ′ = 〈W ,
τ , (R′

σ)σ∈Π0 , (S′
σ)σ∈Π0 , h〉 be the pseudo-model specified as follows:

R′
σ = Rσ ∪ {(u, w) | Sσ(u, w) and Rσ(u, w′) hold for some w′},

S′
σ = Sσ \ {(u, w) | w ∈W and Rσ(u, w′) does not hold for any w′}.

392 Linh Anh Nguyen

Thus, R′
σ = S′

σ for every σ ∈ Π0, and M ′ can be treated as a Kripke model.
We call M ′ the model corresponding to M .

LEMMA 11. Let P be a deterministic positive logic program in PDL(0), M
the pseudo-model constructed by Algorithm 5 for P , M ′ the model corre-
sponding to M , and ϕ a serial positive formula. If M ′ |= ϕ then M |= ϕ.

Proof. We will refer to the data structures used by Algorithm 5 for P and
M . Let r = {(x, x′) ∈ W ×W | M, x′ |= H(x)}. By Lemma 8, we have
that:

(i) r(τ, τ)

(ii) ∀x, y, x′, y′, σ, ψ
r(x, x′)∧(Next(x, 〈σ〉ψ) = y)∧Rσ(x′, y′)∧(M, y′ |= ψ) → r(y, y′)

(iii) ∀x, y, x′, y′, σ r(x, x′) ∧ (NextS(x, σ) = y) ∧ Sσ(x′, y′) → r(y, y′)

and by Lemma 9, M ≤r M .
Let M ′ = 〈W , τ , (R′

σ)σ∈Π0 , (S′
σ)σ∈Π0 , h〉. It suffices to prove by induc-

tion on the construction of ϕ that, for every x, x′ ∈W , if r(x, x′) holds and
M ′, x |= ϕ then M, x′ |= ϕ. Suppose that r(x, x′) holds and M ′, x |= ϕ.

• Case ϕ = p : Since M ′, x |= ϕ, we have that p ∈ h(x). Since M ≤r M
and r(x, x′) holds, we derive that p ∈ h(x′). Hence M, x′ |= p.

• Case ϕ = ψ ∨ ζ or ϕ = ψ ∧ ζ is trivial.

• Case ϕ = [π]#ψ : Since M ′, x |= [π]#ψ, for every α, β ∈ Π∗
0, σ ∈ Π0, if

ασβ ∈ L(π) and S′
α(x, y) holds, then R′

σ(y, z′) holds for some z′, and
hence Rσ(y, z) holds for some z. It follows that, for every α, β ∈ Π∗

0

and σ ∈ Π0, if ασβ ∈ L(π) and Sα(x, y) holds, then Rσ(y, z) holds
for some z and {z | S′

σ(y, z)} = {z | Sσ(y, z)}. This together with
M ′, x |= [π]#ψ implies that M, x |= [π]#ψ. Since M ≤r M and r(x, x′)
holds, it follows that M, x′ |= [π]#ψ.

• Case ϕ = 〈π〉ψ : There exist σ1, . . . , σk ∈ Π0 and x0 = x, x1, . . . , xk ∈
W such that σ1 . . . σk ∈ L(π), R′

σi
(xi−1, xi) holds for 1 ≤ i ≤ k, and

M ′, xk |= ψ. Let x′
0 = x′. For 1 ≤ i ≤ k, choose x′

i as follows:

– Case Rσi(xi−1, xi) holds and xi = Next(xi−1, 〈σi〉ζi) : We have
that 〈σi〉ζi ∈ H(xi−1). By the proof of Lemma 7, M, xi−1 |=
〈σi〉ζi. Since M ≤r M and r(xi−1, x′

i−1) holds, it follows that
M, x′

i−1 |= 〈σi〉ζi. Let x′
i be a state such that Rσi(x

′
i−1, x

′
i) holds

and M, x′
i |= ζi. Thus, by (ii), r(xi, x′

i) holds.

– Case Rσi(xi−1, xi) does not hold and xi = NextS(xi−1, σi)
: There must exist ζi such that Next(xi−1, 〈σi〉ζi) is defined.
Choose x′

i as in the above subcase. Thus Rσi(x
′
i−1, x

′
i) holds. By

(iii), it follows that r(xi, x′
i) holds.

On the Deterministic Horn Fragment of Test-free PDL 393

Since r(xk, x′
k) holds and M ′, xk |= ψ, by the inductive assumption,

M, x′
k |= ψ. Since Rσi(x

′
i−1, x

′
i) holds for every 1 ≤ i ≤ k, it follows

that M, x′
0 |= 〈π〉ψ, which means M, x′ |= ϕ.

!

THEOREM 12. Let P be a deterministic positive logic program in PDL(0),
M a least pseudo-model of P , and ϕ a serial positive formula. Then P |= ϕ
iff M |= ϕ.

Proof. Consider the “if” direction. Suppose that M |= ϕ. Let M ′ be an
arbitrary Kripke model of P . As M ′ is also a pseudo-model, we have that
M ≤M ′. Hence M ′ |= ϕ. Therefore P |= ϕ.

Now consider the “only if” direction. Suppose that P |= ϕ.
We can assume that M = 〈W, τ, (Rσ)σ∈Π0 , (Sσ)σ∈Π0 , h〉 is the

pseudo-model constructed by Algorithm 5 for P . Let M ′ =
〈W, τ, (R′

σ)σ∈Π0 , (S
′
σ)σ∈Π0 , h〉 be the model corresponding to M . It is suf-

ficient to show that M ′ |= P , because this implies that M ′ |= ϕ, and by
Lemma 11, M |= ϕ.

Let H be the data structure of Algorithm 5 which specifies the contents
of states of M . To show that M ′ |= P , we prove by induction on the
construction of ϕ that if ϕ ∈ H(u) then M ′, u |= ϕ. Suppose that ϕ ∈ H(u).
By the proof of Lemma 7, M, u |= ϕ. Using this, the only non-trivial case is
when ϕ is of the form B1∧. . .∧Bk → A. Suppose that M ′, u |= B1∧. . .∧Bk.
By Lemma 11, M, u |= B1 ∧ . . . ∧ Bk. Since M, u |= ϕ, it follows that
M, u |= A. This implies that M ′, u |= A (because Rσ ⊆ R′

σ and S′
σ ⊆ Sσ

for every σ ∈ Π0). Therefore M ′, u |= ϕ. This completes the proof. !

COROLLARY 13. Let P be a deterministic positive logic program in
PDL(0), M ′ the model corresponding to the pseudo-model constructed by Al-
gorithm 5 for P , and ϕ a serial positive formula. Then P |= ϕ iff M ′ |= ϕ.

Proof. By the proof of the above theorem, M ′ |= P . Hence, P |= ϕ implies
M ′ |= ϕ. For the conversion, suppose that M ′ |= ϕ. Let M be the pseudo-
model constructed by Algorithm 5 for P . By Lemma 11, M |= ϕ. Let M ′′

be an arbitrary model of P . Since M is a least pseudo-model of P , we have
that M ≤M ′′, which implies M ′′ |= ϕ. Hence P |= ϕ. !

5 Lower Bound

Proposition 6 states that, given a deterministic positive logic program P in
PDL(0), a finite least pseudo-model of P can be constructed in exponential
time and it has an exponential size (in the worst case). In this section, we
give an example showing that, in general, this estimation is tight.

Let M and M ′ be pseudo-models. Define that M ≤# M ′ if for every
serial positive formula ϕ, M |= ϕ implies M ′ |= ϕ. Define that M ≡# M ′ if
M ≤# M ′ and M ′ ≤# M .

394 Linh Anh Nguyen

LEMMA 14. Let M = 〈W, τ, (Rσ)σ∈Π0 , (Sσ)σ∈Π0 , h〉 be a finite pseudo-
model such that, for every σ ∈ Π0, Rσ is a function, i.e. ∀x∃!yRσ(x, y).
Let M ′ = 〈W ′, τ ′, (R′

σ)σ∈Π0 , (S
′
σ)σ∈Π0 , h

′〉 be a finite pseudo-model such
that M ′ ≡# M . Then for every w ∈ W reachable from τ via a path using
(Rσ)σ∈Π0 there exists w′ ∈ W ′ such that (M, w) ≡# (M ′, w′).

Proof. We first show that, for every σ ∈ Π0,

∀x, x′, y Rσ(x, y) ∧ ((M, x) ≤# (M ′, x′))→

∃y′ R′
σ(x′, y′) ∧ ((M, y) ≤# (M ′, y′))

Suppose that Rσ(x, y) and (M, x) ≤# (M ′, x′). We show that there exists
y′ ∈ W ′ such that R′

σ(x′, y′) and (M, y) ≤# (M ′, y′). Suppose oppositely
that for every y′ ∈ W ′ such that R′

σ(x′, y′), (M, y) ≤# (M ′, y′) does not
hold, i.e. there exists a serial positive formula ϕy′ such that M, y |= ϕy′

but M ′, y′ ! ϕy′ . Let ϕ be the conjunction of all such ϕy′ . We have
M, x |= 〈σ〉ϕ, while M ′, x′ ! 〈σ〉ϕ, which contradicts the assumption that
(M, x) ≤# (M ′, x′).

Similarly, we also have that, for every σ ∈ Π0,

∀x′, y′, x R′
σ(x′, y′) ∧ ((M ′, x′) ≤# (M, x)) →

∃y Rσ(x, y) ∧ ((M ′, y′) ≤# (M, y))

We now prove the claim of the lemma. It suffices to prove by induc-
tion on k that if Rσ1...σk

(τ, wk) holds then there exists w′
k ∈ W ′ such that

(M, wk) ≡# (M ′, w′
k). The base case k = 0 holds for w′

0 = τ ′. For the in-
duction step, suppose that the hypothesis holds for k, and Rσk+1(wk, wk+1)
holds for some σk+1 ∈ Π0. We show that there exists w′

k+1 ∈W ′ such that
(M, wk+1) ≡# (M ′, w′

k+1). Since (M, wk) ≤# (M ′, w′
k) and Rσk+1(wk, wk+1)

holds, by (i), there exists w′
k+1 ∈ W ′ such that R′

σk+1
(w′

k, w′
k+1) holds and

(M, wk+1) ≤# (M ′, w′
k+1). On the other hand, since (M ′, w′

k) ≤# (M, wk)
and R′

σk+1
(w′

k, w′
k+1) holds, by (ii), there exists w′′

k+1 ∈ W such that
Rσk+1(wk, w′′

k+1) holds and (M ′, w′
k+1) ≤# (M, w′′

k+1). Since Rσk+1 is a
function, w′′

k+1 = wk+1, and hence (M, wk+1) ≡# (M ′, w′
k+1). !

PROPOSITION 15. Let Π0 = {a, b} and P = {[(a ∪ b)∗; a; (a ∪ b)(n−1)]p,
[(a ∪ b)∗]〈a〉!, [(a ∪ b)∗]〈b〉!}. If M ′ is a pseudo-model characterizing P
w.r.t. serial positive formulae (i.e. for every serial positive formula ϕ, P |=
ϕ iff M ′ |= ϕ), then M ′ has size 2Ω(n).

Proof. Let M = 〈W, τ, (Rσ)σ∈Π0 , (Sσ)σ∈Π0 , h〉 be the pseudo-model con-
structed by Algorithm 5 for P . It is easy to see that M satisfies the condi-
tions stated in Lemma 14.

Let π = (a ∪ b)∗; a; (a ∪ b)(n−1). For α, β ∈ Π∗
0, define that α ∼ β if

for every γ ∈ Π∗
0, αγ ∈ L(π) iff βγ ∈ L(π). The equivalence relation ∼

has exactly 2n abstract classes. Let α, β ∈ Σ∗ and α " β. There exist wα

On the Deterministic Horn Fragment of Test-free PDL 395

and wβ such that Rα(τ, wα) and Rβ(τ, wβ) hold. Since α " β, there exists
γ ∈ Π∗

0 such that exactly one of αγ and βγ belongs to L(π). Thus, [γ]#p is
true at exactly one of the worlds wα and wβ . Hence (M, wα) ≡#/ (M, wβ).
This implies that M contains at least 2n states, which are reachable from τ
(via paths using (Rσ)σ∈Π0) and not equivalent to each other. By Lemma 14,
it follows that M ′ has at least 2n states. !

6 Further Work and Conclusions

Recall that if L is one of the basic propositional serial monomodal logics
and P is a positive logic program in L then there exists a finite least L-
model of P [7]. To obtain a similar result for PDL(0), we have restricted to
the deterministic Horn fragment and used pseudo-models. The restriction
is necessary to overcome the problem of nondeterminism caused by non-
seriality, and pseudo-models are needed because that deterministic positive
logic programs in PDL(0), e.g. {[σ]p}, do not always have least Kripke mod-
els. Pseudo-models satisfy the following expectations:

• A least pseudo-model M of a deterministic positive logic program P
has the property that for every serial positive formula ϕ, P |= ϕ iff
M |= ϕ.

• Every deterministic positive logic program has a finite least pseudo-
model.

• Given a pseudo-model M and a formula ϕ, the problem of checking
M |= ϕ is solvable in polynomial time in the sizes of M and ϕ.

The model M ′ corresponding to the least pseudo-model M constructed by
Algorithm 5 for a deterministic positive logic program P also characterizes
P w.r.t. serial positive formulae. However, M is more useful then M ′ in the
aspect that, for every positive formula ϕ, M |= ϕ implies P |= ϕ (because
M is less than or equal to every (pseudo-)model of P), while M ′ does not
have such a property.

Our Algorithm 5 runs in exponential time and returns a pseudo-model
with size 2O(n2). We have given a deterministic positive logic program
such that every pseudo-model characterizing it w.r.t. serial positive formu-
lae must have an exponential size. This does not imply that the (com-
bined) complexity of checking satisfiability of deterministic Horn formulae
is EXPTIME-complete. It is an open problem.

In the PDL(0)-like description logic (PDL(0)-Desc), programs of PDL(0)

are used as role constructors. A TBox of that logic is a finite set of formulae
of PDL(0), which are treated as global assumptions for all the states (but
not as local assumptions of the current state τ). Apart from the TBox,
a knowledge base in a description logic contains also an ABox, which is a
set of facts of the form p(a) or R(a, b), where p is a “concept”, a and b
are “objects”, and R is a “role name”. In the terminology of PDL, p is
an atomic proposition, a and b are states, and R can be assumed to be

396 Linh Anh Nguyen

an atomic program. Note that objects in description logics correspond to
states in PDL (and possible worlds in modal logics). The instance checking
problem in PDL(0)-Desc is stated as follows: given a TBox T and an ABox A
of PDL(0)-Desc, a concept C, and an object a, check whether a is an instance
of C in every model of T ∪A (i.e. whether T ∪A |= C(a), where |= reflects
“global semantic consequence” in PDL(0)-Desc). The data complexity of
that problem is measured w.r.t. the size of A, while assuming that T , C,
and a are fixed. Our claim is that if T is a deterministic positive logic
program in PDL(0) then the data complexity of that problem is in PTIME.
A formal proof of this will appear in an extension of this paper. The sketch
is as follows:

• We construct a finite least pseudo-model M for the ABox A and the
global assumptions T by starting with the graph corresponding to A
and proceeding in a similar way as Algorithm 5, except that T is added
to the content of every state.

• Then T ∪A |= C(a) iff M, a |= C.

• Since T is fixed, the size of M and the complexity of constructing M
are bounded by a polynomial in the size of A.

Additionally, similarly to the extension [8] of [7], our method can be
extended to develop declarative and procedural semantics for deterministic
positive logic programs in first-order dynamic logic, which will be useful
for logic programming about actions, time, belief, and knowledge. Goals to
such programs are deterministic negative clauses. This is a line to combine
modal and temporal logic programming and remains as a future work.

Acknowledgements

I would like to thank the anonymous reviewers for useful comments.

BIBLIOGRAPHY
[1] Ph. Balbiani, L. Fariñas del Cerro, and A. Herzig. Declarative semantics for modal

logic programs. In Proceedings of the 1988 International Conference on Fifth Gener-
ation Computer Systems, pages 507–514. ICOT, 1988.

[2] M. Baldoni, L. Giordano, and A. Martelli. A framework for a modal logic program-
ming. In Joint International Conference and Symposium on Logic Programming,
pages 52–66. MIT Press, 1996.

[3] F. Debart, P. Enjalbert, and M. Lescot. Multimodal logic programming using equa-
tional and order-sorted logic. Theoretical Comp. Science, 105:141–166, 1992.

[4] R. Goré and L.A. Nguyen. A tableau system with automaton-labelled formulae for
regular grammar logics. In B. Beckert, editor, Proceedings of TABLEAUX 2005,
LNAI 3702, pages 138–152. Springer-Verlag, 2005.

[5] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
[6] U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in very expressive

description logics. In L.P. Kaelbling and A. Saffiotti, editors, IJCAI, pages 466–471.
Professional Book Center, 2005.

[7] L.A. Nguyen. Constructing the least models for positive modal logic programs. Fun-
damenta Informaticae, 42(1):29–60, 2000.

On the Deterministic Horn Fragment of Test-free PDL 397

[8] L.A. Nguyen. A fixpoint semantics and an SLD-resolution calculus for modal logic
programs. Fundamenta Informaticae, 55(1):63–100, 2003.

[9] L.A. Nguyen. Multimodal logic programming. To appear in TCS, 2006.
[10] A. Nonnengart. How to use modalities and sorts in Prolog. In C. MacNish, D. Pearce,

and L.M. Pereira, editors, Proceedings of JELIA’94, LNCS 838, pages 365–378.
Springer, 1994.

Linh Anh Nguyen

Institute of Informatics, University of Warsaw
ul. Banacha 2, 02-097 Warsaw, Poland

nguyen@mimuw.edu.pl

