Multimodal Logic Programming*
Linh Anh Nguyen

Institute of Informatics, University of Warsaw
ul. Banacha 2, 02-097 Warsaw, Poland
nguyen@mimuw.edu.pl

October 2003 (last revised: May 2009)

Abstract

We give a framework for developing the least model semantics, fixpoint semantics, and
SLD-resolution calculi for logic programs in multimodal logics whose frame restrictions consist
of the conditions of seriality (i.e. Vx Jy R;(x,y)) and some classical first-order Horn formulas.
Our approach is direct and no special restriction on occurrences of O; and <; is required. We
apply our framework for a large class of basic serial multimodal logics, which are parameterized
by an arbitrary combination of generalized versions of axioms 7, B, 4, 5 (in the form, e.g.,
4: 0,0 — O0,;04p) and I : O;0 — Ojp. Another part of the work is devoted to programming
in multimodal logics intended for reasoning about multi-degree belief, for use in distributed
systems of belief, or for reasoning about epistemic states of agents in multi-agent systems. For
that we also use the framework, and although these latter logics belong to the mentioned class
of basic serial multimodal logics, the special SLD-resolution calculi proposed for them are more
efficient.

Keywords: modal logic, logic programming, logics of belief, Kripke models, MProlog

1 Introduction

Classical logic programming is very useful in practice and has been thoroughly studied by many
researchers. There are three standard semantics for definite logic programs: the least model se-
mantics, the fixpoint semantics, and the SLD-resolution calculus (a procedural semantics) [26].
SLD-resolution, named by Apt and van Emden in [4], was first described by Kowalski [24] for logic
programming. It is a top-down procedure for answering queries in definite logic programs. On the
other hand, the fixpoint semantics of logic programs is a bottom-up method for answering queries
and was first introduced by van Emden and Kowalski [41] using the direct consequence operator
Tp. This operator is monotonic, continuous, and has the least fixpoint Tp Tw = U(;::o Tp Tn, which
forms the least Herbrand model of the given logic program P.

Modal and temporal logics are useful in many areas of computer science. For example, mul-
timodal logics are used in knowledge representation and multi-agent systems by interpreting O;¢
as “agent ¢ knows/believes that ¢ is true”. Many authors have proposed modal and temporal
extensions for logic programming (see [40, 20] for surveys!). There are two approaches to modal
logic programming: the direct approach [18, 6, 10, 31, 32] and the translation approach [1, 15, 38].
The first approach directly uses modalities, while the second one translates modal logic programs
to classical logic programs.

In [15], Debart et al. applied a functional translation technique for logic programs in multimodal
logics which have a finite number of modal operators O; and <; of any type among KD, KT, K D4,

*This is a revised version of “L.A. Nguyen. Multimodal Logic Programming. Theoretical Computer Science 360
(2006) 247-288.”
IThe works [38, 10, 31] on modal logic programming are not covered by the surveys.

KT4, KF and interaction axioms of the form O;¢ — O;¢. The technique is similar to the one used
in Ohlbach’s resolution calculus for modal logics [39]. Extra parameters are added to predicate
symbols to represent paths in the Kripke model, and special unification algorithms are used to deal
with them.

In [38], Nonnengart proposed a semi-functional translation (which translates existential modal
operators using functional translation and translates universal modal operators using relational
translation). His approach uses accessibility relations for translated programs, but with optimized
clauses for representing properties of the accessibility relations, and does not modify unification.
Nonnengart [38] applied the approach for modal logic programs in all of the basic serial monomodal
logics KD, T, KDB, B, KD4, S4, KD5, KD45, and S5. He also gave an example in a multimodal
logic of type KD45.

The translation approach is attractive: just translate and it is done. However, the problem is
more complicated. Modal logics add more nondeterminism to the search process, which cannot be
eliminated but must be dealt with in some way. In the functional translation [15], the modified
unification algorithm may return different mgu’s, which cause branching. In the semi-functional
translation [38], additional nondeterminism is caused by clauses representing frame restrictions of
the used modal logic. In the direct approach considered shortly, additional nondeterminism is
caused by modal rules which are used as meta clauses. In our opinion, the direct approach is worth
to study, as it is one of the main approaches to deal with modalities and may result in a deeper
analysis of the problem.

Using the direct approach for modal logic programming, Balbiani et al. [6] gave a declarative
semantics and an SLD-resolution calculus for a class of logic programs in the monomodal log-
ics KD, T, and S4. The work assumes that the modal operator O does not occur in bodies of
program clauses and goals. In [10], Baldoni et al. gave a framework for developing declarative
and operational semantics for logic programs in multimodal logics which have axioms of the form
[t1] ... [tn]e — [s1]...[sm]e, where [t;] and [s;] are universal modal operators indexed by terms
t; and s;, respectively. In that work, existential modal operators are disallowed in programs and
goals.

In [31], we developed a fixpoint semantics, the least model semantics, and an SLD-resolution
calculus in a direct way for modal logic programs in all of the mentioned basic serial monomodal
logics. We also extended the SLD-resolution calculus for the almost serial monomodal logics KB,
K5, K45, and KB5. There are two important properties of our approach in [31]: no special
restriction on occurrences of O and < is assumed (programs and goals are of a normal form but the
language is as expressive as the general modal Horn fragment) and the semantics are formulated
closely to the style of classical logic programming (as in Lloyd’s book [26]).

One of the main goals of this work is to extend the results and generalize the methods of our
mentioned work for multimodal logics. In this work, we give a framework for developing the least
model semantics, fixpoint semantics, and SLD-resolution calculi for logic programs in multimodal
logics whose frame restrictions consist of the conditions of seriality (i.e. Vz Jy R;(z,y)) and some
classical first-order Horn formulas. Our approach is direct and no special restriction on occurrences
of O; and <©; is assumed. We prove that under certain expected properties of a concrete instantiation
of the framework for a specific multimodal logic, the SLD-resolution calculus is sound and complete.

We apply our framework for a large class of basic serial multimodal logics, which are parame-
terized by an arbitrary combination of generalized versions of axioms T, B, 4, 5 (in the form, e.g.,
4:0;p — 0,;0,p) and I : O;¢0 — O;p. We prove that the instantiation for that class of logics is
correct, i.e. the fixpoint semantics coincides with the least model semantics, and the SLD-resolution
calculus is sound and complete.

Another part of this work is devoted to programming in multimodal logics intended for reasoning
about multi-degree belief, for use in distributed systems of belief, or for reasoning about epistemic
states of agents in multi-agent systems. For that we also use the framework, and although these
latter logics belong to the mentioned class of basic serial multimodal logics, the special SLD-
resolution calculi proposed for them are more efficient.

To illustrate our approach of defining semantics for multimodal logic programs, we give here an
example. Let the base logic be the simplest serial multimodal logic KD,,) and P be the following
program:

01 = O1p(a) —

@2 = O1(O2q(x) < p(z))

p3 = 01(Oar(z) < p(x), O2q(z))
pa = 0102(s(x) < q(x),r(z))
@5 = D1(t(z) — O25(2))

When building a KD(,,)-model graph M for P, to realize ¢, at the actual world 7 we connect
7 to a world w via the accessibility relation R; and add p(a) to w. The edge connecting 7 to w
is created due to <¢1p(a), so we can label it by (p(a)); (a labeled form of <1). The world w can
be identified by 7 and the edge from 7 and denoted by the sequence 7(p(a));. If we denote 7 by
the empty sequence then w = (p(a));. Apart from building M, we want to represent the model
corresponding to M by a set I of atoms. To keep the information that p(a) is true at w, we add
the atom (p(a))1p(a) to I. To realize @2 at 7, Oag(x) «— p(z) is added to w, and then Osq(a) is
also added to w. To keep the fact that Oyq(a) belongs to w, we add (p(a));02¢(a) to I. Note
that I contains both (p(a))1p(a) and (p(a))102q(a). Apply the rule 3 to I, then I should contain
also (p(a))1O2r(a), which is then replaced by (p(a))1(r(a))2r(a) due to a similar reason as for ;.
Since I contains both (p(a))102¢(a) and (p(a))1(r(a))sr(a), after applying ¢4, I should contain
also (p(a))1(r(a))as(a). Finally, applying @5 to I, we get also (p(a))1t(a). In general, instead of
building a model graph for P we can build such a set I of atoms, which is called a model generator.
The set Ixp,, p = {{p(a))1p(a), (p(a))1B2q(a), {p(a))1(r(a))2r(a), (p(a))1(r(a))2s(a), (p(a))it(a)}
is the least set of ground atoms which can be derived from P in KD(,,) in this way. This set is
obtained as the least fixpoint of a certain operator Tk Dy P and is called the least KD(m)—model
generator of P.

Given a model generator I, we can construct the standard KD(,,)-model for it by building a
model graph. During the construction, to realize a formula (F);¢ at a world w, where E is a
ground classical atom, we connect w via the accessibility relation R; to the world identified by the
sequence w(FE); and add ¢ to that world. We realize a formula O;¢ at a world w by adding ¢ to
every world reachable from w via R;. To guarantee the constructed model graph to be the smallest,
each new world is connected via each accessibility relation to an empty world at the time of its
creation. It can be shown that the standard KD,,)-model of Ixp, p is a least KD(,,)-model of P.

Now let us give an SLD-refutation of P U {G} in KD, for G = « <Oqt(z). By the content
of Ikp,, P, the computed answer should be {z/a}. The SLD-refutation should trace back the
process of deriving the atom (p(a))it(a) of Ikp,, p from P. As a KD(y)-resolvent of G' and
@5, we derive a new goal Gi = « O10gs(x). As a KD(,,)-resolvent of G and 4, we derive
the goal Go = « ©10a(g(x) A r(x)). This goal is not desired, as it contains a formula but not
atoms in its body. To overcome this problem, the (existential) modality <;<4 should be fixed first,
e.g., to become (X)1(Y)3, then the goal G can be rewritten to «— (X)1(Y)2q(z), (X)1(Y)ar(z).
The labeling should be done in two steps as follows: the goal G = « <qt(x) is first replaced by
G’ = — (X)1t(x), the next goal in the derivation is G; = « (X)1<Oqs(x), which is then replaced
by G} = — (X)1(Y)2s(z), and then Gy = «— (X)1(Y)a2q(x), (X)1(Y)ar(x) is derived from G} and
4. We can then strengthen Gy to Gz = «— (X)102¢(x), (X)1(Y)ar(z). Resolving G5 with s, we
obtain Gy = «+ (X)1p(x), (X)1(Y)ar(x). Now resolve G4 with ;. As explained in the construction
of Ixp,,,,,p, the atom <1p(a) in the head of 1 can be treated as (p(a))1p(a). Thus, resolving G4
with o1 results in G5 = « (p(a))1(Y)2r(a) and an mgu {z/a, X/p(a)}. Further steps are given in
Figure 1.

The rest of this work is organized as follows. In Section 2, we give basic definitions for multi-
modal logics, specify a class of basic serial multimodal logics, and introduce multimodal logics of
belief. We also present an ordering of Kripke models and definitions involving with substitution
and unification. In Section 3, we define the MProlog language for multimodal logic programming,
which is as expressive as the general modal Horn fragment. In Section 5, we present our framework
for developing semantics of MProlog programs in multimodal logics. The section starts with an in-
troduction of labeled modal operators, their semantics, and notations that are used throughout the
work. It then contains our formulations of the three mentioned semantics for MProlog programs.
The section ends with a subsection concerning soundness and completeness of SLD-resolution. In

Goals Input clauses MGUs

G = < 1t<.’17)
G' = — (X)1t(z)
G1 =« (X)1025(7) Oy (t(21) < Cas(x1)) {z1/z}
1= (X)1(Y)as()
Go = — (X)1(Y)2q(2), (X)1(Y)or(z) DO102(s(w2) < q(x2),7(22)) {z2/x}
Gs = « (X)102q(z), (X)1(Y)2r(z)
Gy = — (X)1p(x), (X)1(Y)2r(2) 01 (O2g(w4) < p(z4)) {za/x}
Gs = « (p(a))1(Y)2r(a) O1p(a) « {z/a, X/p(a)}
Gs = « (p(a))1p(a), (p(a))102q(a) 0 (Car(we) < p(x6), O2q(x6)) {z6/a,Y/r(a)}
G7 = « (p(a))102q(a) C1p(a) «— €
Gs = « (p(a))1p(a) 01 (Oz2g(ws) < p(ws)) {ws/a}
the empty clause O1pla) — €

Figure 1: An illustrating example for SLD-resolution

Section 6, we instantiate the framework for the mentioned class of basic serial multimodal logics
and prove its correctness. We continue such a task for multimodal logics of belief in Sections 7
and 8. In the last section, we discuss the relation to other works, describe the implemented modal
logic programming system MProlog, and give some concluding remarks.

2 Preliminaries

2.1 Definitions for Quantified Multimodal Logics

A language for quantified multimodal logics is an extension of the language of classical predicate
logic with modal operators O; and <;, for 1 < i < m (where m is a fixed number). If m = 1 then
we ignore the subscript ¢ and write O and <. The modal operators O; and <; can take various
meanings. For example, O; can stand for “the agent 7 believes” and <; for “it is considered possible
by agent i”. The operators O; are called universal modal operators, while &; are called existential
modal operators.

Definition 2.1 A term is defined inductively as follows: a variable is a term; a constant symbol is
a term; if f is an n-ary function symbol and ¢1,...,t, are terms, then f(¢1,...,t,) is a term.

Definition 2.2 A (well-formed modal) formula is defined inductively as follows:

e If p is an n-ary predicate symbol and ¢1,...,¢, are terms, then p(¢1,...,t,) is a formula,
called a classical atom.

o If v and ¢ are formulas, then so are (—p), (g AY), (¢ V), (¢ — ¥), (Tip), and (C1).

o If ¢ is a formula and z is a variable, then (Vz.p) and (Jz.¢) are formulas.

We also write p =1 for (¢ — V) A (Y — ¢).

A term or a formula is ground if it does not contain variables.

If is a formula, then by V(¢) we denote the universal closure of ¢, which is the formula obtained
by adding a universal quantifier for every variable having a free occurrence? in . Similarly, 3(¢)
denotes the existential closure of o, which is obtained by adding an existential quantifier for every
variable having a free occurrence in ¢.

The modal depth of a formula ¢, denoted by mdepth(p), is the maximal nesting depth of modal
operators occurring in ¢. For example, the modal depth of 0O;(<;p(x) V Okg(y)) is 2.

We now define Kripke models, model graphs, and the satisfaction relation.

2i.e. an occurrence not bound by quantifiers

Definition 2.3 A Kripke frameis a tuple (W, 7, Ry,..., R,,), where W is a nonempty set of possible
worlds, 7 € W is the actual world, and R; is a binary relation on W, called the accessibility relation
for the modal operators O;, <;. If R;(w,u) holds then we say that the world u is accessible from
the world w via R;.

A frame (W, T, Ry,...,R,,) is said to be connected if each of its worlds is directly or indirectly
accessible from the actual world via the accessibility relations, i.e. for every w € W there exist
wo = T, W1, ..., Ws—1,Wx = w with k¥ > 0 such that (w;,w;41) € R1U...UR,, for all 0 <i < k.

Definition 2.4 A fized-domain Kripke model with rigid terms, hereafter simply called a Kripke
model or just a model, is a tuple M = (D, W, 7, Ry, ..., Ry, ™), where D is a set called the domain,
(W,T,Rq,...,Ry) is a Kripke frame, and 7 is an interpretation of constant symbols, function
symbols and predicate symbols. For a constant symbol a, (a) is an element of D, denoted by a™.
For an n-ary function symbol f, 7(f) is a function from D™ to D, denoted by f™. For an n-ary
predicate symbol p and a world w € W, 7(w)(p) is an n-ary relation on D, denoted by p?-».

Definition 2.5 A model graph is a tuple (W, 7, Ry,..., Ry, H), where (W,7,Ry,...,Ry;,) is a
Kripke frame and H is a function that maps each world of W to a set of formulas.

Every model graph (W,7, Ry,..., Ry, H) corresponds to an Herbrand model M =
(U,W,T,Rq, ..., Rp,) specified by: U is the Herbrand universe (i.e. the set of all ground terms),
M =c, fM(ty,...,t) = f(ts,...,tn), and ((t1,...,tn) € pM¥) = (p(t1,...,t,) € H(w)), where
ti,...,t, are ground terms. We will sometimes treat a model graph as its corresponding model.

Definition 2.6 Let M be a Kripke model. A variable assignment (w.r.t. M) is a function that maps
each variable to an element of the domain of M. The value of a term ¢ w.r.t. a variable assignment
V is denoted by t[V] and defined as follows: If ¢ is a constant symbol a then tM[V] = a™; if ¢ is
a variable x then tM[V] = V(z); if t is f(t1,...,t,) then tM[V] = fMEM[V], ... tM[V]).

Definition 2.7 Given some Kripke model M = (D, W, 1, Ry, ..., Ry, ™), some variable assignment
V', and some world w € W, the satisfaction relation M,V,w E (for a formula (is defined as follows:

M, V,wE p(ty,... t,) iff tM[V],... tM[V]) € pM;

M, V,wE —p iff M,V,wk p;
M,V,wE @AY iff M,Vwk pand M,V,wFE 1;
M, V,wE eV ifft M,V,wk por M,V,wkE
M,V,wEp—1 ifft M,V,wkF por M,V,wE
M, V,wkE O;p iff for all v € W such that R;(w,v), M,V v E ¢;
M, V,wE O iff for some v € W, R;(w,v) and M, V,v E ¢;
M, V,wEVYz.p iff forallae D, (M, V', wE),

where V'(z) = a and V'(y) = V(y) for y # =;
M,V,wE Jz.@ iff there exists a € D such that M, V', w F ¢,

where V'(z) = a and V'(y) = V(y) for y # x.

If M,V,w E ¢ then we say that ¢ is true at w in M w.r.t. V. We write M, w F ¢ to denote that
M,V ,wE ¢ for every V. We say that M satisfies ¢, or ¢ is true in M, and write M F o, if M, 7 F .
For a set I' of formulas, we call M a model of I and write M F T" if M F ¢ for every ¢ € I.

Let us explain why we include the actual world in the definition of Kripke models. Consider
possible definitions of M F I'. Without the actual world one would define that M ET" if M,w E T
for every world w of M. This is not appropriate for our settings of modal logic programming: for
example, when I' is a logic program containing a classical fact p(a), then we do not require that
p(a) is true at every possible world of M, because otherwise it would imply that p(a) is “known”
to be true in M.

A logic can be defined by a set of well-formed formulas, a class of admissible interpretations, and
a satisfaction relation. The class of admissible interpretations for a modal logic L is often specified
by restrictions on Kripke frames. We refer to such restrictions by L-frame restrictions and call
frames with such properties L-frames.

Definition 2.8 We call a model M with an L-frame an L-model. We say that ¢ is L-satisfiable if
there exists an L-model of ¢, i.e. an L-model satisfying ¢. A formula ¢ is said to be L-valid and
called an L-tautology if ¢ is true in every L-model. For a set I' of formulas, we write I' F;, ¢ and
call ¢ a logical consequence of ' in L if ¢ is true in every L-model of T'.

Note that our definition of I' Fp ¢ reflects “local semantic consequence” due to the inclusion of
actual world . Also note that T Ey, ¢ means V(I') — V() is an L-tautology.

If as the class of admissible interpretations we take the class of all Kripke models (with no
restrictions on the accessibility relations) then we obtain the quantified multimodal logic K.
This logic is axiomatized by the following system:

e axioms for classical predicate logic (without identity)
e the K-axioms: O;(p — ¢) — (O;0 — O;0)

e the Barcan formula axioms: Vz.O;¢ — O;Vz.@

e the axioms defining ¢; : O = -0,

e the modus ponens rule: y—‘%

e the generalization rule: %

e and the modal generalization rules: 1]%

Note that the converse Barcan formula O,Vx.o — Vz.0;¢ is a consequence of this axiomatization
system. Every logic whose axiomatization is an extension of the system K, is called a normal
multimodal logic.

2.2 A Class of Basic Serial Multimodal Logics

A normal multimodal logic can be characterized by axioms extending the system K(,,). Consider
the class BSM M of basic serial multimodal logics specified as follows. A BSM M logic is a normal
multimodal logic parameterized by relations AD/1, AT/1, AI/2, AB/2, A4/3, A5/3 on the set
{1,...,m}, where the numbers on the right are arities and AD is required to be full (i.e. AD(%)
holds for every 1 < i < m). These relations specify the following axioms:

;0 — O if AD(7)
O, — @ if AT(4)
O, — Oj0 if AI(7,5)
p— 0,050 if AB(i,)

O, — 0,040 if A4(i, 4, k)
Cip — 0,0k if A5(i, j, k)

It can be shown that the above axioms correspond to the following frame restrictions in the
sense that by adding some of the axioms to the system K(,,) we obtain an axiomatization system
which is sound and complete with respect to the class of admissible interpretations that satisfy the
corresponding frame restrictions.

Axiom Corresponding Condition
O — O Yu Fv R;(u,v)

Ui — @ Yu Ri(u,u)

Oip — Oy R C R

6 - 0050 Yo (Ri(u,0) — Ry(v,u))

O, — 0,0, Vu,v,w (R;(u,v) A R(v,w) — R;(u,w))
<>1<P - Dj<>k§0 VU,U,U) (Ri(uav) A Rj(uv w) - Rk(wa U))

For a BSMM logic L, we define the set of L-frame restrictions to be the set of the frame
restrictions corresponding to the tuples of the relations AD, AT, AI, AB, A4, A5.
We sometimes use BSM M also to denote an arbitrary logic belonging to the BSM M class.

2.3 Multimodal Logics of Belief

To reflect properties of belief, one can extend K(,,) with some of the following axioms:

Name Schema Meaning

(D) O, — ;g belief is consistent

(I) O;p — Ojpif ¢ > j subscript indicates degree of belief

(4) O, — 0;0;0 belief satisfies positive introspection

(45) O, — 0,0;0 belief satisfies strong positive introspection
(5) =0, — O0,-0;0 belief satisfies negative introspection

(55) =050 — 0000 belief satisfies strong negative introspection

The following systems are intended for reasoning about multi-degree belief:

KDI4, = K+ (D)+(I)+ (4s)
KDI4 = K+ (D)+(I)+(4)
KDI45 = Kgu) +(D)+(I)+ (45) +(5)
KDI45 = K+ (D) +(I)+(4)+(5)

In the above systems, the axiom (I) gives O, the meaning “p is believed up to degree i”, and ;¢
can be read as “it is possible weakly at degree ¢ that ¢”. The axioms (5) are controversial as they
are quite strong. For this reason, we consider also K DI4 and K DI4,. Note that the axiom (5;) is
derivable in K DI4,5.

For multi-agent systems, we use subscripts beside O and <& to denote agents and assume that
O, stands for “agent i believes that ¢ is true” and <;p stands for “p is considered possible by
agent ¢”. For distributed systems of belief we can use the logic system

KD4,5; = Ky + (D) 4 (45) + (55)

In this system, agents have full access to belief bases of each other. They are “friends” in a united
system. In another kind of multi-agent system, agents are “opponents” and they play against each
other. Each one of the agents may want to simulate epistemic states of the others. To write a
program for an agent, one may need to use modal operators of the other agents. A suitable logic
for this problem is:

We use a subscript in K D45(,,,y to distinguish the logic from the monomodal logic KD45, while
there is not such a need for the other considered multimodal logics.

To capture common belief of a group of agents, one can extend the logic K D45,,) with modal
operators for groups of agents and some additional axioms. Suppose that there are n agents and
m = 2™ — 1. Let g be an one-to-one function that maps every natural number less than or equal
to m to a non-empty subset of {1,...,n}. Suppose that an index 1 < i < m stands for the group
of agents whose indices form the set g(i). We can adopt the axioms (D), (4), and additionally
(Iy) : O — O, if g(i) D ¢(j) (i-e. i indicates a group that contains the group identified by j),
and (5,) : 70;0 — O0;—0;¢ if g(i) is a singleton (i.e. ¢ stands for an agent). Thus, for reasoning
about belief and common belief, we can use:

KD4IQ5a = K(m) + (D) + (4) + (L]) + (5a)

This logic is different in the nature from the well-known multimodal logic of common knowledge.
It also differs from the modal logic with mutual belief [2].
The given axioms correspond to the following frame restrictions:

Axiom Corresponding Condition

(D) YVu Jv R;(u,v)

() R, CRiifi>j

(Zy) R; C Ry if g(i) 2 g(j

(4) VU,U,U) (Ri(u7v) /\Ri(U,U)) - Rz(uaw))
(4s) Vu,v,w (Rj(u,v) A Rij(v,w) = R;(u,w))
(5) Vu, v, w (R;(u,v) A Ri(u,w) — R;(w,v))
(55) Vu,v,w (Rj(u,v) A R;(u, w) — R;(v,w))
(54) as for (5) if g(i) is a singleton

For further reading on modal logics, we refer the reader to [14, 21, 22, 12].

2.4 Ordering Kripke Models

A formula is in negation normal form if it does not contain the connective — and in which each
negation occurs immediately before a classical atom. Every formula can be transformed to its
equivalent negation normal form in the usual way. A formula is called positive if its negation
normal form does not contain negation. A formula is called negative if its negation is a positive
formula.

Definition 2.9 A model M is said to be less than or equal to N, write M < N, if for any positive
ground formula ¢, if M satisfies ¢ then N also satisfies ¢.

The relation < in the above definition is a pre-order?.

Definition 2.10 Let M = (D, W, 7, Ry,..., Ry,) and N = (D', W', 7' R},..., R, ,7') be Kripke
models. We say that M is less than or equal to N w.r.t. a binary relation v C W x W', and write
M <, N, if the following conditions hold:

1. r(r, 7).
2. Vo, o'y Ri(z,y) Ar(z,2’) — Jy Ri(a',y') Ar(y,y'), for all 1 <i < m.
3. Va, 2,y Ri(a,y') Ar(z,2’) — y Ri(z,y) Ar(y,y'), for all 1 <i < m.

4. For any x € W and 2’ € W' such that r(z,z’), and for any ground classical atom FE, if
M,z F E then N, 2’ E E.

In the above definition, the first three conditions state that r is a bisimulation of the frames of
M and N. Intuitively, r(x,2") states that the world z is less than or equal to z'.

Lemma 2.1 If M <, N then M < N.

This lemma can be proved by induction on the length of ¢ that, if ¢ is a ground formula and
M,wE ¢ then N,wF ¢.

2.5 Substitution and Unification

We include this subsection in order to make the paper self-contained (to a certain extent).

A substitution is a finite set 6 = {x1/t1,...,x/ty}, where z1,..., 2y are different variables,
ty,...,t, are terms, and t; # x; for all 1 <14 < k. By € we denote the empty substitution.

An expression is either a term or a formula without quantifiers, and a simple expression is either
a term or an atom.

Let 0 = {x1/t1,...,2,/tx} be a substitution and ¢ be an expression. Then ¢f, the instance of ¢
by @, is the expression obtained from ¢ by simultaneously replacing all occurrences of the variable
z; in ¢ by the term ¢;, for 1 < < k.

3i.e. a reflexive and transitive binary relation

Let 6 = {z1/t1,...,x/tx} and § = {y1/s1,...,yn/sn} be substitutions (where z,...,x; are
distinct variables, and y1,. .., yp are also distinct variables). Then the composition 65 of 6 and ¢ is
the substitution obtained from the sequence {z1/(¢19),...,2k/(txd),y1/51,--.,yn/Sn} by deleting
any binding x;/(t;6) for which z; = (¢;0) and deleting any binding y;/s; for which y; € {z1,..., %}

If 0 and ¢ are substitutions such that 5 = 60 = €, then we call them renaming substitutions.

We say that an expression ¢ is a variant of an expression 1 if there exist substitutions 6 and ~
such that ¢ = 0 and ¥ = ¢~.

A substitution 0 is more general than a substitution ¢ if there exists a substitution such that
0 = 0v. Note that according to our definition, 6 is more general than itself.

Let I be a set of simple expressions. A substitution @ is called a unifier for I if I'9 is a singleton.
If T0 = {p} then we say that 6 unifies " (into). A unifier 6 for T is called a most general unifier
(mgu) for T if # is more general than every unifier of T'.

There is an effective algorithm, called the unification algorithm, for checking whether a set I' of
simple expressions is unifiable (i.e. has a unifier) and computing an mgu for T" if T is unifiable (see,
e.g., [26]).

3 Positive Multimodal Logic Programs

In [31], we presented a logic programming language called MProlog for monomodal logics. In this
section, we extend this language for multimodal logics, using the same name for the new one. The
defined language is as expressive as the general Horn fragment in the considered multimodal logics.
For L being one of the multimodal logics of belief, we adopt some restrictions on MProlog to obtain
L-MProlog. The restrictions do not reduce expressiveness of the language and are acceptable from
the practical point of view.

A modality is a (possibly empty) sequence of modal operators. A universal modality is a modality
that contains only universal modal operators. We use A to denote a modality and B to denote
a universal modality. Similarly as in classical logic programming, we use a clausal form El(p «—
Y1,...,1%,) to denote the formula V(E(p V =11 ...V —y,)). We use E to denote a classical atom.

Definition 3.1 A program clause is a formula of the form @(A < By,..., B,), where n > 0 and
A, By, ..., By, are formulas of the form F, O;F, or ;F with E being a classical atom. @ is called
the modal context, A the head, and By, ..., B, the body of the program clause.

Definition 3.2 An MProlog program is a finite set of program clauses.

Definition 3.3 An MProlog goal atom is a formula of the form BF or B, F, where E is a classical
atom. An MProlog query is a formula of the form 3(ay A ... A), where a1, ..., ai are MProlog
goal atoms. An MProlog goal is the negation of an MProlog query, written in the form «— as, ..., ag.
We denote the empty goal (also called the empty clause) by ©.

If P is an MProlog program, @ = J(ay A...A«ay) is an MProlog query and G = «— ag,...,qy is
the corresponding goal, then P Fy, @ iff PU{G} is L-unsatisfiable. For the proof of this statement,
just note that G =V(=(ag A ... A ag)).

When the base logic is intended for reasoning about multi-degree belief, it has little sense to
write a program clause in the form 0;0;¢ or a goal in the form « 0;0;F or « 0;0,F. Besides,
in the logics KDI4,5 and KD4,5, we have the tautology VV'p = V', where V and V’ denote
modal operators. For these reasons, we introduce some restrictions for MProlog programs and goals
in these logics.

Definition 3.4 For L € {KDI4,, KDI4, KDI4,5 KDI45 KD4,5,}, an MProlog program is
called an L-MProlog program if its program clauses have modal contexts with length 0 or 1, an
MProlog goal is called an L-MProlog goal if its modal depth is 0 or 1. (Recall that the modal depth
of ¢ is the maximal nesting depth of modal operators occurring in ¢.)

In the logic K D45(,,), we have the tautologies 0;0;¢ = O;¢ and 0,00 = Oip. In KD41,5,,
these two equivalences hold for the case when ¢(i) is a singleton. So, we introduce restrictions for
MProlog programs and goals in K D45,y and K D41,5,.

Definition 3.5 An MProlog program is called a K D45,,,)-MProlog program if the modal contexts
of its program clauses do not contain subsequences of the form 0;0;. An MProlog goal is called
a K D45 ,,)-MProlog goal if each of its goal atoms AFE satisfies the condition that A does not
contain subsequences of the form 0O;0; or 0O;0;. K D41,5,-MProlog programs and goals are defined
similarly with the condition that g(¢) is a singleton.

For L not mentioned in the two above definitions, assume that no restriction is adopted for the
form of L-MProlog programs and goals. In the following, we define an extension of MProlog called
eMProlog in the same way as in [31]. It stands for the general modal Horn fragment.

Definition 3.6 A formula ¢ without quantifiers is called a non-negative modal Horn formula (with-
out quantifiers) if one of the following conditions holds:

e ¢ is a classical atom;

e v = 1 « (, where ¢ is a non-negative modal Horn formula and ¢ is a positive formula in
negation normal form;

e o =0, or p =<0 or ¢ = A(, where 1) and (are non-negative modal Horn formulas.

Definition 3.7 An eMProlog program is a finite set of formulas of the form V(p), where ¢ is a
non-negative modal Horn formula without quantifiers. An eMProlog query is a formula of the form
(), where ¢ is a positive formula without quantifiers. An eMProlog goal is the negation of an
eMProlog query.

We now define answers and correct answers.

Definition 3.8 Let P be an MProlog (resp. eMProlog) program and G an MProlog (resp. eM-

Prolog) goal. An answer 0 for P U {G} is a substitution for variables of G (i.e. if x1,...,z, are
all variables of G, then 6 = {x;, /t1,...,2;, /tr} for some 1 < i; < ... < i, < n and some terms
e te).

Definition 3.9 Let L be a multimodal logic, P an MProlog (resp. eMProlog) program, @ = 3(¢)
an MProlog (resp. eMProlog) query and G the corresponding goal (i.e. G = —=Q). Let 6 be an
answer for P U {G}. We say that 0 is a correct answer in L for P U {G} if P Fp V(¢ 0).

The following proposition states that MProlog and L-MProlog, where L is one of the considered
multimodal logics, have the same expressiveness as eMProlog.

Proposition 3.1 Let L be a BSMM logic. For any eMProlog program P and any eMProlog goal
G, there exist an MProlog program P’ and an MProlog goal G’ such that:

e FEvery correct answer in L for PU{G} is a correct answer in L for PP U{G'} and vice versa.

o If L € {KDI4,, KDI4, KDI4,5, KDI45, K D4,5,, K D45(,,), K D41 45,}, then P’ is an L-
MProlog program and G’ is an L-MProlog goal.

e P’ and G’ can be obtained from P and G in polynomial time.

See [32] for the proof of this proposition.

4 Examples of Application of Modal Logic Programming

In this section, we present three examples demonstrating the usefulness of modal logic programming.
The first example involves reasoning about multi-degree belief, the second one involves distributed
systems of belief, and the third one formalizes the wise men puzzle. Other examples can be found,
e.g., in the work by Baldoni et al. [10].

10

Example 4.1 Assume that there are 5 degrees of belief. Consider the following program P, q:

1 = Oygood_in_maths(z) < maths_teacher(x)

o = O5(0;g00d_in_maths(x) «— O;mathematician(z))
3 = O3(<C,goodin_maths(x) — maths_student(x)

g = O3(Cyg00d_in_physics(x) < physics_student(x))
w5 = Og(Cogood_in_maths(x) «— good_in_physics(x))
e = maths_teacher(John) «—

w7 = Ogmathematician(Tom) «—

s = Oymaths_student(Peter) «—

w9 = Osphysics_student(Mike) —

The index ¢ in the above rules can take any value from the range 1..5. Let the base logic be
KDI4,5. For the goal « Oy4good_in_maths(x), we have the correct answer {x = John}. For the
goal «— Osgood_in_maths(x), we have the additional correct answer {& = Tom}. For the goal
— Oqgood_in_maths(x), we have three correct answers {x = John}, {x = Tom}, and {x = Peter}.

Example 4.2 Let us consider the situation when a company has some branches and a central
database. Each of the branches can access and update the database, and suppose that the company
wants to distinguish data and knowledge coming from different branches. Also assume that data
coming from branches can contain noises and statements expressed by a branch may not be highly
recognized by other branches. This means that data and statements expressed by branches are
treated as “belief” rather than “knowledge”. In this case, we can use the multimodal logic K D45,
where each modal index represents a branch of the company, also called an agent. Recall that in
this logic each agent has full access to the belief bases of the other agents. Data put by agent i are
of the form O0;F (agent i believes in E) or &, E (agent 4 considers that F is possible). A statement
expressed by agent i is a clause of the form 0O;(A <« Bj,...,B,), where A is an atom of the form
E, 0,F, or O;F, and By,..., B, are simple modal atoms that may contain modal operators of the
other agents. For communicating with normal users, the central database may contain rules with
the empty modal context, i.e. in the form E « Bi,..., B,, which hide sources of information. As
a concrete example, consider the following program/database Pygp in K D4:54:

agent 1:

1 = Oqlikes(Jan, cola) —

w9 = Oqlikes(Piotr, pepsi) «—

w3 = 09 (Oqlikes(x, cola) «— likes(x, pepsi))

pg = 09 (OCqlikes(x, pepsi) «— likes(x, cola))

agent 2:

w5 = Oqlikes(Jan, pepsi) «—

we = Oglikes(Piotr, cola) —

o7 = Oglikes(Piotr, beer) «—

s = Og(likes(z, cola) « likes(x, pepsi))

w9 = Og(likes(z, pepsi) « likes(z, cola))

agent 3:

10 = Oslikes(Jan, cola) —

11 = Oslikes(Piotr, pepsi) «—

p12 = Oglikes(Piotr, beer) «—

p13 = Os(very_much_likes(x,y) < likes(x,y), O1likes(z,y), Oxlikes(z,y))
agent communicating with users:

14 = very-much_likes(z,y) — Ozvery_-much_likes(x,y)
15 = likes(x,y) — Ozvery-much likes(x,y)

p16 = possibly likes(x,y) «— Olikes(x,y)

The modal index 7 in @16 can take value 1, 2, or 3. Let the base logic be KD4,5,. For the
goal «— wvery_much_likes(z,y), we have the unique correct answer {z/Jan,y/cola}. For the goal
— likes(x,y), we have two correct answers {z/Jan,y/cola} and {x/Piotr,y/pepsi}. For the goal
— possibly_likes(x,y), we have 5 correct answers.

11

Example 4.3 The wise men puzzle is a famous benchmark introduced by McCarthy [27] for Al
It can be stated as follows (cf. [23]). A king wishes to know whether his three advisors (A, B, C)
are as wise as they claim to be. Three chairs are lined up, all facing the same direction, with one
behind the other. The wise men are instructed to sit down in the order A, B, C. Each of the men
can see the backs of the men sitting before them (e.g. C can see A and B). The king informs the
wise men that he has three cards, all of which are either black or white, at least one of which is
white. He places one card, face up, behind each of the three wise men, explaining that each wise
man must determine the color of his own card. Each wise man must announce the color of his own
card as soon as he knows what it is. All know that this will happen. The room is silent; then, after
a while, wise man A says “My card is white!”.

The wise men puzzle has been previously studied in a number of works (e.g., [27, 23, 19, 16,
13, 5, 38, 11, 9]). Our formalization of the wise men puzzle given below uses K D41I,5,-MProlog.
It is elegant due to the clear semantics of common belief. For clarity, instead of numeric indices
we use a, b, ¢, ab, ac, be, abc with the meaning that g(a) = {a}, g(b) = {b}, g(c) = {c}, ..., and
g(abc) = {a,b, c}. The program consists of the following clauses:

% If Y sits behinds X then X’s card is white if Y considers this as possible.
Oabe (white(a) — Op white(a))
Oupe (white(a) «— O.white(a))
Oape (white(b) «— O, white(b))
% The following clauses are “dual” to the above ones.
Oape (Op black(a) < black(a))
Oabe (Oc black(a) — black(a))
Oabe (Oc black(b) — black(b))
% At least one of the wise men has a white card.
Oupe (white(a) < black(b), black(c))
Oupe (white(b) «— black(c), black(a))
Oabe (white(c) «— black(a), black(b))
% Each of B and C does not know the color of his own card.
% In particular, each of the men considers that it is possible that his own card is black.
Oapep black(b)
Oupe e black(c)

The goal is «— O,white(a), i.e. whether wise man A believes that his card is white.
See [37] for more details on this example.

5 A Framework for Multimodal Logic Programming

As mentioned earlier, there are three standard semantics for classical definite logic programs: the
least model semantics, the fixpoint semantics and the SLD-resolution calculus (a procedural seman-
tics). See Minker’s work [29] for a survey and the works by Lloyd [26] and Apt [3] for foundations
of classical logic programming. In this section, we give a framework for developing such mentioned
semantics for L-MProlog programs. The base logic L is required to be a normal multimodal logic
such that the set of L-frame restrictions consists of Va Jy R;(x,y) (seriality), for all 1 < i < m, and
some classical first-order Horn clauses.

The restriction of seriality is to guarantee the existence of least models of MProlog programs®.
Consider, for example, the following program in the non-serial modal logic K (i.e. K,y with m = 1):

Op «—

q—<p
s «— Or

41In [30], we proved that every positive propositional modal logic program has a least L-model in any serial modal
logic L € {KD, T, KDB, B, KD4, 54, KD5, KD45, S5} and can be “characterized” by two minimal L-models if L is one
of the almost serial modal logics KB, K5, K45, KB5. On the other hand, there exist positive propositional modal
logic programs that cannot be “characterized” by a finitely bounded number of models in the non-serial modal logic
K, and there exists a positive propositional modal logic program that cannot be “characterized” by a finite number
of models in the non-serial modal logic K4 (see [30]).

12

If there exists a world accessible from the actual world then Op implies Op, which then implies q.
If there does not then Or holds and implies s. The program is thus “nondeterministic” because
the accessibility relation is not serial, and consequently, it does not have any least K-model. Apart
from the least model semantics, seriality is needed for our fixpoint semantics and SLD-resolution
calculi for MProlog, because they are based on the assumption that <©; is an “instance” of O,.

In this section, we prove the main results using certain lemmas and theorems, which are strongly
dependent on L and left as “expected”. For a specific logic L, lemmas and theorems with that remark
need to be proved to guarantee correctness of the main theorems w.r.t. that logic.

Our framework for developing semantics of MProlog programs is designed to be modular in the
sense that it can be instantiated for different modal logics with a few details and proofs. In fact, we
are able to specify all the three mentioned semantics for MProlog programs in any of the mentioned
multimodal logics using only one small table that is based on the framework. Furthermore, we need
to prove only “expected” lemmas and theorems for a concrete instantiation of the framework, while
several important proofs given in this section remain unchanged. The “expected” lemmas point
out a way for constructing a correct schema for semantics of MProlog. For modularity, proofs of
“expected” lemmas and theorems that are strongly dependent on a specific logic are not presented
in this section but put into a section concerning that logic (Section 6 for BSM M and Section 7 for
KDI4,5).

5.1 Labeled Modal Operators and Notations

In classical logic programming, the direct consequence operator Tp acts on sets of ground atoms.
It computes “direct” consequences of the input set using the program clauses of P. The operator
is monotonic and continuous and has the least fixpoint, which is a set of atoms forming the least
Herbrand model of P. In modal logic programming, to obtain a similar result we first have to decide
what is the domain of the direct consequence operator 77, p. Naturally, we still want it to be the
class of sets of atoms. But what is an atom in this case? When applying 717, p, if we obtain some
atom of the form A<, E (where A is a modality and E is a classical atom), then to simplify the task
we label the modal operator ©;. Labeling allows us to address the chosen world(s) in which this
particular £ must hold. A natural way is to label &; by E to obtain (E);. Thus, an output/input
of 77, p consists of atoms of the form AFE, where A is a sequence of modal operators of the form
O, or (F);, with E, F being ground classical atoms.

On the other hand, when dealing with SLD-derivation, we cannot change a goal — <;(A A B)
to «— O A, O B. But if we label the operator <, let’s say by X, to fix it, then we can safely change
— (X);(AAB) to — (X); A, (X);B.

We will use the following notations:

e T : the truth symbol, with the usual semantics®;

e E, F : classical atoms (which may contain variables) or T;

X, Y, Z : variables for classical atoms or T, called atom variables;

(E);, (X); : ©; labeled by F or X;

V0O, Oy, (E), or (X);, called a modal operator;
e A : a (possibly empty) sequence of modal operators, called a modality;

e @ : a universal modality (i.e. a modality containing only universal modal operators);

A, B : formulas of the form E or VE, called simple atoms;

«, (3 : formulas of the form AFE, called atoms;

e , Y : (labeled) formulas (i.e. formulas that may contain (E); and (X);).

5i.e. it is always true that M, V,w k= T

13

We use subscripts beside V to indicate modal indices in the same way as for O and ¢. To
distinguish a number of modal operators we use superscripts, e.g. V/, V%), v,

A ground formula is redefined to be a formula with no variables and no atom variables. A modal
operator is said to be ground if it is O;, Oy, or (E); with E being T or a ground classical atom. A
ground modality is a modality that contains only ground modal operators. A labeled modal operator
is a modal operator of the form (E); or (X);.

We redefine also substitutions in order to deal with atom variables and labeled formulas. The
other definitions involving with substitution and unification change accordingly in the usual way.

Definition 5.1 A substitution 6 is a (finite or infinite) set of the form {z1/t;,z2/ts,...,
X1/E1,Xo/Es, ..., Y1/Z1,Y2/Z5, ...}, where x1, 22, ... are distinct variables, t1,%s,... are terms,
X1, Xs,..., Y1,Y,, ... are distinct atom variables, and for any element v/s of the set, s is distinct
from v. The set {x1,2z2,..., X1,X2,..., Y1,Ys,...} is called the domain of 6 and denoted by
Dom(6). A substitution 6 is said to be ground if the set {Y1,Ys,...} is empty, t1,to, ... are ground
terms, and F1, Fs, ... are ground classical atoms.

Denote EdgeLabels = {(E); | E € BU{T} and 1 < i < m}, where B is the Herbrand base
(i.e. the set of all ground classical atoms). The semantics of (E); € EdgeLabels is specified below.

Definition 5.2 Let M = (D, W, 7, Ry,..., Ry, n) be a Kripke model. A <-realization function
on M is a partial function o : W x EdgeLabels — W such that if o(w, (E);) = u, then R;(w,u)
holds and M,u F E. Given a <-realization function o, a world w € W, and a ground formula ¢,
the satisfaction relation M, o, w F ¢ is defined in the usual way, except that M,o,w F (E);¢ iff
o(w,(E);) is defined and M, 0,0(w, (E);) F . We write M, o F ¢ to denote that M,o, 7 F ¢. For
a set I of ground atoms, we write M, o E I to denote that M, o F « for all a € I; we write M E I
and call M a model of I if M,o E I for some o.

Definition 5.3 Let o and ¢’ be <-realization functions on a model M. We say that o is an
extension of o’ if whenever o’ (w, (E);) is defined then o(w, (E);) = ¢'(w, (E);). We say that o is a
mazimal O-realization function on M if o(w, (E);) is defined whenever M, w F O, E.

Atom variables in modal operators of the form (X); are mainly interpreted by substitutions.
When a formula ¢ is taken to be semantically considered, all modal operators (X); in ¢ are treated
as® (T);, which is formalized by the following definition.

Definition 5.4 Given a Kripke model M, a <-realization function o, and a labeled formula ¢
without quantifiers, we write M, o F V. () to denote that for any substitution 6 which substitutes
every variable by a ground term and does not substitute atom variables, M,o F ¢ 86T, where
0t ={X/T | X is an atom variable}. By M E V (¢) we denote M, o E V¥ (¢) for some o.

If T is a set of formulas without labeled modal operators, I is a set of ground atoms, and ¢ is a
formula without quantifiers, then the relations I" Fy, I and I' F, V. () are interpreted as usual.

The quantifier V. is introduced because ¢-realization functions are defined using Herbrand base
and we do not want to restrict only to Herbrand models. Suppose that there are enough constant
symbols not occurring in I', for example, infinitely many. Then, because a BSM M logic L has a
complete axiomatization, for I' being a finite formula set and ¢ a formula — both without labeled
modal operators, I' Fr V() iff T' Fr V. (p).

5.2 Model Generators

As mentioned earlier, we will define the direct consequence operator 17, p for an MProlog program
P so that an output/input of Ty, p consists of atoms of the form AFE, where A is a sequence of
modal operators of the form O; or (F');, with E, F being ground classical atoms. For the reason
that the least fixpoint of 77, p should represent a least L-model of P, we call inputs/outputs of 77, p
model generators.

6 Atom variables appear only in goal bodies (see Definition 3.3). In the negation of a goal (i.e. a query) they are
existentially quantified. Hence it is sufficient to choose some concrete values for them. Furthermore, as we will see,
the modal operator (T); plays the role of O;; and if X remains at the end as an unsubstituted atom variable then
(X); intuitively also plays the role of O;.

14

Definition 5.5 A model generator is a set of ground atoms not containing <;, (T);, T.

Because an atom in L may be reducible to some more compact form, for each specific logic L
we will define L-normal form of modalities. 1t is possible that no restrictions on L-normal form of
modalities are adopted.

Definition 5.6 A modality A is in L-normal labeled form if it is in L-normal form and does not
contain modal operators of the form <; or (T);. An atom is in L-normal (labeled) form if it is of
the form AFE with A in L-normal (labeled) form. (Recall that E denotes a classical atom or T.)
An atom is in almost L-normal labeled form if it is of the form AA with A in L-normal labeled
form. (Recall that A denotes a simple atom of the form E or VE, where V is a modal operator
possibly not labeled.)

As an example, define that a modality is in K DI4;5-normal form if its length is 0 or 1. (This is
justified by the K DI4.5-tautology VV'yp = V' with V and V’ being unlabeled modal operators.)
In this example, let FF # T. Then the modalities O; and (F'); are in K DI4.5-normal labeled
form, while 0,0, <;, (T); are not. Atoms E, O,E, (F),E are in KDI4,5-normal labeled form,
while 0,0;F, O;E, (T);E are not. Atoms E, O0;E, O;E, O,0;E, 0;0,FE, (F),E are in almost
K DI4,5-normal labeled form, while ¢;0;E and 0;0,;0,F are not.

Definition 5.7 An L-normal model generator is a set of ground atoms in L-normal form and not
containing <;, (T, T.

An L-normal model generator [is expected to represent an L-model. This specific model is
called the standard L-model of I. Tt should contain only (positive) information that come from I.
This means that the standard L-model of I should be a least L-model of I.

Given an L-normal model generator I, we can construct a least L-model for it by building an
L-model graph realizing I (cf. [30]). Formulas of the form O;a are realized in the usual way; a
formula of the form (E);« is realized at a world w by connecting w to a world identified by w(E);
via R; and adding « to that world. To guarantee the constructed model graph to be the smallest,
each new world is connected via each R; to an empty world at the time of its creation. Sometimes,
the accessibility relations are extended to satisfy all of the L-frame restrictions.

We want to give here a more declarative definition of the standard L-model of an L-normal
model generator I. The part specific to L is extracted into Ext; and Serialy,, where Extr(I)
is an L-normal model generator extending I, and Serialy, is a set of atoms of the form mE(T);T.
The standard L-model of I is then defined using Fuxty(I) and Serialy, in a unified way, almost
independently from L. The set Serialy, is intended to guarantee that, for every world w and 1 <
i < m, w will be connected to a world which is “less than or equal to” every world accessible from
w via R;.

Definition 5.8 Define Serialy, = {E(T); T | 1 <i <m and B(T); is in L-normal form}.

A forward rule is a schema of the form o — 3, while a backward rule is a schema of the form
a «— (. (Recall that we use o and 3 to denote atoms, i.e. formulas of the form AFE.) A rule can be
accompanied with some conditions specifying when the rule can be applied. We use forward rules
to specify the operators Ext;, and Sat;, (needed for defining fixpoint semantics) and use backward
rules as meta-clauses when dealing with SLD-resolution calculi. In practice, conditions for applying
a backward rule can be attached to the body of the rule, and in general, a backward rule can be of
the form (a « ¢, 3,%) with ¢ and 1 being conjunctions of classical atoms. In this work, we just
define that a backward rule is of the form a « (.

Definition 5.9 The operator Exty, is specified by a finite set of forward rules. Given an L-normal
model generator I, Extr,(I) is the least extension of I that contains all ground atoms in L-normal
labeled form that are derivable from some atom of I using the rules specifying Fxty .

Note that Fxtr(I) is an L-normal model generator if so is I.
As an example, for L = KDI4,5, the operator Exty, is specified by the only rule: 0;F — 0O;E

15

Definition 5.10 Let [be an L-normal model generator. The standard L-model of I is defined
as follows. Let W’ = EdgeLabels* (i.e. the set of all finite sequences of elements of {(E); | E €
BU{T} and 1 < i < m}, where B is the Herbrand base), 7 =€, H(7) = Exty(I) U Serialr. Let
R, CW' x W' and H(u), for u € W', u # 7, be the least sets such that:

o if (F);a € H(w), then R;(w,w(E);) holds and {E, a} C H(w(E););
o if 0,0 € H(w) and R} (w,w(E);) holds, then a € H(w(E);).

Let R;, for 1 < i < m, be the least extension of R} such that {R; | 1 < i < m} satisfies all the
L-frame restrictions except seriality (which is cared by Serialz)?. Let W be W’ without worlds
not accessible directly nor indirectly from 7 via the accessibility relations R;. We call the model
graph (W, 7, Ry,..., Ry, H) the standard L-model graph of I, and its corresponding model M the
standard L-model of I. {R, | 1 <4 < m} is called the skeleton of M. By the standard <-realization
function on M we call the O-realization function o defined as follows: if R.(w,w(E);) holds then
o(w, (E);) = w(E);, else o(w, (F);) is undefined.

Example 5.1 Let us give an example for the above construction. Consider the L-normal model
generator I = {(p(a))1p(a),01q(a),0zq(b)} in L = KDI4,5, with m =2 (recall that m is the
maximal modal index). We have Extr(I) = I U{O.¢(b)} (due to the rule 0;F — O;E if i > j)
and Serialy, = {(T)1T,(T)2T}. The standard L-model of I is specified as follows:

o W ={r,(p(a))1,{T)1,(T)2} is the set of possible worlds.
e 7 is the actual world.

e Ry =W x Wp and Ry = W x Wy are the accessibility relations, where W1 = {(p(a))1,{(T)1}
and Wy = W7 U {<T>2}

e The world 7 is empty; the world (p(a)); contains p(a), q(a), ¢(b); the world (T); contains T,
q(a), q(b); the world (T)s contains T and ¢(b).

Definition 5.11 If a modality A is obtainable from A’ by replacing some (possibly zero) V,; by
O; then we call A a O-lifting form of A’. If A is a O-lifting form of A’ then we call an atom A« a
O-lifting form of A'a. For example, O;(p(a))102q¢(d) is a O-lifting form of (X);(p(a))1< 2q(b).

The following lemma will be used to prove, among others, Lemma 5.2.

Lemma 5.1 Let I be an L-normal model generator and M = (W, 7, Ry,..., Ry, H) the standard
L-model graph of I. Let w = (E1);, ...{(Ex):, be a world of M and A\ = w be a modality. Then for
a not containing T, a € H(w) iff there exists a O-lifting form A" of A\ such that N« € Extr(I).

This lemma can be proved by induction on the length of w in a straightforward way.
The expected results concerning model generators are:

Expected Lemma 5.2 Let I be an L-normal model generator, M the standard L-model of I, and
o the standard <-realization function on M. Then M is an L-model and M,o E I.

This lemma states that the definition of standard L-models is well-formed (i.e. the standard
L-model of an L-normal model generator I is really an L-model of I). This lemma will be used
(only) to prove the following expected theorem. Its proof is given for L = BSM M at page 29 and
for L = KDI4,5 at page 33.

Expected Theorem 5.3 The standard L-model of an L-normal model generator I is a least L-
model of 1.

This theorem is proved for L = BSM M at page 29 and for L = KDI4,5 at page 33.

(We have a difficulty of calling the above assertions. Other ways are to call them azioms or a
lemma/theorem to be proved. The name “axiom” is not very suitable here, because one would not
say “proof of an axiom”.)

"The least extension exists due to the assumption that all L-frame restrictions not concerning seriality are classical
first-order Horn formulas.

16

5.3 Fixpoint Semantics

We now return to the direct consequence operator Ty, p. Given an L-normal model generator I,
how can T, p(I) be defined? Basing on the axioms of L, I is first extended to the L-saturation of I
denoted by Satr,(I), which is a set of atoms. Next, L-instances of program clauses of P are applied
to the atoms of Satr(I). This is done by the operator T, p. The set T ; p(Satr(I)) is a model
generator but not necessary in L-normal form. Finally, the normalization operator N Fy, converts
T 1. p(Saty(I)) to an L-normal model generator. Ty, p(I) is defined as NFy (11, p(Satr(I))).

We will define a pre-order <j between modal operators for each specific logic L to decide
whether a given modality is an L-instance of another one. We require that <; <y (E); < O,
O; 2 (X); 2 O, and if V <, (E); and V # (E); then V <, (X);. Note that the condition of
seriality plays an essential role here. As an example, we have the following definition.

Definition 5.12 For L being one of the considered multimodal logics, define <;, to be the least
reflexive and transitive relation between modal operators such that:

o O, = (E); 2 0; and O; = (X)), < 0O;,
o 0, =, O, and O; <, ©; if L € {KDI4y, KDI4, KDI4,5, KDI45} and i < j,
e U; <1 0, and &) <y ©; if L = KD4I,5, and ¢(i) C g(j).

Definition 5.13 Anatom V) ... V(™ is called an L-instance of an atom V1) ... V() if there
exists a substitution € such that o = /6 and, for 1 < i < n, v <, V(g (treating V() as an
expression). A modality A is called an L-instance of A’ if AE is an L-instance of A’E for some
ground classical atom E. In that case, we also say that A’ is equal to or more general in L than A
(hereby we define a pre-order between modalities).

For example, an atom O0;OoF is a K DI4:5-instance of O5(F)1 E, and the modality 0,9 is a
K DI4.5-instance of Oy (F);.

Expected Lemma 5.4 If0O; ...0;, is a O-lifting form of a modality A in L-normal labeled form
and A is an L-instance of B, then By Fr, O, ...0;, ¢ for any formula ¢ without labeled modal
operators.

This lemma clearly holds for the considered multimodal logics with <, defined in Definition 5.12.

Definition 5.14 Let @ be a universal modality in L-normal form and @’ a modal context of an
L-MProlog program clause. We say that @ is an L-context instance of @' if @@ — B is L-valid
(for every).

Observe that if the problem of checking validity in the propositional version of L is decidable
then the problem of checking whether B is an L-context instance of @’ is also decidable. For all of
the multimodal logics of belief considered in this work, these two problems are decidable and the
latter is much simpler®.

Definition 5.15 Let ¢ and ¢’ be program clauses with empty modal context, B a universal modal-
ity in L-normal form, and @’ a modal context of an L-MProlog program clause. We say that E¢
is an L-instance of (a program clause) @'y’ if @ is an L-context instance of @’ and there exists a
substitution € such that ¢ = ¢’6.

8Let @ and @’ be as in Definition 5.14. For L € {KDI4s, KDI4, KDI4:5, KDI45, KD4:5s, KD45(m)} and
the L-normal form of modalities defined later in Tables 2 — 6, @ is an L-context instance of @’ iff @ = @’ or one of
the following condition holds:

e L €{KDI4:s5,KD4s5:} and [is an L-instance of @’;
e L = KDI4,, @ = 0y, and the last modal operator of @ is O; with j <;
e L€ {KDI4,KDI45}, @ = O;, @ is not empty, and every modal operator O; of @ satisfies j < i.

17

For example, [is a K DI4:5-context instance of @’ iff @ is a K DI445-instance of @’ (i.e. either
@ and @ are empty or @ = O;, @ = 0;, and i < j), and we have that O;(p(a) < ¢(a)) is a
K DI4,5-instance of Oy (p(z) « g(x)).

We now give definitions concerning Saty, 1)1, p, and NFp,.

Definition 5.16 The saturation operator Saty is specified by a finite set of forward rules. Given
an L-normal model generator I, Satr,(I) is the least extension of I that contains all ground atoms
in almost L-normal labeled form that are derivable from some atom in I using the rules specifying
SatL.

As an example, for L = K DI4,5, the operator Saty, is specified by three rules: (a) O,F — O, E
it i > 3, (b) O,E — 0,,0,E, (c) (F);E — 0,,0,E; and we have Satr,({Oap(a)}) = {Ozp(a),
Oyp(a), O0,,09p(a), O,01p(a)}. (Recall that m is the maximal modal index.)

We expect the following property of Sat;, (which is proved for L = BSM M at page 30 and for
L =KDI4,5 at page 34).

Expected Lemma 5.5 Let I be an L-normal model generator, M the standard L-model of I, and
a a ground L-MProlog goal atom. Suppose that M E «. Then « is an L-instance of some atom of
SCLtL(I).

When computing the least fixpoint of a modal logic program, whenever an atom of the form
A E is introduced, we “fix” the ©; by replacing the atom by A(FE);E. This leads to the following
definition.

Definition 5.17 The forward labeled form of an atom « is the atom o’ such that if « is of the form
ASOE then o = A(E)E, else o/ = a.

For example, the forward labeled form of ¢1s(a) is (s(a))1s(a).

Definition 5.18 Let P be an L-MProlog program. The operator 1);, p is defined as follows: for
a set I of ground atoms in almost L-normal labeled form, 7,1, p(I) is the least (w.r.t. C) model
generator such that if @(A < By,...,B,) is a ground L-instance of some program clause of P and
A\ is a maximally general® ground modality in L-normal labeled form such that A is an L-instance
of @ and AB; is an L-instance of some atom of I (for every 1 < i < n), then the forward labeled
form of AA belongs to 1,1 p(I).

For example, if P consists of the only clause Oo(C1p(z) «— g(x),r(x), Ois(z), Oot(z)) and
I = {{q(a))19(a), (q(a))rr(a), D2bss(a), Balt(a)it(a)} and L = KDI4S5, then Tp p(I) =
{{a(a)1{p(a))1p(a)}-

Definition 5.19 The normalization operator NFy is specified by a finite set of forward rules.
Given a model generator I, NFy(I) is the set of all ground atoms in L-normal labeled form that
are derivable from some atom of I using the rules specifying NFy.

We require that if I is a singleton then N Fp(T) is also a singleton. If there are no conditions on
L-normal form of atoms, then the set of rules specifying N Fy, is empty and NF(I) = 1.

As an example, for L = K DI4,5, the operator N Fy, is specified by the only rule: VV'E — V'E
if V' is of the form O; or (E);; and we have NFL({{(¢(a))1(p(a))1p(a)}) = {(p(a))1p(a)}.

Definition 5.20 Define T, p(I) = NFL(T L p(Sat(I))).

Lemma 5.6 The operator T, p is monotonic and continuous, and it has the least fizpoint Ty, p Tw
= _oTrpTn, where Ty p10="0, and Tp,pIn =Ty p(TrpT(n—1)) forn>0.

Proof. The operator T, p is monotonic and compact because Satr, I, p and NF are all in-
creasingly monotonic and compact. It follows that 77 p is continuous. The second assertion of the
lemma follows from the Kleen theorem. O

9w.r.t. the pre-order between modalities described earlier for L

18

Notation 5.21 Denote the least fixpoint 17 p T w by I p and the standard L-model of Iy, p
by ML7P-

Definition 5.22 Let P be an L-MProlog program. An L-normal model generator I is called an
L-model generator of P if Ty, p(I) C I.

As a property of the least fixpoint, Iy, p is the least (w.r.t. €) L-model generator of P.
Example 5.2 Consider the following program P in L = KDI4,5 :

O1s(a) — O (g(x) «r(z),s(z))
01 (Brr(z) — s(x)) O (p(x) — O2q(x))

The least L-model generator of P is I p = {(s(a))1 s(a), O1r(a), (s(a))1 q(a), O2p(a), O1p(a)}
We expect the following lemmas:

Expected Lemma 5.7 If P is an L-MProlog program then P Er I p.
This lemma is proved for L = BSM M at page 30 and for L = K DI4,5 at page 34.

Expected Lemma 5.8 Let P be an L-MProlog program and I an L-model generator of P. Then
the standard L-model of I is an L-model of P.

This lemma is proved for L = BSM M at page 30 and for L = K DI4,5 at page 34.
Using the two above lemmas and Expected Theorem 5.3, we can derive:

Theorem 5.9 For an L-MProlog program P, My p is a least L-model of P.

Proof. By Lemma 5.8, My, p is an L-model of P. Let M be an arbitrary L-model of P. By
Lemma 5.7, M F I, p. Hence, by Theorem 5.3, My p < M. Therefore My, p is a least L-model
of P. O

5.4 SLD-Resolution

The fixpoint semantics can be viewed as a bottom-up method for computing answers. It repeatedly
applies clauses of a given program P in order to compute the set I;, p of facts derivable in L from
the program. Given an atom « from I, p, the process of tracing back the derivation of o in L from
P is called top-down, because it reduces the atom, treated as a goal, to subgoals. A more general
problem is to find answers for an L-MProlog goal w.r.t. an L-MProlog program. We study this
problem using SLD-resolution.

The main work in developing an SLD-resolution calculus for L-MProlog is to specify a reverse
analogue of the operator 77, p. While T7, p acts on model generators (with only ground atoms),
the expected reverse analogue of Ty, p will act on goals (with variables). The operator Ty p is a
composition of Satr, 1)1, p, and NFy,. So, we have to investigate reversion of these operators.

Definition 5.23 A goal is a clause of the form < aq, ..., ax, where each «; is an atom.
The following definition concerns reversion of the operator 1)1, p.

Definition 5.24 Let G = «— «g,...,q;,...,q; be a goal and ¢ = B(A <« By,...,B,) a program
clause. Then G’ is derived from G and ¢ in L using an mgu 60, and called an L-resolvent of G and
¢, if the following conditions hold:

e a; = N A’ with /A’ in L-normal labeled form, is called the selected atom, and A’ is called the
selected head atom;

e A is an L-instance of a universal modality @ and @'(A <« Bi,...,B,) is an L-instance of
the program clause ¢;

19

e #is an mgu of A’ and the forward labeled form of A;
e G is the goal — (a1,...,;—1,A'By,...,N By, i1, ..., a)0.

For example, the unique K DI4,5-resolvent of «— Oyp(z) and Og(p(x) « Caq(x)) is «— O1<Coq(x)
(here, @ = Oy and A’ = @ = O;). As another example, the unique K DI45-resolvent of «—
(YY1O17r(x), (X)18(z) and Oy (07 (z) « s(z)) is — (Y)1s(x), (X)15(x) (here, @ = @ = Oy and
AN =(Y)).

As a reverse analogue of the operator Saty, we provide the operator rSaty,.

Definition 5.25 The operator rSaty, is specified by a finite set of backward rules. We say that
B =rSatr(a) using an rSaty, rule o' — 3’ if a — [is of the form o/ — p’. We write 8 = rSaty(«)
to denote that “f = rSatr(«) using some rSaty, rule”.

We require that one of the rSaty, rules is the backward labeling rule AO;E — A(X), E with X
being a fresh!® atom variable. We call A(X);E a backward labeled form of AOE.

Definition 5.26 Let G = «— aq,...,q,...,af be a goal. If o = rSatr(a;) using an rSaty, rule ¢,
then G' = — ay,..., 01, Q% @iq1, ..., is derived from G and ¢, and we call G’ an (L-)resolvent
of G and ¢, and «; the selected atom of G.

For example, resolving « O;<op(x) with the rule VV'E «— V'E results in «— <gop(x), since V
is instantiated to Oy, and V' is instantiated to <.
As a reverse analogue of the operator N F7,, we provide the operator 7N F7,.

Definition 5.27 The operator rNFy, is specified by a finite set of backward rules. We say that
B =9 rNFL(«) using an rNFp, rule o/ «— (' if 0 is an mgu such that af — (3 is of the form o’ «— ['.
We write 8 =¢ TNFp(a) if “B =¢ rNFy(«) using some rN Fy, rule”.

As an example, for L = KDI4,5, the operator rNF is specified by the only rule:
VE — (X);VE if V is of the form O; or (E);, and X is a fresh atom variable; and we have
(YY1 (E)oF =9 rNFL((X)2F) with 0 = {X/E} and Y being a fresh atom variable.

Definition 5.28 Let G = «— a1,...,q;,...,a be a goal. If o} =y rNFy(«;) using an rNF, rule
©, then G’ = — a10,..., 0,10, %, ;110, . .., a0 is derived from G and ¢ using the mgu 6, and
we call G" an (L-)resolvent of G and ¢, and «; the selected atom of G.

Observe that rSaty, rules and N F, rules are similar to program clauses and the way of applying
them is similar to the way of applying classical program clauses, except that we do not need mgu’s
for rSaty, rules.

We now define SLD-derivation and SLD-refutation.

Definition 5.29 Let P be an L-MProlog program and G be a goal. An SLD-derivation from
PU{G} in L consists of a (finite or infinite) sequence Gy = G, G, ... of goals, a sequence ¢1, @2, . ..
of variants of program clauses of P, rSaty rules, or N Ff, rules, and a sequence 61,65, ... of mgu’s
such that if ¢; is a variant of a program clause or an r N Fy, rule then G; is derived from G;_; and
v; in L using 6;, else §; = ¢ (the empty substitution) and G; is derived from G;_; and (the rSatp,
rule variant) ;.

We require that each ¢; in the above definition does not have any variable or atom variable
which already appears in the derivation up to G;_1. This can be achieved by subscripting variables
and atom variables in G by 0 and in ; by ¢. This process of renaming variables is usually called
standardizing the variables apart (see [26]). Each ¢; is called an input clause/rule of the derivation.

Definition 5.30 An SLD-refutation of PU{G} in L is a finite SLD-derivation from PU{G} in L
which has the empty clause (denoted by ¢) as the last goal in the derivation.

10This means that standardizing is also needed for atom variables.

20

Definition 5.31 Let P be an L-MProlog program and G be a goal. A computed answer 6 in L of
P U {G} is the substitution obtained by restricting the composition 6; ...#0, to the variables of G,
where 01, ...,0, is the sequence of mgu’s used in an SLD-refutation of P U {G} in L.

Example 5.3 Consider the following program P and the goal G = «— Oyp(z) in L = KDI4,5 :

¢1 = Oa(p(z) « C2q(x))
@2 = O1(q(x) « (=), s(z))
p3 = 01(O1r(z) < s(x))

.
g =<1 8(a)

Assume that the operators rNFy, and rSaty are specified by the following rules:

rNFp: (a) VE «— (X);VE if V is of the form O; or (F);, and X is a fresh atom variable
rSatr : (b)) AOE — A(X),E for X being a fresh atom variable
c) AV;a — ADja if § < j

d) ACE — AS;E ifi> j
e) VV'E «— V'E if V' is of the form O; or <;

NN N S N

Here is an SLD-refutation of P U {G} in L with computed answer {z/a}:

Goals Input clauses/rules MGUs
« Oip(x)
— 01 Ozq() o1 {z1/x}
— ©aq(z) ()
— O1q(x) (d)

— (X)1q(x) (0)

— (X ($<)7<X> s(x) P2 {as/x}

S

,_.
V2)

/\

\/

—~
S

=

X)
(a? 3 {xg/x}

o {z/a,Y/s(a)}
o 4 {X/s(a)}

5.5 Soundness and Completeness of SLD-Resolution

We prove soundness and completeness of SLD-resolution for L-MProlog using certain “expected”
lemmas, which are strongly dependent on concrete instantiations of the framework for L. Informally,
an SLD-resolution calculus is sound if every computed answer for P U {G} is a correct answer for
P U{G}, and is complete if for every correct answer for P U {G} there exists a computed answer
for P U {G} that is more general.

Definition 5.32 We say that an atom (3 is derivable from « using rSaty, (resp. (i) rNF, (ii) rSatr
and rNFp) if there exists a sequence of atoms aq,...,qp with & > 0, ap = « and a =
such that for every 1 < i < k, a; = rSatr(a;—1) (vesp. (i) a; =y, rNFL(ozi_l) for some 6;,
(ii) o = rSatr(o—1) or a; =g, TNFL(cj—1) for some 6;).

The main results are proved using the following expected properties of rSat;, and rN Fy:

Expected Lemma 5.10 Let A and A’ be ground modalities in L-normal labeled form. Let B be
an atom of the form E, O;E, or O,E, and B' an atom of the form E, OE, (X),E, or O;E, where
X is a fresh atom variable. Suppose that A is an L-instance of A\’ and B is an L-instance of B'.
Then N' B’ is derivable from AB using rSaty,.

Expected Lemma 5.11 Suppose that 5 is an atom in almost L-normal labeled form and o €

Satr,({8}) or a € NFL({B}). Then there exists an atom (' and a substitution 0 s.t. 8 = 3'0, the
domain of 0 consists of fresh atom variables, and 3’ is derivable from o using rSaty and rNFp.

21

Expected Lemma 5.12 Let § = rSatr(«), M be an L-model, o a <-realization function on
M, and 0 a substitution. Suppose that M,o E ¥ (8'0) for some O-lifting form 3 of 8. Then
M,o EV. ('0) for some O-lifting form o' of .

Expected Lemma 5.13 Let § =5 rNFL(a), M be an L-model, o a mazimal <-realization func-
tion on M, and 0 a substitution. Suppose that M,o EY_(5'0) for some O-lifting form B’ of 3. Then
M,o EV. (a’80) for some O-lifting form o of a.

These lemmas are proved for L = BSM M from page 31 and for L = KDI4,5 from page 35.

5.5.1 Soundness

We first prove the following auxiliary lemma.

Lemma 5.14 Let M be a Kripke model, o a <-realization function on M, and 6 a substitution.
Suppose that AV ... AW are O-lifting forms of A and M,o0 ENY. (AN By A...AADB)0). Then
there exists the most general L-instance A of AM ... AW which is a O-lifting form of 2\ and
satisfies M,o ENY ((A'By A ... A A'Bp)0).

Proof. Let h = |A| (the number of modal operators in A). For 1 < j <land 1 <k <h, let v (G:k)
be the modal operator at position k& of AW and V) the modal operator at position k of A. Let
i, be the modal index (i.e. subscript) of the modal operator V¥, If V(F) —= 0, forall 1 <j </,
then let VE) = 0; | else let V&) = V) Let A/ = V) V") Clearly, A’ is the most general
L-instance of AW, ... A® and is a O-lifting form of A.

Because that for 1 < j < I, AU) is a O-lifting form of A’ and M,o F Y. ((AYB;)0), it
can be proved by induction on k that M,o E V.(V1) ... V*)T)9), for 1 < k < h. Tt follows
that M,o E V.((A'T)0). Because AU) is a O-lifting form of A’ for 1 < j < I, and M,0 F
V. ((ADBy A ... AADB))B), we conclude that M, o =Y. ((A'By A... AN B)G). i

The soundness theorem is based on the following lemma:

Lemma 5.15 Let P be an L-MProlog program and G = «— «q,...,ar be a goal. Then for every
computed answer 0 in L for PU{G} there exists a goal G' = «— af, ..., a} such that & is a O-lifting
form of a;, for 1 <i <k, and PEp V,((cf A...Na})).

Proof. Let M be an arbitrary L-model of P and ¢ a maximal <-realization function on M. Let the
refutation of PU{G} in L consist of a sequence Gg = G, Gy, ..., G, of goals, a sequence ¢1, ..., ¢,
of variants of program clauses of P, rSaty, rules, or r N F, rules, and a sequence 61, ..., 6, of mgu’s.
Let 6 be the computed answer. We prove by induction on n that for every 1 < i < k there exists a
O-lifting form o, of a; such that M,o E VY. ((of A ... A a})b).

Suppose that n = 1. This means that G = < a7 with a; = A’A’, A’ is the selected head atom,
and the empty clause is an L-resolvent of G and some input clause ¢1 = B(A «). By Lemma 5.4,
Pk V(O ...0;, A), where O;, ...0;, is a O-lifting form of A’. If A’ is of the form O0;F or E,
then A’6; = A6y, and P F V(O,, ...0;, A’01). Suppose that A’ = (F);E’ or A’ = (X);E’. Thus
A =,E. Let A” = (E),E (the forward labeled form of A). We have A'6; = A”6, = (E");E" for
some E”. Since P Ep V(O;, ...0;, A), we have P Fy V(O,, ...0;, O;E”). Tt follows that M, o E
V. (O, ...0;, (E");E"), because M is an L-model of P and o is a maximal <¢-realization function
on M. Hence M,c EV. (O, ...0;, A’01). Thus, for of =0;, ...0;, A’, we have M, 0 F V. (a}0).

Next suppose that the result holds for computed answers which come from refutations of length
less than n. There are the following cases: G is derived from G and an rSaty, /r N Fy, rule variant,
or G1 is an L-resolvent of G and a variant of some program clause of P. The case G is derived from
G and an rSaty, rule variant immediately follows from the inductive assumption and Lemma 5.12.

Suppose that Gy is derived from G and an rN F, rule variant, «; is the selected atom and it is
replaced by 8 =g, TNFL(;). We have

Gi1=«—a1bly,...,05101, 8, ;4101 ..., gty

22

By the inductive assumption, there exist a O-lifting form a; of aj, for 1 < j<kandj#i, and a
O-lifting form 3’ of 3 such that

M,o BV ((401 A ... ANa_101 AB" Nag 101 A ... Nag01)0s...0,)

We have M, E V(3’05 ...0,). Hence, by Lemma 5.13, there exists a O-lifting form «} of «; such
that M,o E V. (a}0102...6,). Therefore M,o EV. ((a) A ... A a})0).

Now suppose that Gy is derived in L from G and an input clause ¢ = @(A <« By,...,B))
(I > 0), the selected atom is a; = A’ A’, and A’ is the selected head atom. We have

Gi=«(a1,...,05 1, N By,...,NBpa41,...,01)01
By the inductive assumption, there exists a goal
Gy =+« (a,...,al_q, A(ll)Bi, e A(l/)Bl'7a;+1, c)b
such that
Mo EV. (4 A Ay ADOBI AL AN B NG, AL A AL)E)

where o is a O-lifting form of a;, for 1 < j <k and j # i, and A(j/)B;» is a O-lifting form of A’'B;
with [AU)| = |A/], for 1 < j < 1. Let O;, ...0;, be a O-lifting form of A’, and A" be the most
general L-instance of A(l/), R AV > 0, which exists due to Lemma 5.14, and be O;, ... 0;,
otherwise. By Lemma 5.14, A" is a O-lifting form of A’, and M,o EV.((A"Bi A ... ANA"B))8) if
[> 0. Since M is an L-model of P, by Lemma 5.4, we have M FVY(O;, ...0;, (B1 A...A B — A)).
Hence M,o F V_((A"A)0) (because O, ...0;, is a O-lifting form of A", B is a O-lifting form of
Bj, and L is a serial modal logic). Let A” be the forward labeled form of A. Since o is a maximal
O-realization function on M, it follows that M, o E V. ((A”A”)0). Since A'6; = A”6;, by choosing
af = A" A’, we have that o is a O-lifting form of ; and M, o E V, ((af A...Aa})0). This completes
the proof. O

Theorem 5.16 (Soundness of SLD-Resolution) Let P be an L-MProlog program and G an L-
MProlog goal. Then every computed answer in L for PU{G} is a correct answer in L for PU{G}.

Proof. Let G = «— ayq, ..., ap, where each « is of the form @F or BOFE. Let 6 be a computed answer
in L for PU{G}. Since L is a serial modal logic, by Lemma 5.15, we have P FL V. ((a1 A... Aag)).
Assume that the signature contains enough constant symbols, for example, infinitely many. Then
it follows that P Fp V((aq A ... A ag)f). Hence 0 is a correct answer in L for P U {G}. ad

5.5.2 Completeness

We use a standard method to prove completeness of our SLD-resolution calculus (cf. [26, 25]). In
general, completeness of a resolution calculus is first proved for the ground version and then lifted
to the case with variables. The flow of this subsection follows Lloyd [26]. The proofs of Lemmas
5.17, 5.18, 5.23 and Theorem 5.24 are very similar to the ones given for classical logic programming
in Lloyd’s book, but we present all of them to make the paper self-contained.

We first define unrestricted SLD-refutation and give the mgu lemma and the lifting lemma.

Definition 5.33 An unrestricted SLD-refutation in L is an SLD-refutation in L, except that we
drop the requirement that the substitutions #; be most general unifiers. They are only required to
be unifiers. In an unrestricted SLD-resolution, if a goal G; is derived from G;_; and an rSaty, rule
variant, then 6; can be arbitrary and G; = G%6;, where G is the goal derived from G;_; and that
rSaty, rule variant in the usual way.

Lemma 5.17 (Mgu Lemma) Let P be an L-MProlog program and G be a goal. Suppose that
PU{G} has an unrestricted SLD-refutation in L. Then PU{G} has an SLD-refutation in L of the
same length such that, if 01,...,60, are the unifiers from the unrestricted refutation and 67, ...,0!
are mgu’s from the refutation, then there exists a substitution v such that 6y ...0, = 0] ...0~.

23

Proof. Let the unrestricted refutation of P U {G} consist of a sequence Gy = G,Gy,...,G, of
goals, a sequence 1, ..., p, of variants of program clauses of P, rSaty, rules, or rN Fy, rules, and
a sequence 01, ..., 0, of unifiers. We prove the result by induction on n.

Suppose that n = 1. This means that G = < A’A’ and the empty clause is an L-resolvent of
G and the input clause ¢; = BI(A <), where A’ is the selected head atom. Let 6] be an mgu of
A" and the forward labeled form of A. Then 6; = 6}~ for some «. Furthermore, P U {G} has a
refutation in L consisting of Gg = G, G1 = ¢ (the empty goal) with input clause ¢; and mgu 6.

Now suppose that the result holds for unrestricted refutations with length less than n. Let
G =« ay,...,a; and a; be the selected atom of G.

Suppose that G is derived from G and the input clause 1 = B(A <« By,...,B;) in L, the
selected atom «; is A’ A’ where A’ is the selected head atom. There exists an mgu 6] for A’ and the
forward labeled form of A. We have 6 = 6} for some 6. Let G} be the goal derived in the same way
as G but with 0] instead of §;. We have G; = G0. Then G2 can be derived from G} in the same
way as from G but with unifier 66 instead of 6. Thus PU{G} has an unrestricted refutation in L
counsisting of Gy = G, GY, Ga, ..., G, with unifiers 0], 6,05, ...,0,. By the inductive assumption,
P U{G}} has a refutation in L with mgu’s 65,...,6,, such that 605...0,, = 65...6/,~, for some ~.
Thus P U {G} has a refutation in L consisting of Gy = G,GY,...,G), = o with mgu’s 61,6, ...0),
such that 6105 ...0,, = 0150,...0, =010, ...0.~.

The cases when G is derived from G and an rSaty, /r N Fy, rule variant are similar to the above
case. O

Lemma 5.18 (Lifting Lemma) Let P be an L-MProlog program, G a goal, and 0 a substitution.
Suppose there exists an SLD-refutation of PU{G0} in L such that the variables of the input clauses
are distinct from the variables in G and 6. Then there exists an SLD-refutation of P U {G} in
L of the same length such that, if 01,...,0, are the mgu’s from the refutation of P U{G6} and
01,...,0, are the mgu’s from the refutation of PU{G}, then there exists a substitution v such that
001...0,=07...0..

Proof. Let the refutation of PU{G0} consist of a sequence Go = G, Gy, ..., G, of goals, a sequence
Y1, .- ., py of variants of program clauses of P, rSaty, rules, or N Fy, rules, and a sequence 64, ..., 0,
of mgu’s.

Suppose that G; is an L-resolvent of GO and the input clause ;1 using 6;. Let 1 = B(A «—
By,...,B)), G =« ai,...,q;, and the selected atom of GO be «;0 = (A'A")0, where A0 is the
selected head atom. We have that 06, is a unifier for A’ and the forward labeled form of A. The
result of resolving G and ¢ using 06; is exactly G;. Thus we obtain an unrestricted refutation of
PU{G} in L, which looks exactly like the given refutation of P U {G8}, except the original goal is
different and the first unifier is 66,. Now apply the mgu lemma.

The cases when G is derived from G and an rSaty, /r N Fy, rule are similar to the above case. O

Lemma 5.19 (Weak Lifting Lemma) Let P be an L-MProlog program, G a goal, and 0 a substi-
tution. Suppose there exists an SLD-refutation of PU{GO} in L. Then there exists an SLD-refutation
of PU{G} in L.

Proof. Change each variable x occurring in the input clauses of the refutation of P U {G6} by 2’
that does not occur in G and 6. Then recompute the refutation. The resulting derivation will still
be an SLD-refutation for P U {G6} (possibly with different used mgu’s and a different computed
answer). Then apply the lifting lemma 5.18 for the new refutation. a

The following lemma is an essential part of the completeness proof.

Lemma 5.20 Let P be an L-MProlog program and o € Iy p. Then P U {— a} has an SLD-
refutation in L.

Proof. We prove by induction on n that if & € T, p Tn then P U {«— «} has an SLD-refutation
in L. This assertion obviously holds for n = 0, since T, pT0 = 0.

Suppose that the assertion holds for (n — 1) in the place of n. Let a € T, p Tn. There exist a
program clause ¢ = B(A « By,...,Bg) of P, with k > 0, a substitution 8, modalities A" and &',
ground atoms y1,...,v € Tr pT(n — 1), and ground atoms 3, .., Bk, o such that:

24

o ;€ Satr,({vi}), for 1 <i < k;
e 3 = AYB! and B;# is an L-instance of B!, for 1 <i < k;
e @' is an L-context instance of @l

A\ is in the L-normal labeled form and is an L-instance of A, ... A®) @’

e o/ = N'A’0, where A’ is the forward labeled form of A;

a € NFL({a'}).

By Lemma 5.11, there exist atoms a”, ¥{,73,...,7;, and ground substitutions do, ..., with
disjoint domains such that:

e o' is derivable from « using rSaty, and rNFp, and o/ = oy,
e ! is derivable from f; using rSaty and rNFp, and 7, = v/d;, for 1 <i <k.

Let § =67 ...0; if k > 0, and § = € otherwise. By the inductive assumption, P U {< ~;} has a
refutation in L, for 1 <4 < k. Since v/6 = v.d; = ;, it follows that P U {«< 7,0} has a refutation
in L. Hence PU {« (71,...,7;)0} has a refutation in L, since 7,0 are ground. By the weak lifting
lemma, P U {« 7{,...,7.} has a refutation in L. Since 7] is derivable from §; using rSat; and
rNFy, it follows that P U {« (1,..., 0%} has a refutation in L.

For 1 <i < k, if B] is of the form (F),E then let 3, = AW(X), E and 6; = {X/F}, where X is
a fresh atom variable; else let 3 = 3; and §; = ¢. Let 8’ =0 ...60; if k > 0, and ' = € otherwise.
Since B; = Bi0', PU{— (B,...,0;)0'} has a refutation in L. Hence, by the weak lifting lemma,
PU{« 3i,...,0;} has a refutation in L. Therefore, by Lemma 5.10, P U {« A'B40,...,A'B6}
has a refutation in L. The goal « A’B16,...,/\' B0 is an unrestricted L-resolvent of < o’ and ¢.
Hence, by the mgu lemma, P U {« o’} has a refutation in L. This means that P U {< o'y} has a
refutation in L. By the weak lifting lemma, P U {« '} has a refutation in L. Since o is derivable
from « using rSaty, and rNFy,, we conclude that P U {« a} has a refutation in L. d

Corollary 5.21 Let P be an L-MProlog program and o € Saty(If p). Then P U {« a} has an
SLD-refutation in L.

Proof. There exists 8 € Iy, p such that o € Satr({#}). By Lemma 5.11, there exist an atom [’
and a substitution 6 such that 8 = 3’0 and (' is derivable from « using rSat; and rNFy. Since
B € I p, by Lemma 5.20, P U {« (} has a refutation in L. This means that P U {« (3’6} has
a refutation in L. By the weak lifting lemma, P U {« ('} has a refutation in L. Consequently,
P U {< a} has a refutation in L. O

Lemma 5.22 Let P be an L-MProlog program and o a ground L-MProlog goal atom such that
My pEa. Then PU{— a} has an SLD-refutation in L.

Proof. By Lemma 5.5, a is an L-instance of some o' € Saty (I p). By Corollary 5.21, P U {«
o'} has an SLD-refutation in L. If o' is of the form E, A, E, or AOE then, by Lemma 5.10,
P U {< a} has an SLD-refutation in L. If o/ is of the form A(F);E then, by the weak lifting
lemma, P U {«— A(X);E} has an SLD-refutation in L, where X is a fresh atom variable. By the
assumption about <, « is also an L-instance of A(X);E. Hence, by Lemma 5.10, P U {« «a} has
an SLD-refutation in L. a

For the main theorem, we need also the following auxiliary lemma.

Lemma 5.23 Let P be an L-MProlog program and o an L-MProlog goal atom. Suppose that V()
is a logical consequence in L of P. Then there exists an SLD-refutation of PU{«— a} in L with the
identity substitution as the computed answer.

25

Proof. Suppose « has variables x1,...,x,. Let ay,...,a, be distinct constants not appearing in
P and a, and let 6 be the substitution {zy/ai,...,z,/a,}. Then it is clear that af is a logical
consequence in L of P. By Lemma 5.8, we have My p F af. Since af is ground, by Lemma 5.22,
P U {+ af} has a refutation in L. Since the a; do not appear in P or «, by replacing a; by x; (for
1 <4 < n) in this refutation, we obtain a refutation of PU{« a} in L with the identity substitution
as the computed answer. O

Theorem 5.24 (Completeness of SLD-Resolution) Let P be an L-MProlog program and G
an L-MProlog goal. For every correct answer 6 in L for P U{G}, there exists a computed answer
v in L for PU{G} such that GO = G~¢ for some substitution §.

Proof. Suppose G is the goal < «;, ..., ax. Since is a correct answer in L for PU{G}, V((a1 A. .. A
ay)0) is a logical consequence of P in L. By Lemma 5.23, there exists a refutation of PU{« «;0} in
L such that the computed answer is the identity substitution, for 1 < i < k. We can combine these
refutations into a refutation of PU{G#} such that the computed answer is the identity substitution.
Change each variable x occurring in the input clauses of the refutation of PU{G6} by z’ that does
not occur in G and 6. Then recompute the refutation in the way such that when unifying {z, 2’} the
substitution {2’/x} (2’ is changed to z) is used instead of {z/2'}. The resulting derivation will still
be an SLD-refutation for PU{G6} with the identity substitution as the computed answer. Applying
the lifting lemma, we conclude that there exists a refutation of PU{G} in L with computed answer
~ such that G8 = GvJ, for some substitution 9. O

5.6 Summary

We have given a framework for developing fixpoint semantics, the least model semantics, and SLD-
resolution calculi for L-MProlog programs. The base logic L is required to be a normal multimodal
logic such that the L-frame restrictions consist of Va Iy R;(x, y) (seriality), for 1 < i < m, and some
classical first-order Horn clauses.

Definition 5.34 By a schema for semantics of L-MProlog we mean a table consisting of a definition
of L-normal form of modalities, a definition of <, and rules specifying the operators Fxty, Saty,
NFy,, rNFy,, rSaty,. We say that such a schema is correct if all the expected results of this section
hold for L-MProlog w.r.t. that schema.

To show correctness of a schema, we have to prove Expected Theorem 5.3 and Expected Lemmas
5.2, 5.4,5.5,5.7, 5.8, 5.10 — 5.13. Theorem 5.9 has been proved using Expected Theorem 5.3 and
Expected Lemmas 5.7 and 5.8. It states that the fixpoint semantics coincides with the least model
semantics. Theorems 5.16 and 5.24 about soundness and completeness of SLD-resolution for L-
MProlog has been proved using Expected Lemmas 5.4, 5.5, 5.8, 5.10 — 5.13.

6 A Schema for Semantics of BSM M-MProlog

In this section, let L be a BSM M logic. In Table 1, we present a schema for semantics of BSM M-
MProlog. The first rule specifying rSaty, is a generalized version of the backward labeling rule and
is dual to the first rule specifying Sat;. The remaining rules specifying Sat; and rSat; directly
come from the axioms. This gives an impression that the schema relies on syntactic properties of
the base logic. Clarity of the rules suggests a general method for translating axioms of a given
modal logic into an SLD-resolution calculus for that logic.

Example 6.1 Consider the multimodal logic L specified by m = 2 (the number of different modal
indices), AD = {1,2}, AT = {1}, Al = {(2,1)}, and AB = A4 = A5 = (). In other words, the logic
is characterized by the axioms: 01 — Oy Oap — Oa; 01 — ¢; and Oap — Oy, Consider
the following program P:

1 = Oapla) —

2 = Oz(H1g(x) — Oop(x))

3 = Oz(r(z) — p(x), q(x))

26

L=BSMM, L-MProlog

=<, is defined by Definition 5.12 at page 17.

No restrictions on L-normal form of modalities.
No rules specifying NF, and rN Fp,.

Rules specifying Exty and Saty:
A<E>ZOZ — AOZOA
Ao — AO;«
AD;a — A« if AT (i)
Aa — NOa if AT (i)
Ao — AT;Q a0 if AB(4,)
AO;Oja — Aa if AB(i,j)
AD;a — AD;Oga if A4(i, j, k)
A Opa — AOa if A4(3, §, k)
Ao — ATD;Opa if A5(4, 5, k)
AO]‘ Dka — ADZ'CV if A5(l,j, k‘)

—~

—
O N o~ o~~~ o~~~ —

—~

Rules specifying rSaty,:

AO;a — A(X);a where X is a fresh atom variable (1)
AV,;a — AD;a (2)
plus a rule a <« 3 for each k-th rule § — « specifying Satp,

k > 3, with the same accompanying condition (3)..(12)

Table 1: A schema for semantics of BSM M-MProlog

We have T, p 11 = {(p(a))2p(a)} and

Satr(Tr,p11) = {{p(a))2p(a), (p(a))2C1p(a), (p(a))2C2p(a)}
Applying the program clause o and its L-instance O1¢(z) «— <$op(x) to Satr(Tr p11), we obtain
Trp12=T,pT1U{(p(a))20:1q(a), O1¢(a)}. The set Sat (T pT2) contains both (p(a))2p(a)
and (p(a))2q(a). Hence, by applying o3, we have (p(a))ar(a) € Tr p 13 and arrive at
Trplw="TLp13 = {{p(a))2p(a), (p(a))2014(a), D1g(a), (p(a))2r(a)}

We give below an SLD-refutation of P U {« <or(z)} in L with computed answer {z/a}.

Goals Input clauses/rules MGUs

— Oor(x)

— (X)ar(z) (1): ACja — A{X);«

— (X)ap(x), (X)2q(x) Oa(r(z) — p(x),q(z)) {z2/x}

— (p(a))2q(a) Oap(a) — {X/pla), x/a}
— (p(a))201q(a) (3): Aa — ADar

— (p(a))2C2p(a) Oa(B1q(z) — Oop(x)) {as/a}

— (p(a))201p(a) (6): Az +— Ad1a

— (p(a))2p(a) (4): ACra — Aa

o Oapla) «

Theorem 6.1 The schema given in Table 1 for semantics of BSM M-MProlog is correct.

To prove this theorem we have to prove Expected Theorem 5.3 and Expected Lemmas 5.2, 5.4,
5.5, 5.7, 5.8, 5.10 — 5.13. To do this we need extended L-model graphs (defined below) and some
properties of them.

27

Definition 6.1 Let I be a model generator. Define Ext; to be the operator such that Ext (I) is
the least set of atoms extending I and closed w.r.t. the rules specifying Exty,. (Note that we allow
Ezxt; (I) to contain atoms not in labeled form and have that Exty(I) C Ext} (I).) The extended
L-model graph of I is defined in the same way as the standard L-model graph of I but with Ext’ (I)
in the place of Exty(I).

Lemma 6.2 Let I be a model generator, M the standard L-model graph of I, and M' the ez-
tended L-model graph of I. Then M’ has the same frame as M, and furthermore, if M =
(W,r,R1,..., Ry, H) and M' = W, 7,Ry,..., R, H') then for every w € W, H(w) C H'(w)
and H'(w) — H(w) is a set of formulas containing some unlabeled existential modal operators.

The proof of this lemma is straightforward.
The following lemma is similar to Lemma 5.1 and can also be proved by induction on the length
of A in a straightforward way.

Lemma 6.3 Let I be a model generator and M = (W, 7,Ry,..., Ry, H) be the extended L-model
graph of I. Let w = (E1)s, ... (Ex)i, be a world of M and A = w be a modality. Then for a
(resp. A)Mt not containing T, a € H(w) (resp. A € H(w)) iff there exists a O-lifting form A" of A
such that N o € Exty (I) (resp. AN A € Saty(I)).

We give below the main lemma concerning extended L-model graphs.

Lemma 6.4 Let I be a model generator and M = (W, 7,Ry,..., Ry, H) be the extended L-model
graph of I. Then for any w and u such that R;(w,u) holds: i) if O, € H(w) then o € H(u), ii) if
a € H(u) then O;a € H(w).

Proof. Let {R; | 1 < j < m} be the skeleton of M. We prove this lemma by induction on the
number of steps needed to obtain R;(w,u) when extending {R} | 1 <j <m} to {R; | 1 <j <m}.

Consider the first assertion. Suppose that O;a € H(w). By Lemma 6.3, there exists a O-lifting
form A of w such that AQ;a € Exty (I). Since R;(w,u) holds, there are the following cases to
consider:

e Case u = w(E); and R;(w,w(E);) : The assertion holds by the definition of M.

e Case AT(i) holds and v = w : Since AQ;a € Exty(I), we have Aa € Ext(I), and by
Lemma 6.3, o € H(u).

e Case AI(i,7) holds and R;(w,u) is created from R;(w,u) : Since AD;a € Ext (I), we have
AOja € Ext (I), and by Lemma 6.3, O;a € H(w). Hence, by the inductive assumption,
a € H(u).

e Case AB(j,i) holds and R;(w,u) is created from R;(u,w) : Since O;,a € H(w), by the
inductive assumption, <;0;a € H(u). By Lemma 6.3, there exists a O-lifting form A of u
such that A'C;0;a € Ext (I). Thus Ao € Ext (I). Hence, by Lemma 6.3, o € H(u).

e Case A4(i,j,k) holds and R;(w,u) is created from R;(w,v) and Ry(v,u): Since AD;a €
Ext) (I), we have AD;Oya € Ext(I), and by Lemma 6.3, 0,0, € H(w). Hence, by the
inductive assumption, Oy € H(v) and o € H(u).

o Case A5(j, k,1) holds and R;(w,w) is created from R;(v,u) and Ry (v, w): Since O;a € H(w),
by the inductive assumption, ¢p0;« € H(v). Hence, by Lemma 6.3, there exists a O-lifting
form A’ of v such that A'Cr0,a € Ext) (I). Hence A'Oja € Ext (1), and by Lemma 6.3,
Oja € H(v). By the inductive assumption, it follows that o € H (u).

The second assertion can be proved in a similar way (see [32]). a

HRecall that a denotes an atom of the form A’ E, while A denotes a simple atom of the form E or VE, where E
is a classical atom and V is a modal operator.

28

To increase readability we will recall expected lemmas and theorems before giving their proofs.

Expected Lemma 5.2 Let I be an L-normal model generator, M the standard L-model of I, and
o the standard <-realization function on M. Then M is an L-model and M,o F I.

Proof. By the definition, M is an L-model. Let M’ = (W,7,Ry,..., R, H) be the extended
L-model graph of I. It can be proved by induction on the length of a that for any w € W, if
a € H(w), then M’,0,w E . The cases when « is a classical atom or a = (E);(are trivial. The
case when a = 0, is solved by Lemmas 6.2 and 6.4. Hence M,o F I. O

Expected Theorem 5.3 The standard L-model of an L-normal model generator I is a least
L-model of I.

Proof. Let M = (W, 7,Ry,..., Ry, H) be the standard L-model graph of I, o the standard <-
realization function, and {R} | 1 <4 < m} the skeleton of the standard L-model of I. By Lemma
5.2, M is an L-model of I. Let N = (D, Ws, 72, 51,...,Sm,m) be an arbitrary L-model of I and o4
a <-realization function on N such that N,oo E I U Serialy,.

Let r C W x Ws be the least relation such that, for all w, wsy, us, F, i

o 7(7,72);
o if r(w,ws) and R;(w,w(E);) hold, and og(ws, (E);) is defined, then r(w(E);, o2(wa, (E);));
o if r(w,ws) and S;(wa, uz) hold, then r(w(T);, uz).

Note that if 7(w,ws) and S;(ws, uz) hold, then for u = w(T); we have r(u,u2) and R;(w,u).

We prove that M <, N. We first show that if r(u,us) and o € H(u) then N,o09,us F a. We
prove this by induction on the length of u. Suppose that r(u,us) holds and o € H(u). The case
u = € is trivial. Let v = w(E); and inductively assume that the assertion holds when u is replaced
by w. There are two cases:

o uy = oa(ws, (E);), r(w,ws), and R;(w,w(E);), for some wy € Wa; or
o E=T, r(w,ws), and S;(w2, us), for some wy € W.

Consider the first case. Since « € H(u), either O;a € H(w) or (E);a € H(w). By the inductive
assumption, either N, oo, we F O;a or N, o9, we E (E);a. Hence, N,o9,02(ws, (E);) E «, which
means that N, oq,us F a.

Consider the second case. Since o € H(u), it follows that O, € H(w). By the inductive
assumption, N, o9, ws F O, and hence N, 03, us F «a since S;(wa, usz).

We now show that if r(w,ws) and R;(w,w(E);) hold then oa(ws, (E);) is defined. The case
E = T is trivial. Suppose that r(w,ws) and R;(w,w(E);) hold and E # T. Thus, there exists
(EY;a0 € H(w) for some a. Hence N,o92,ws F (E);a and o2(we, (E);) is defined. Therefore, the
second condition in the above definition of r can be simplified to “if 7(w, w2) and R}(w, w(E);) hold
then r(w(E);, oa(ws, (E);))”.

It is straightforward to prove by induction on the number of steps needed to obtain R;(w,u)
when extending {R} [1 < j <m} to {R; | 1 < j < m} that if R;(w,u) then: i) if r(w, w2) then there
exists ug such that r(u,us) and S;(wa,ug); ii) if r(u,us) then there exists wq such that r(w,ws)
and S;(we, uz). We give here only the base case, when u = w(E); : i) Suppose that r(w, w2) holds.
We have R(w,w(E);), hence o2(ws, (E);) is defined. The assertion holds for us = oa2(w2, (E);).
ii) Suppose that r(u,ug) holds. By the definition of r, there exists wy such that r(w,ws) and
(Si(wa,us) or ug = oo(wa, (F);)). It is clear that the assertion holds for such ws.

We have proved that r satisfies all the conditions to guarantee M <, N. This together with
Lemma 5.2 implies that M is a least L-model of I. O

29

Expected Lemma 5.4 If0,; ...0;, is a O-lifting form of a modality X\ in L-normal labeled form
and A is an L-instance of B, then By Fr O;, ...0;, ¢ for any formula ¢ without labeled modal
operators.

Proof. Just note that @ = O;, ... 0;, (due to Definition 5.12 of <r). O

Expected Lemma 5.5 Let I be an L-normal model generator, M the standard L-model of I, and
a a ground L-MProlog goal atom. Suppose that M = «. Then « is an L-instance of some atom of
SatL(I),

Proof. Let M’ = (W, 1, Ry,..., Ry, H) be the extended L-model graph of I, @ = O;, ...d;, and
w = (T)iy ...{(T)i,. Suppose that « is of the form EFE. Since M F «, by Lemma 6.2, we have
M',wE E. By Lemma 6.3, it follows that @F € Saty(I). Now suppose that « is of the form B, E.
Since M F «, we have M,w F <;E, and by Lemma 6.2, M’ w F O;E. There exists u such that
R;(w,u) holds and M’,u F E. By Lemma 6.4, it follows that &;FE € H(w). Hence @<, E € Saty(I)
(by Lemma 6.3). O

Expected Lemma 5.7 If P is an L-MProlog program then P Fr I p.

Proof. Let M = (D,W,7,Ry,..., Ry, m) be an arbitrary L-model of P and o a mazimal <-
realization function on M (see Definition 5.3). It is straightforward to prove by induction on
n that M,oc E Tr p T n. In fact, if M,o E T p T n, then M,0 F Saty(Tr,p T n), and hence
M,oc T p(Sat,(Tr,pTn)). Since NFy(I) = I for any I, it follows that M,o = T p(Tr p Tn).
Therefore M,o F I, p. O

Expected Lemma 5.8 Let P be an L-MProlog program and I an L-model generator of P. Then
the standard L-model of I is an L-model of P.

Proof. Let I’ be the least extension of I such that, if Elp is a program clause of P, ¢ = (A «
Bi,...,B,), and 9 is a ground instance of ¢, then @p, € I’, where py is a fresh 0-ary predicate
symbol. Let M and M’ be the extended L-model graphs of I and I’, respectively. It is easy to
see that these model graphs have the same frame. Let M = (W,7,Ry,..., Ry, H) and M’ =
(W,7,R1,..., Ry, H'). Clearly, M is an L-model. By Lemma 6.2, it suffices to show that M £ P.

Let B¢ be a program clause of P, ¢ = (A « By,...,B,), and ¢ a ground instance of ¢. By
Lemmas 5.2 and 6.2, M’ E @lpy. To prove that M E P it is sufficient to show that for any w € W,
if py € H'(w) then M, w E 9. Suppose that py € H'(w).

Let A =w and @ = 0, ...0;, be a O-lifting form of A . By Lemma 6.3, some O-lifting form
of Apy, belongs to Saty(I"). This O-lifting form must be @'py,. Thus @'py, € Satr({@py}). Hence
@py — @'py is L-valid and the program clause @'t is a ground L-instance of Ele.

Let ¢ = (A" <« B{,...,B}) and suppose that M,w E B; for all 1 < i < n. We need to show
that M,w E A’. For this, we first show that a O-lifting form of AB! belongs to Satr(I) for every
1 < i < n. Consider the following cases:

e Case B} is a classical atom: The assertion follows from Lemma 6.3.

e Case B is of the form O, E: Since M,w F Bj, it follows that M, w(T); F E, and by Lemma 6.3,
some O-lifting form of A(T);E belongs to Satr(I), which means that some O-lifting form of
AB] belongs to Sat(I).

e Case B is of the form <, E: Since M, w & Bj, there exists a world u such that R;(w,u) holds
and M,u F E. By Lemma 6.4, it follows that &;F € H(w). Hence, by Lemma 6.3, some
O-lifting form of AB; belongs to Saty(I).

Therefore, by the definition of T);, p, some O-lifting form « of AA”, where A” is the forward
labeled form of A’, belongs to 1)1, p(Satr(I)). Since T, 1, p(Satr(I)) = T p(I) C I, by Lemma 5.2,
we have that M, o E o, where o is the standard <-realization function on M. Hence M,w F A’
Thus M, w F 1, which completes the proof. O

30

Expected Lemma 5.10 Let A and A\’ be ground modalities in L-normal labeled form. Let B be
an atom of the form E, O;E, or O,E, and B' an atom of the form E, O;E, (X);E, or O;E, where
X is a fresh atom variable. Suppose that A is an L-instance of ' and B is an L-instance of B'.
Then N'B’ is derivable from AB using rSaty,.

Proof. We have that A’ is a O-lifting form of /A, and either B’ is a O-lifting form of B or B’ is of
the form (X); and B is of the form <;. Hence A’'B’ is derivable from AB using applications of the
rSaty, rules AV;a — AQ;a and AC;a — A{X);a. O

Expected Lemma 5.11 Suppose that 8 is an atom in almost L-normal labeled form and o €
Satr,({8}) or a € NFL({8}). Then there exists an atom 3’ and a substitution 0 s.t. 8 = 3'0, the
domain of 0 consists of fresh atom variables, and 3’ is derivable from o using rSaty and rNFL.

Proof. Note that NFp, is the identity operator and we can ignore it. If « is derived from 3 using
Saty, rules identified by (i1),..., (ix), then by applying the sequence of rSaty, rules identified by
(i%), ..., (i1) to o we obtain an atom (' such that 5 = 30, where 6 is a substitution with domain
consisting of fresh atom variables. O

Expected Lemma 5.12 Let 8 = rSatr(«), M be an L-model, o a <-realization function on
M, and 0 a substitution. Suppose that M,o E ¥ (8'0) for some O-lifting form [of 8. Then
M,o EV. ('0) for some O-lifting form o' of a.

Proof. If the rule used to derive 3 from a is AV;y « AO;v, where v denotes an atom, then just let
o’ = [#'. The remaining cases are similar to each other, and we consider, e.g., the case when the used
rule is AO;Oy «— AQ;y. We have that o = AD;O,y and 8 = Ay, Let §7 = AV, Since
M,o E V. (0'0), we have M,o F V. (A'$iv'6), and hence M, o E V. (A'D;0,y'0) (since A5(7, 4, k)
holds). Choose o' = A'0;Oy . O

Expected Lemma 5.13 Let § =5 rNFy(a), M be an L-model, ¢ a mazimal <-realization
function on M, and 0 a substitution. Suppose that M,c EV_(3'0) for some O-lifting form (' of 3.
Then M,o E V. (a/60) for some O-lifting form o of a.

Proof. This lemma is irrelevant for L = BSM M, because there are no rules specifying rNFy. O

7 Programming about Multi-degree Belief

Our SLD-resolution calculus for MProlog in BSMM is elegant like a Hilbert-style axiom system,
but similarly to using a Hilbert-style axiom system for automatic reasoning, it is not very efficient.
The calculus may be too “syntactic”. For more specific modal logics like the mentioned multimodal
logics of belief, we want to have more efficient SLD-resolution calculi. For this aim, we look more
deeply at “semantical” properties of the considered logics and use advanced techniques introduced
for our framework like normalizing modalities or ordering modal operators.

To reason about multi-degree belief we can use the multimodal logics K D14, KDI4,, KDI4,5,
and K DI45. Recall that, in these logics, O;p stands for “y is believed up to degree i’ and <;p
stands for “it is possible weakly at degree i that ¢”. In this section, we present a schema for
semantics of K DI4,5-MProlog and prove its correctness. We also give an example in the second
subsection. Schemata for semantics of MProlog in KDI4, KDI4,, and KDI45 are presented in
the Appendix, and proofs of their correctness are given in [32].

7.1 A Schema for Semantics of K DI/4,5-MProlog

In this subsection, let L denote the logic K DI4,5. It can be checked that a connected frame
(W, T,Ry,...,Ry) is a KDI45-frame iff there are nonempty subsets of worlds W7 C ... C W,
such that W = {7} UW,,, and R; = W x W,, for 1 <14 < m. (Recall that m is the maximal modal

31

L=KDI4,5, L-MProlog

=<1 is defined by Definition 5.12 at page 17.
A modality is in L-normal form if its length < 1.

Rules specifying

Ext;, O,E—0;E ifi>j (1)
Sat; the rules specifying Exty, plus
DiE — DmDiE (2)
<F>1E - DmOiE (3)
NF, VV'E—V'E if V' is of the form O, or (E); (4)

rNF, VE — (X),VE if V is of the form O; or (E);
and X is a fresh atom variable (5)

rSaty, AOE «— A(X);E for X being a fresh atom variable (
AV — ADJ‘O[ifi<j (
AOE — NOJE ifi> j (
VV'E «— V'E if V' is of the form O; or <; (

Table 2: A schema for semantics of K DI4,5-MProlog

index; and we use E to denote a classical atom, A to denote a simple atom of the form FE or VE,
where V is a modal operator, and « to denote an atom of the form AFE.)

In Section 5 we have given several small examples involving with K DI4:;5. In Table 2, we
present a full schema for semantics of K DI14,5-MProlog. L-normal form of modalities and the rules
(2)-(5) and (9) in that schema are justified by the L-tautology Vi = V'V¢ with V and V’ being
unlabeled modal operators. The rule (1) follows from the axiom (I), the rule (7) is based on the
axioms (D) and (I), and the rule (8) follows from the reverse of the axiom (I).

The schema given in Table 2 is formulated so that it can use the proofs given in Section 5.
However, the rules (6), (7), (8) of Table 2 can be simplified by deleting the occurrences of A and
replacing a by E without violating soundness and completeness of SLD-resolution. Furthermore,
the rule (7) can be deleted if: a) the condition of the rule (5) that V is of the form O, or (E); is
deleted, b) when resolving a goal with an input clause, we relax the condition that mgu 6 unifies the
selected head atom A’ with the forward labeled form A” of the head of the input clause, but only
require that # is a most general substitution such that A’6 and A”# have the same classical atom
and A’6 is an L-instance of A”#. It can be shown that every SLD-refutation in the original calculus
can be simulated in the new calculus by another one with a more general computed answer, and
vice versa. This means that the new SLD-resolution calculus is sound and complete, provided that
so is the original calculus.

Example 7.1 Reconsider the MProlog program P, given in Example 4.1. To increase readability,
we recall some clauses of Py,qp:

w5 = O(Cagood_in_maths(x) < good_in_physics(x))
g = Osphysics_student(Mike) —

Here is an SLD-refutation of Pp,q, U {«— $agood_in_maths(z)} in K DI45:

Goals Input clauses/rules MGUs, constraints

32

— Oggood_in_maths(x)

— (X)agood_in_maths(x) (6) €

— (Y);{good_in_maths(z))2good_in_maths(z) (5) {X/good_in_maths(x)}
— (Y');good_in_physics(x) ©5 {zg/x},j <2

«— Ojgood_in_physics(x) (7) €,j <2

o ©g {z/Mike}

The computed answer is {z/Mike}. In the above refutation, j can take value 1 or 2. In another
work, we have implemented MProlog as an additional module to Prolog, and constraints as goal
atoms. With that module, we can also consider, for example, the goals « O;good_in_maths(x) and
— Oyg0od_in_maths(x).

Theorem 7.1 The schema given in Table 2 for semantics of K DI4,5-MProlog is correct.

To prove this theorem we have to prove Expected Theorem 5.3 and Expected Lemmas 5.2, 5.4,
5.5, 5.7, 5.8, 5.10 — 5.13. To increase readability we will recall expected lemmas and theorems before
giving their proofs.

Expected Lemma 5.2 Let I be an L-normal model generator, M the standard L-model of I, and
o the standard <-realization function on M. Then M is an L-model and M,o E I.

Proof. By the definition, M is an L-model. Let {R; | 1 <4 < m} be the skeleton of M. We prove
by induction on the length of a that for any w € W, if « € H(w), then M,o,w F «. The cases
when « is a classical atom or a = (E); F' (and w = 7) are trivial. Consider the remaining case when
a=0,F and w = 7. Let u be a world such that R;(7,u) holds. We show that E € H(u). Since
R;(7,u), v must be of the form (F); for some F and j < 4. Since O,E € H(7), by the definition of
Ezxty, we have O;F € H(r), and hence E € H(u). a

Expected Theorem 5.3 The standard L-model of an L-normal model generator I is a least
L-model of 1.

Proof. Let M = (W, 7,R1,...,R,,, H) be the standard L-model graph of I, o the standard <-
realization function and {R} | 1 < < m} the skeleton of the standard L-model of I. By Lemma
5.2, M is an L-model of I. Let N = (D, W5, 72, 51,...,Sm,m) be an arbitrary L-model of I and o4
a <-realization function on N such that N, oo E I U Serialy,.

We first show that if R.(r, (E);) holds then oa(7e, (E);) is defined. The case E = T is trivial.
Suppose that R(7, (E);) holds and E # T. Thus, there exists (F);a € H(r) for some a. Hence
N, 09,79 E (EY;a, and o2(wa, (F);) is defined.

Let » C W x W5 be the least relation such that, for all w, ws, us, F, i:

b T(TvTQ);
e if Ri(7,(FE);) holds then r({E);, o2(m2, (E)));
o if r(w,ws) and S;(ws,uz) hold, then r((T);, uz).

We prove that M <, N. If r(w,ws) and S;(wa,us2) hold, then for u = (T); we have r(u, uz)
and R;(w,u). We proceed by showing that if r(u,us) and o € H(u) then N, o9, us F . The case
u = T is trivial. Suppose that u = (E);, r(u,us2), and « € H(u). There are two cases:

o uy = 05(7e, (E);) and Rj(7, (E);); or
e E=T, r(w,ws), and S;(wa, uz), for some w, ws.

Consider the first case. Since o € H(u), either O;a € H(7) or (E);« € H(7). Hence, N, 09,72 F
O,a or N,o02,7 F (E);a. It follows that N, og,us F a.

Consider the second case. Since a € H(u), it follows that O;a € H(7). Hence, N, 03,72 F D;a.
Since r(w,wz) and S;(w2,us), it can be shown that ws is directly or indirectly reachable from 7o
(via the accessibility relations S;, 1 < j < m). Hence S;(72,u2) holds, and N, o2, us F a.

33

To prove M <, N, it remains to show that if r(w,ws) and R;(w,u) hold, then there exists
uz € Wa such that r(u,usz) and S;(we,us) hold. Suppose that r(w,ws) and R;(w,u) hold. Tt
follows that R’(7,u) holds for some j < i. Let u = (E); and choose uz = o2(72, (E);). Thus we
have r(u, uz). Since r(w,ws), it can be shown that wy is directly or indirectly reachable from 7o
(via the accessibility relations Sk, 1 < k < m). Hence S;(wa, u2) holds. O

Expected Lemma 5.4 If0O; ...0;, is a O-lifting form of a modality A\ in L-normal labeled form
and A is an L-instance of B, then By Fr, O, ...0;, ¢ for any formula ¢ without labeled modal
operators.

Proof. Just note that h = 1 (since A is in L-normal labeled form) and O;, is an L-instance of @. O

Expected Lemma 5.5 Let I be an L-normal model generator, M the standard L-model of I, and
a a ground L-MProlog goal atom. Suppose that M = «. Then « is an L-instance of some atom of
SatL(I),

Proof. If « is of the form F or O,F, then o € Extr(I) (since M F «), and hence o € Satp(I).
Suppose that a = O;E. Let (W, 7, Ry,..., Ry, H) be the standard L-model graph of I. Since
M E a, there exists a world u = (F); of M such that j < ¢ and £ € H(u). By Lemma 5.1,
some O-lifting form of (F'); E belongs to Exty (I). It follows that either O;F or (F),;E belongs to
Extr(I). Hence « is an L-instance of some atom from Saty, (I). a

Expected Lemma 5.7 If P is an L-MProlog program then P Ep I, p.

Proof. Let M = (D,W,7,Ryq,...,Ry,m) be an arbitrary L-model of P and ¢ a maximal <-
realization function on M. Note that if M,o F V(E);FE then M,o F (E);E. Tt is straightforward
to prove by induction on n that M,o F T pTn. Hence M,o F I, p. Therefore P Fr I1, p. O

Expected Lemma 5.8 Let P be an L-MProlog program and I an L-model generator of P. Then
the standard L-model of I is an L-model of P.

Proof. Let M be the standard L-model of I and o the standard <-realization function on M. It is
sufficient to prove that for any ground L-instance E(A < By,...,B,) of some program clause of
P, for any w € W being an L-instance of @, M,w E (A «— By,...,B,). Suppose that M,w F B;
for all 1 <i <n. We show that M,w F A.

Let A’ = w. We first show that for any ground simple atom B of the form F, O;F, or O F, if
M,wF B then A’B is an L-instance of some atom from Saty (I). Suppose that M,w E B. If B is
of the form E, then by Lemma 5.1, some O-lifting form of A’ B belongs to Exty,(I), and hence A'B
is an L-instance of some atom from Saty (). If B is of the form O,F then, by the construction of
M, it follows that O,F € Exty(I), and hence {0, F, 0,,0,E} C Saty(I), which implies that A'B
is an L-instance of some atom from Satr(I). Now consider the case when B is of the form <, FE.
Since M, w F O, E, either O,E € Exty(I) or (F),;E € Exty(I) for some F and j < i. Hence, either
{0,;E,0,,0,E} C Saty(I) or {(F),;E,0,0,;E} C Saty(I) for some F and j < i. Therefore A'B
is an L-instance of some atom from Satr,(I).

Since M,w E B; for 1 < i < n, it follows that A’'B; is an L-instance of some atom from Satr,(I).
Consequently, A’A is an L-instance of some atom « from 1 p(Satr(I)). Suppose that « is in
L-normal form. We have o« € T, p(I) C I. By Lemma 5.2, we have that M,o F «, and hence
M,w E A. Now suppose that « is not in L-normal form, i.e. the length of the modality of « is
greater than 1. Thus A is of the form O;F or &;E. Let A’ be the forward labeled form of A. We
have A’ € T, p(I). By Lemma 5.2, it follows that M, E A’. Hence M, w E A. ad

Expected Lemma 5.10 Let A and /\' be ground modalities in L-normal labeled form. Let B be
an atom of the form E, O, E, or O,E, and B’ an atom of the form E, O E, (X);E, or O;E, where
X is a fresh atom variable. Suppose that A is an L-instance of A’ and B is an L-instance of B’.
Then N' B’ is derivable from AB using rSaty,.

34

Proof. Because A and A\’ are modalities in L-normal labeled form and A is an L-instance of A\,
the atom A’B is derivable from AB using the rSaty, rule “AV;a «— AOjaif i < j”. Next, since B
is an L-instance of B’, A\’B’ is derivable from /A’B using the first three rules specifying rSaty. O

Expected Lemma 5.11 Suppose that 8 is an atom in almost L-normal labeled form and o €
Saty,({8}) or « € NF({8}). Then there exists an atom 3’ and a substitution 0 s.t. = 3’0, the
domain of 0 consists of fresh atom variables, and 3’ is derivable from o using rSaty and rNFL.

Proof. We give here a proof only for one representative case, when « is derived from [using the
NFp rule VV'E — V'E, where V' is of the form O; or (E);. Suppose that « = V'E and 8 = VV'E.
If V is of the form O;, then by applying the rNFp, rule V'E «— (X),;V'E and the rSat;, (7) rule
instance (X),V'E «— O;V'E to «, we obtain ' = O,V'E = §. If V is of the form (F); (resp.
(Y);), then by applying the rNFy, rule V'E «— (X);V'E to a, we obtain 3’ = (X),;V'E and have
that 8 = (3’0, where § = {X/F} (resp. § = {X/Y}). O

Expected Lemma 5.12 Let § = rSatr(a), M be an L-model, 0 a <-realization function on
M, and 0 a substitution. Suppose that M,o E ¥V (8'0) for some O-lifting form 3 of 8. Then
M,o EVY. ('0) for some O-lifting form o' of .

Proof. Consider the case when the rule used to derive 8 from « is VV'E «— V'E, where V' is O;
or ¢;. Let & = V,V'E and = V'E. Then we can choose o = O;V'E. It is easily seen that
M, o EV ('0), since M,o E V. (5'6). Now consider the case when the rule used to derive 3 from «
is AOE — AOE with i > j. Let a = AOE, 3= AO,E, and ' = A’V E. Then we can choose
o = NOE. Since M,o E VY (5'0), we have M, 0 E V. (/#). The two remaining cases are similar to
the last case.]

Expected Lemma 5.13 Let § =5 rNFp(a), M be an L-model, ¢ a mazimal O-realization
function on M, and 0 a substitution. Suppose that M,oc E V. (8'0) for some O-lifting form 3’ of B.
Then M,c EV.(a/60) for some O-lifting form & of a.

Proof. There is only one N Fy, rule. Let ad = VE and 8 = (X);VE, where V is 0, or (E);. If
V = 0y, then let V' = 0;, else let V' = ©;. Since M, o F V.(3'0), we have M E V'Ef. Since o
is a maximal O-realization function on M, it follows that M,o F V. (VE®). Hence we can choose
o = a. O

8 Programming in MProlog for Multi-agent Systems

To program for multi-agent systems we can use the logics K D4s55, K D45(,,), and KD41,5,. In
these logics, O;p stands for “agent ¢ believes that ¢ is true”, while ;¢ stands for “¢ is considered
possible by agent ¢”. The logic K D4,5, can be used for distributed systems of belief, in which agents
have full access to belief bases of each other. The logics K D45,,) and KD41,5, are intended for
reasoning about epistemic states of agents. In K D41I,5,, some modal indices stand for groups of
agents, and using them we can reason about common belief. In this section, we present a schema
for semantics of K D4,5,-MProlog and give an example. Schemata for semantics of MProlog in
K D45,y and KD41I,5, are presented in the Appendix, and proofs of their correctness are given
in [32].

8.1 A Schema for Semantics of K D4,5,-MProlog

In this subsection L denotes K DI4,5. It can be checked that a connected frame (W, 7, Ry, ..., Ry)
is a K D4,5;-frame iff there are nonempty subsets of worlds Wy, ..., W, such that W = {r}UW; U
. UW,, and R; = W x W, for 1 < i < m. Note that this property is similar to the property of
K DI4,5-frames. The difference is that the logic K D4:55 does not contain the axiom (I) and in
this logic we do not have the condition that W; C W; for i < j.

35

In Table 3, we present a schema for semantics of K D4.,5,-MProlog. The L-normal form of
modalities and the rules (1)—(4) and (7) in that schema are justified by the L-tautology Vi = V'V
with V and V' being unlabeled modal operators, while the rule (6) is based on the axiom (D). This
schema is similar to the schema for semantics of K DI4,5-MProlog, except that it does not contain
rules involving with the axiom (I). Analogously as for K DI4:5, we can prove the following theorem.

Theorem 8.1 The schema given in Table 3 for semantics of K D4:55-MProlog is correct.

Example 8.1 Reconsider the MProlog program Pyg;, given in Example 4.2. To increase readability,
we recall some clauses of Pygp:

1 = Oqlikes(Jan, cola) —

w5 = Oolikes(Jan, pepsi) «—

ps = Og(likes(z, cola) « likes(x, pepsi))

w10 = Oglikes(Jan, cola) —

13 = Os(very-muchlikes(x,y) « likes(z,y), O1likes(z,y), Oxlikes(z,y))
14 = very-much_ likes(x,y) — Ozvery_-much_likes(x,y)

Here is an SLD-refutation of P U {« very_-much_likes(z,y)} in K D4,5:

Goals Input clauses/rules ~ MGUs

— very_much_likes(x,y)

< Ogvery-muchlikes(z, y) P14 {z1/2, 91 /y}

— Oglikes(x,y), 0301 likes(x,y), O30zlikes(z,y) 13 {@a/w,y2/y}

— O30¢likes(Jan, cola), O30slikes(Jan, cola) »10 {z/Jan,y/cola}
— Oylikes(Jan, cola), O30xlikes(Jan, cola) (7) €

— Oz04likes(Jan, cola) v1 €

— Oglikes(Jan, cola) (7) €

— Oglikes(Jan, pepsi) ©s {z7/Jan}

< %) 3

The schema given in Table 3 is formulated so that it can use the proofs given in Section 5.
However, similarly as for the case of K DI4,5, the rules (5) and (6) of Table 3 can be simplified in
the way that the occurrences of A in those rules are deleted and « in the rule (6) is replaced by E.
Furthermore, when resolving a goal with an input clause, if we relax the condition that the mgu 6
unifies the selected head atom A’ with the forward labeled form A” of the head of the input clause,
but only require that 6 is a most general substitution such that A’6 and A”6 have the same classical
atom and A’6 is an L-instance of A”6, then the rule (6) can be deleted. It can be shown that every
SLD-refutation in the original calculus can be simulated in the new calculus by another one with
the same computed answer. This means that the new SLD-resolution calculus is also sound and

complete.
An agent should keep clauses that define its epistemic states. This means that agent ¢ should
keep clauses of the form V,;FE «— By,..., B, or 0;(A « By,...,B,). Furthermore, program clauses

of the form O;(0;F « By, ..., B,) with i # j have little sense in distributed systems of belief. It
can be shown that program clauses of that form can be disallowed without reducing expressiveness
of K D4:5s-MProlog. If we adopt this restriction then the rule (4) in Table 3 can be modified so that
the involved modal operators have the same modal index (i.e. agent index). Program clauses of the
form F <« By,..., B, can be kept by a special agent, which communicates with users. Whenever
an agent meets a goal atom of the form V;FE it will require agent i to solve the goal «— V;FE, and
whenever an agent meets a goal atom of the form E (without modal context) it will require the
special agent to solve the goal « F.

9 Discussion and Conclusion

9.1 Relation with Other Works

Our framework is formulated with an intention for multimodal logics whose frame restrictions
consist of the conditions of seriality and some classical first-order Horn formulas. In particular,

36

L=KD4,5,, L-MProlog

=< is defined by Definition 5.12.
A modality is in L-normal form if its length < 1.
Rules specifying

FEzxt;, no rules

Saty, 0,F — DjDiE (1)
(F)iE — 0;0:F (2)
NF, VV'E—V'E if V' is of the form O; or (E); (3)

rNF, VE «— (X);VE if Vis of the form O, or (E);
and X is a fresh atom variable (4)

rSat;, AO;E — A(X);E for X being a fresh atom variable (5)
Avia — ADiOl (6
VV'E «— V'E if V' is of the form O; or <; (

Table 3: A schema for semantics of K D4,5,-MProlog

we have applied the framework for the BSM M class of basic serial multimodal logics. Clarity of
the Saty /rSaty, rules used for the given schema for semantics of BSMM-MProlog suggests that
our framework can be applied for other multimodal logics not belonging to the BSM M class. For
example, it can be instantiated for serial context-free grammar logics, which are multimodal logics
characterized by the axioms of seriality and axioms of the form O;p — Oj, ... 0, ¢.

In multimodal logic programming, Debart et al. [15] considered multimodal logics which have
a finite number of modal operators O; and <; of any type among KD, KT, KD4, KT4, KF and
interaction axioms of the form O;¢ — O;p. This class is relatively smaller than the BSM M class
considered in this work. Namely, apart from the axiom (F) : O;p = <;¢p, the other modal axioms
considered by Debart et al. in [15] are included for the BSM M class, while the symmetry modal
axioms (B) and (5) and interaction axioms other than (I) like O;p — O;0;¢ are absent in the
work by Debart et al. [15]. In our opinion, the approach by Debart et al. can be generalized to deal
with the BSM M class. However, it is not clear to us whether such an extension is straightforward
or not: for example, are there only finitely many (maximally general) unifiers for any two “paths”
in any BSM M logic?

Another work explicitly devoted to multimodal logic programming is by Baldoni et al. [10]. The
authors gave a framework for developing declarative and operational semantics for logic programs
in multimodal logics which have axioms of the form [¢1]...[tn]e — [s1]. .. [sm]e, where [¢;] and
[s;] are universal modal operators indexed by terms t; and s;, respectively. To represent worlds
in canonical models of programs, the authors used sequences of universal modal operators, which
are similar to sequences of (T); in our work. The work [10] contains several interesting examples
(illustrating “epistemic reasoning, defining parametric and nested modules, describing inheritance
in a hierarchy of classes and reasoning about actions”). The logics considered in [10] are called
inclusion multimodal logics (also known as grammar logics). This class of logics is disjoint with the
class of multimodal logics considered in this work. Namely, the former multimodal logics are not
serial, while the latter ones are serial. However, the biggest difference between [10] and our work is
that these two works base on different settings. Baldoni et al. [10] assume that modal logic programs
and goals do not contain existential modal operators, while we do not adopt such a restriction. Our
framework cannot cope with context-sensitive grammar logics, while the framework by Baldoni et

37

al. [10] does not consider reasoning about possibility!2.

Despite that Nonnengart [38] studied modal logic programming explicitly only for serial
monomodal logics, his semi-functional translation method works also for serial multimodal log-
ics. As mentioned earlier, Nonnengart [38] uses accessibility relations for translated programs, but
with optimized clauses for representing properties of the accessibility relations, and does not modify
unification.

In our opinion, all the mentioned approaches are worth for studying. Each approach offers
a method to deal with modalities, which in turn can be exploited deeply or not. For example,
using semi-functional translation, one can use the restrictions on accessibility relations without
optimizations. But in that case, the proof procedure would not be very efficient. As another
example, although the logic K D145 belongs to the BSM M class, our SLD-resolution calculus given
for KDI4:5-MProlog is much more efficient than our SLD-resolution calculus given for BSM M-
MProlog when used for K DI4,5.

The direct approach has a good property that it is somehow friendlier for users than the transla-
tion approaches in the debugging and iterative modes of programming. Let us consider, for example,
translation of the goals G; = « Op and G2 = « OOp(x). Using any of the mentioned translation
methods, Gy is translated to < p(7:a). The goal Gy is translated to « p(7: f(z):y,z) using the
functional translation, and to « p(y,z), R(7: f(z),y) using the semi-functional translation. In our
opinion, the translated goals are much less intuitive than the original ones. With a similar opinion,
a reviewer of our conference paper [34] wrote “it is important not to translate away all modalities
because the modalities allow us to separate object-level and epistemic-level notions nicely”. Fur-
thermore, if we want to let programmers to have some control in using properties of the base logic,
then rules used in our approach (e.g. in the form AD;Cra — Ao or AD;a «—— AQ;0ka) are
more intuitive for them than rules used in the semi-functional translation approach (e.g. in the form
Rk(ma y) — Rj (Z7 1‘), Rz(za y))

Note that our approach and the translation approaches all assume the conditions of seriality.
With respect to the least model semantics, the semi-functional translation has the good property
that it is straightforward to convert the least Herbrand model of a translated program to the least
Kripke model of the original program. It seems hard to develop the least Kripke model semantics
for modal logic programs using the functional translation approach. With respect to fixed /varying
domain and rigid/flexible terms, Debart et al. [15] used Kripke semantics with fixed domain and
rigid /flexible terms. Nonnengart [38] used Kripke semantics with varying domain and flexible terms.
Baldoni et al. [10] used Kripke semantics with varying domain and rigid terms. In this work, we
used Kripke semantics with fixed domain and rigid terms. See Garson’s work [22] for a survey of
the different systems for quantified modal logic. A discussion on extending our framework for the
other versions of Kripke semantics is given later.

In comparison with other works that also use the direct approach for defining declarative and
procedural semantics for modal logic programs, e.g. [6, 10], our work [31] and this are the first ones
that do not assume any special restriction on occurrences of modal operators. In [6] Balbiani et al.
gave a declarative semantics and an SLD-resolution for a class of logic programs in the monomodal
logics KD, T and S4. To modal programs the authors associate a declarative semantics represented
by a tree which is defined as the limit of a certain transformation on modal programs. The fixpoint
represents a minimal Kripke model of the program. The work assumes that the O operator does
not occur in bodies of program clauses and goals. In the definition of the minimal Kripke model
of a program [6], the technique of connecting each newly created world to an empty world at the
time of its creation (or a similar one) is not used, hence although the minimal Kripke model of a
program defined in [6] is minimal with respect to the restricted class of goals, in general it is not
a least Kripke model of the program in the considered logic. There is a common point between
[6] and our work: in both of the works, labeled modal operators are used to convert (t)(¢ A) to
(t)o A (t)9. Labeled modal operators in [6] come from Skolemization, and terms are used to label

12Note that every positive propositional logic program without ¢ in KD45 (i.e. K D45,y with m = 1) has a least
KD45-model with two possible worlds, and it cannot express complicated properties about possibility. Furthermore,
existential modal operators cannot be totally replaced by universal modal operators using interaction axioms. For
example, every positive propositional logic program without existential modal operators has a least K DI4:5-model
with m + 1 possible worlds (recall that m is the number of different modal indices), and we have the same problem
as stated before.

38

the ¢ operator. In our work, the labeling technique results from the technique of building model
graphs, and we feel convenient to use classical atoms and atom variables to label <; operators.

In comparison with our previous work [31] on monomodal logic programming, in this work
the operators Exty, Saty, NFy, rSaty, and rNFy, are all specified by sets of rules. This way is
more declarative and better reflects axioms of the base logic. The O-lifting and backward labeling
operators introduced in [31] are classified in this work as rules for specifying rSaty,. The definitions
of L-instance of an atom and L-instance of a program clause have been also abstracted. The
framework given here differs from [31] at an important aspect that it is formulated for a class of
modal logics but not for specific modal logics. At least, the proofs of soundness and completeness
of SLD-resolution given in Section 5.5 are reusable without modifications. The framework can be
easily instantiated for the serial monomodal logics considered in [31].

In the technical report [32], we study also the case when existential modal operators are disal-
lowed in MProlog programs and goals, resulting in MProlog-O, and show that in that case schemata
for semantics of MProlog can be significantly simplified.

This work extends or relates to our recent conference papers [33, 34, 35, 36, 37].

9.2 On Implementation of MProlog

As far as we know, amongst the works by other authors that use the direct approach for modal logic
programming, only the Molog system proposed by Farinas del Cerro [18] has been implemented.
With Molog, the user can fix a modal logic and define or choose the rules to deal with modal
operators. Molog can be viewed as a framework which can be instantiated with particular modal
logics. As an extension of Molog, the Toulouse Inference Machine (TIM) [7] (together with an
abstract machine model called TARSKI for implementation [8]) makes it possible for a user to
select clauses which cannot exactly unify with the current goal, but just resemble it in some way.

As reported in [33, 34], we have designed and implemented the modal logic programming system
MProlog using our framework. This system is written in Prolog as a module for Prolog. Codes,
libraries, and most features of Prolog can be used in MProlog programs. The system contains a
number of built-in SLD-resolution calculi for different modal logics, including all of the considered
multimodal logics of belief and basic serial monomodal logics. It has been designed so that users
can implement and add SLD-resolution calculi to the system in a modular way.

Users can use and mix different calculi in an MProlog program. For flexibility, there are three
kinds of predicates: modal predicates, classical predicates (which do not depend on possible worlds
in Kripke models), and classical predicates that are defined using also modal predicates. The last
kind of predicates is useful, for example, when a predicate is implemented by different programmers
for different modules, and each module uses a different modal logic.

Technically, modalities are represented as lists. For example, 0;(X)3<;p(a) may be represented
as [bel(I),pos(3, X),pos(J)] : p(a), where bel stands for “believes”, and pos for “possible”. Nota-
tions of modal operators depend on how the base SLD-resolution calculus is defined. As another
example, for MProlog-O (which disallows existential modal operators in programs and goals), we
can represent O;, ... 0;, as [I1,..., Ii].

Backward rules can be of the form “Atomlin :- PreCondition, AtomQOut, PostComputation.”
with AtomIn and AtomOut being atoms of the form M : E, where M (standing for a modality) and
E (standing for a classical atom) may be variables in Prolog, and M may also be a list; PreCondition
and PostComputation are (possibly empty) sequences of formulas in Prolog separated by *,’.

For the solver of MProlog, a resolving cycle is defined to be a derivation using a sequence of
rSaty/rNFy, rules and a program clause. Shorter sequences of rules are tried before longer ones.
Programmers have access to the history of the current resolving cycle.

For effectiveness, classical fragments in MProlog programs are interpreted by Prolog itself, and
there are a number of features that can be used to restrict the search space.

The implemented MProlog system has a very different theoretical foundation than Molog. In
MProlog, the labeling technique is used for existential modal operators instead of Skolemization.
Our system uses new technicalities like normal forms of modalities and pre-orders between modal
operators. MProlog also eliminates some drawbacks of Molog, e.g., MProlog gives computed an-
swers, while Molog can only answer “yes” or “no”.

39

For further details on the implemented MProlog system, we refer the reader to [34].

9.3 Concluding Remarks

We used fized-domain Kripke models with rigid terms for the framework. This is the most com-
mon choice, but can we loose the restrictions of fixed-domain and rigid terms? Since we do not
use equalities in MProlog programs, the restriction of rigid terms is not essential. What hap-
pens if we allow varying domains? First, we define a varying-domain Kripke model to be a tuple
M = (D,W,7,Ry,...,R,,,m), where for each w € W, D(w) is a set called the domain of w,
(W, 7,R1,...,Ry) is a Kripke frame, and for each w € W, m(w) is an interpretation of constant
symbols, function symbols and predicate symbols on the domain D(w). Second, a variable assign-
ment V w.r.t. M is a function that maps each pair of a world w and a variable x to an element of
the domain of w. The value of t":%[V] for a term ¢ at a world w of M is defined as usual. According
to these definitions, terms are flexible. The satisfaction relation is then defined in the usual way,
except that:

M, V,wE p(ty, ... t,) iff (tiw’w[V], otV € m(w)(p);
M, V,wEVx.p iff for all V' different from V only for pairs (_,z), M, V' wk ¢
M,V,wkE Jz.0 iff there exists V' different from V only for pairs (_,z) s.t. M, V' wk ¢

Our thesis is that the framework can be easily adapted for varying-domain Kripke models. Informal
argumentations for this are: First, we do not use the Barcan formula Vz.O,¢0 — O,Vz.@ and the
converse Barcan formula 0;Vz.¢o — Va.O;¢p in any way. Second, as we consider only positive modal
logic programs without equality, the method of constructing least Kripke models for positive modal
logic programs still works for the case of varying-domain Kripke models. Precise analysis, however,
should be done for this problem.

In [36], basing on the fixpoint semantics presented in this work, we developed modal relational al-
gebras and advanced computational methods like the magic-set transformation for modal deductive
databases. When dealing with modal deductive databases, the direct approach has an advantage
over the translation approaches. Given an MDatalog program, which is an MProlog program with-
out function symbols and consisting of allowed '3 program clauses, the translation methods translate
it to a program that may contain Skolem function symbols and unallowed program clauses, which
is undesirable.

One of good features of our framework is L-normal form of modalities. In logics like K DI4,5,
KDI45, KD4s55, KD45(,,), it is a tool allowing us to restrict lengths of modalities appearing
in derivations. Such a tool was not introduced in [6, 1, 15, 38, 10]. Due to L-normal form of
modalities, in [36] we were able to show that the intentional relations of a modal deductive database
in L € {KDI4,5, KDI45, K D4,5,, K D45(,,) } can be computed in PTIME and have polynomial
size (in the size of the extentional relations).

When dealing with modal logic programs with negation, the translation approaches give rise to
the floundering problem'* even when the input modal logic program and goal are allowed®. To see
this, just consider the program clause p <+ $O—g. Extending our direct approach for dealing with
negation is also a hard problem. However, we think that it is possible to overcome the difficulty
and we will study this problem in the near future.

Our most important contribution in this work is the framework for developing fixpoint seman-
tics, the least model semantics, and SLD-resolution calculi for multimodal logic programs. The
framework is formulated in a direct way (not using translation to the classical logic) and closely to
the style of classical logic programming. It is applicable and useful for a wide class of modal logics,
including BSM M logics, serial context-free grammar logics, and the basic serial monomodal logics.
The framework allows not only to exploit syntactic properties of the base logic, as in the case of
BSM M, but also to use semantical properties of the base logic, as in the case of K DI4,5.

In literature of computer science, multimodal logics are much more studied for reasoning about
knowledge than about belief (see, e.g., Fagin et al. [17], Meyer and van der Hoek [28]). In this work,

13 A program clause is allowed if all of its variables occur (also) in the body.
Mywhich occurs when a derived goal contains only non-ground negative literals
15in the sense that every variable occurring in a clause occurs also in a positive literal of the body of the clause

40

we have concentrated on multimodal logics intended for reasoning about belief, in particular, for
reasoning about multi-degree belief, for use in distributed systems of belief, and for reasoning about
epistemic states of agents in multi-agent systems. The logics of multi-degree belief proposed by us
are somehow similar to graded modal logics but different at the aspect that degrees in the former
case are symbolic, while grades in the latter case are numeric'®. We think that our schemata for
semantics of MProlog in the considered multimodal logics of belief are practically useful. On the
other hand, our schema for semantics of BSM M-MProlog is interesting from the theoretical point
of view. It shows that declarative and procedural semantics of multimodal logic programs can be
formulated in a direct way, not using translation to the classical logic. These schemata are another
one of our main contributions.

In summary, we have successfully applied the direct approach for modal logic programming in
a large class of multimodal logics, while not assuming any special restriction on the form of logic
programs and goals.

Acknowledgements

I would like to thank professor Andrzej Szalas for reading the draft of this paper and giving helpful
comments. My thanks go also to the anonymous reviewers for helpful comments and suggestions.

References

[1] S. Akama. A meta-logical foundation of modal logic programming. 1-20-1, Higashi-Yurigaoka,
Asao-ku, Kawasaki-shi, 215, Japan, December 1989.

[2] H. Aldewereld, W. van der Hoek, and J.-J.Ch. Meyer. Rational teams: Logical aspects of
multi-agent systems. Fundamenta Informaticae, 63(2-3):159-183, 2004.

[3] K.R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, Volume B: Formal Models and Semantics. Elsevier, 1990.

[4] K.R. Apt and M.H. van Emden. Contributions to the theory of logic programming. Journal
of the ACM, 29(3):841-862, 1982.

[5] G. Attardi and M. Simi. Proofs in context. In J. Doyle, E. Sandewall, and P. Torasso, editors,
KR’9): Principles of Knowledge Representation and Reasoning, pages 16-26, San Francisco,
1994. Morgan Kaufmann.

[6] Ph. Balbiani, L. Farifias del Cerro, and A. Herzig. Declarative semantics for modal logic
programs. In Proceedings of the 1988 International Conference on Fifth Generation Computer
Systems, pages 507-514. ICOT, 1988.

[7] Ph. Balbiani, A. Herzig, and M. Lima-Marques. TIM: The Toulouse inference machine for non-
classical logic programming. In PDK’91: International Workshop on Processing Declarative
Knowledge, pages 365-382. Springer-Verlag, 1991.

[8] Ph. Balbiani, A. Herzig, and M. Lima-Marques. Implementing Prolog extensions: A parallel
inference machine. In Proceedings of the 1992 International Conference on Fifth Generation
Computer Systems, pages 833-842. ICOT, 1992.

[9] M. Baldoni. Normal multimodal logics with interaction axioms. In D. Basin, M. D’Agostino,
D.M. Gabbay, and L. Vigano, editors, Labelled Deduction, pages 33-57. Kluwer Academic
Publishers, 2000.

[10] M. Baldoni, L. Giordano, and A. Martelli. A framework for a modal logic programming.
In Joint International Conference and Symposium on Logic Programming, pages 52—66. MIT
Press, 1996.

16Grades are used to indicate the number of worlds accessible from the current world.

41

[11]

M. Baldoni, L. Giordano, and A. Martelli. Translating a modal language with embedded
implication into horn clause logic. In R. Dyckhoff, H. Herre, and P. Schroeder-Heister, editors,
Proceedings of ELP’96, LNCS 1050, pages 19-33, 1996.

P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press, 2002.

A. Cimatti and L. Serafini. Multi-agent reasoning with belief contexts: The approach and a
case study. In M. Wooldridge and N.R. Jennings, editors, Proceedings of ECAI-94, LNCS 890,
pages 71-85. Springer, 1995.

M.J. Cresswell and G.E. Hughes. A New Introduction to Modal Logic. Routledge, 1996.

F. Debart, P. Enjalbert, and M. Lescot. Multimodal logic programming using equational and
order-sorted logic. Theoretical Computer Science, 105:141-166, 1992.

J.J. Elgot-Drapkin. Step-logic and the three-wise-men problem. In AAAI pages 412-417, 1991.

R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning About Knowledge. MIT Press,
1995.

L. Farinas del Cerro. MOLOG: A system that extends PROLOG with modal logic. New
Generation Computing, 4:35-50, 1986.

L. Farinas del Cerro and A. Herzig. MOLOG - a tool for non-classical logic programming.
http://www.irit.fr/ACTIVITES/EQ_ALG/Herzig/molog.html, 1986.

M. Fisher and R. Owens. An introduction to executable modal and temporal logics. In
Ezxecutable Modal and Temporal Logics, IJCAI’'93 workshop, M. Fisher and R. Owens (eds.),
pages 1-20. Springer, 1995.

M. Fitting and R.L. Mendelsohn. First-Order Modal Logic. Kluwer Academic Publishers, 1999.

J. W. Garson. Quantification in modal logic. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic: Volume II: Extensions of Classical Logic, pages 249-307.
Reidel, Dordrecht, 1984.

K. Konolige. Belief and incompleteness. Technical Report 319, SRI Inter., 1984.

R.A. Kowalski. Predicate logic as a programming language. Information Processing, 74:569—
574, 1974.

A. Leitsch. The Resolution Calculus. Springer, 1997.
J.W. Lloyd. Foundations of Logic Programming, Second Edition. Springer-Verlag, 1987.

J. McCarthy. First order theories of individual concepts and propositions. Machine Intelligence,
9:120-147, 1979.

J.-J.Ch. Meyer and W. van der Hoek. FEpistemic Logic for Computer Science and Artificial
Intelligence. Cambridge University Press, 1995.

J. Minker. Logic and databases: A 20-year retrospective. In International Workshop LID’96,
pages 3-57. Verlag Springer, 1996.

L.A. Nguyen. Constructing the least models for positive modal logic programs. Fundamenta
Informaticae, 42(1):29-60, 2000.

L.A. Nguyen. A fixpoint semantics and an SLD-resolution calculus for modal logic programs.
Fundamenta Informaticae, 55(1):63-100, 2003.

L.A. Nguyen. Multimodal logic programming and its applications to modal deductive
databases. Manuscript (served as a technical report), available at http://www.mimuw.edu.
pl/~nguyen/papers.html, 2003.

42

[33]

L.A. Nguyen. MProlog: An extension of Prolog for modal logic programming. In B. Demoen
and V. Lifschitz, editors, Proceedings of ICLP 2004, LNCS 3132, pages 469-470. Springer,
2004.

L.A. Nguyen. The modal logic programming system MProlog. In J.J. Alferes and J.A. Leite,
editors, Proceedings of JELIA 2004, LNCS 3229, pages 266—278. Springer, 2004.

L.A. Nguyen. An SLD-resolution calculus for basic serial multimodal logics. In D.V. Hung and
M. Wirsing, editors, Proceedings of ICTAC 2005, LNCS 3722, pages 151-165. Springer, 2005.

L.A. Nguyen. On modal deductive databases. In J. Eder, H.-M. Haav, A. Kalja, and J. Penjam,
editors, Proceedings of ADBIS 2005, LNCS 3631, pages 43-57. Springer, 2005.

L.A. Nguyen. Reasoning about epistemic states of agents by modal logic programming. In
F. Toni and P. Torroni, editors, Proceedings of CLIMA VI, LNAI 3900, pages 37-56. Springer-
Verlag, 2006.

A. Nonnengart. How to use modalities and sorts in Prolog. In C. MacNish, D. Pearce, and
L.M. Pereira, editors, Logics in Artificial Intelligence, European Workshop, JELIA °94, York,
UK, September 5-8, 1994, Proceedings, volume 838 of LNCS, pages 365-378. Springer, 1994.

H.J. Ohlbach. A resolution calculus for modal logics. In Proceedings of CADE-88, LNCS810,
pages 500-516. Springer, 1988.

M.A. Orgun and W. Ma. An overview of temporal and modal logic programming. In D.M. Gab-
bay and H.J. Ohlbach, editors, Proc. First Int. Conf. on Temporal Logic - LNAI 827, pages
445-479. Springer-Verlag, 1994.

M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a programming
language. Journal of the ACM, 23(4):733-742, 1976.

43

A Some Schemata for Semantics of L-MProlog

L= KDI45, L-MProlog

1

EItL

SatL

NFy,

T’NFL

rSaty,

\

=<7, is defined by Definition 5.12 at page 17.

ng) is in L-normal form if 44 > ... > i.

AT, — ADja if i >
ADiDjOZ — ADja if 4 >j

The following rules are accompanied with the condition that the atoms
in both sides are in L-normal labeled form for rules specifying Exty,
and in almost L-normal labeled form for the other rules.

the rules for Fxty with the modification stated in (*), plus

AVE — AO;O0E if O; < V
ADV,E — AOE ifi > j
A<F>ZVJE — AOE ifi>j

AV VIE — AVE if V7 is of the form O; or (E);
and 7 < j

AV;E — A(X);V,;E if V; is of the form O; or (E);,
X is a fresh atom variable, and i < j

AOE — A(X);E for X being a fresh atom variable
AVia — ADGo if i < j

ADO;0 — A if i >

ADjo — AD;O if i < j

AOE — A(X); O FE for X being a fresh atom variable

Table 4: A schema for semantics of K DI45-MProlog

44

L=KDI4;, L-MProlog

=< is defined by Definition 5.12 at page 17.

No restrictions on L-normal form of modalities.
No rules specifying N Fy, and rN FT,.

Rules specifying

Exty, AD;a — ADJ*O(if 4 > j (1)
Satp, the rules specifying Fxty, plus
AVV'E — AOE if O; < V/ (3)
rSat, AOE — A(X);E for X being a fresh atom variable (4)
AVia — Ao if i < j (5)
AVDiOé — ADiOé (7)
ACE — AN(X);O0F for X being a fresh atom variable (8)
L=KDI4, L-MProlog
=< is defined by Definition 5.12 at page 17.
No restrictions on L-normal form of modalities.
No rules specifying N Fr, and rN FT,.
Rules specifying
Exty, AD;a — ADjOé if 4 > (1)
AD,L'O[— ADZ'D,L'O((2)
Saty, the rules specifying Fxty plus
AVV'E - ANOE if O; <p Vand O; <p V/ (3)
rSat; AOE — A(X);E for X being a fresh atom variable (4)
AVia — Ao ifi < j (5)
ADO;a «— ADa (7)

X being a fresh atom variable

Table 5: Schemata for semantics of MProlog in K DI4, and KDI4

45

L= KD45(,), [L-MProlog

=<, is defined by Definition 5.12 at page 17.

Vz(-i) e ng) is in L-normal form if 4; # 4,11 for all 1 < j < k.

Both sides of each rule given below are in almost L-normal labeled form.

Ext,;

Saty,

NFy,

’/‘NFL

rSatr,

no rules

AV, VLE — AVLE if V] is of the form O; or (E);

AVE — AN(X);V,;E if V; is of the form O; or (E);
and X is a fresh atom variable

AOE — N(X);E for X being a fresh atom variable
AVia — ADZ‘O[
AV, VIE — AVLE if V) is of the form O; or <;

Table 6: A schema for semantics of K D45(,,)-MProlog

46

L= KD4l,5,, L-MProlog

=<, is defined by Definition 5.12 at page 17.
A modality Vgll) e Vz(f) is in L-normal form if
for all 1 < j < k if g(4;) is a singleton then 4; # i;11.

Rules specifying operators FExty, Saty,, NFr,, rNFp,, rSatr:

Ext;, ADja — ADja if g(i) D g(j)
ADiOé — ADiDia
AV,;0;a — AD;« if g(4) is a singleton

Satr, the rules specifying Fxty, plus
AN(FY,E — AO;OFE if g(i) is a singleton
AVVIE — AOZE if <>1 jL V and <>1 jL V'

NF, AV,VIE — AV}E if g(i) is a singleton and
V. is of the form O; or (E);

rNF, AV,E— AN(X);V,E if g(i) is a singleton,
V., is of the form O; or (E);, and X is a fresh atom variable

rSat; AOE «— A(X);E for X being a fresh atom variable
AV,a — ADja if g(i) C g(j)
ADiDia — ADZ'CV
AQ;a — A(X);O0;a if g(i) is a singleton and
X is a fresh atom variable
AV O E — AOE if g(i) is a singleton
X is a fresh atom variable

Table 7: A schema for semantics of K D41,5,-MProlog

47

