
MProlog: An Extension of Prolog for
Modal Logic Programming

Linh Anh Nguyen

Institute of Informatics, University of Warsaw
ul. Banacha 2, 02-097 Warsaw, Poland

nguyen@mimuw.edu.pl

Abstract. We introduce our implemented modal logic programming
system MProlog. This system is written in Prolog as a module for Prolog.
Codes, libraries, and most features of Prolog can be used in MProlog pro-
grams. The system contains a number of built-in SLD-resolution calculi
for modal logics, including calculi for useful multimodal logics of belief.

Modal logics can be used to reason about knowledge, belief, actions, etc. A
number of authors have proposed modal extensions for logic programming; see
[7] for a survey and [6, 1, 3, 4] for later works. There are two approaches for modal
logic programming: the direct approach and the translational approach. The first
approach directly uses modalities, while the second one translates modal logic
programs to classical logic programs.

Despite that the theory of modal logic programming has been studied in a
considerable number of works, it has not received much attention in practice.
But if we want to use modal logics for practical applications, then modal logic
programming deserves for further investigations, especially in practical issues.

In [3, 4], we proposed a general framework for developing semantics of modal
logic programs and gave sound and complete SLD-resolution calculi for a number
of modal logics, including calculi for useful multimodal logics of belief. Our
framework uses a direct approach for handling modalities and does not require
any special restriction on occurrences of modal operators (the used language is
as expressive as the general modal Horn fragment). Starting from the purely
logical formalism of [3, 4], we have built a real system called MProlog [5] for
modal logic programming. The implemented system adds extra features to the
logical formalism in order to increase usefulness of the language. It is written in
Prolog as a module for Prolog and can run in SICStus Prolog and SWI-Prolog.
Codes, libraries, and most features of Prolog can be used in MProlog programs
in a pure way. This gives MProlog capabilities for real applications. MProlog
has been designed to obtain high effectiveness and flexibility. For effectiveness,
classical fragments are interpreted by Prolog itself and a number of options can
be used for MProlog to restrict the search space. For flexibility, there are three
kinds of predicates (classical, modal, and dum1) and we can use and mix different
calculi in an MProlog program.
1 i.e. classical predicates which are defined using modal formulae



MProlog has a very different theoretical foundation than the implemented
Molog system [2]. In MProlog, a labeling technique is used for existential modal
operators instead of skolemization. We also provide and use new technicalities
like normal forms of modalities or pre-orders between modal operators. MProlog
also eliminates drawbacks of Molog (e.g., MProlog gives computed answers).

Our system contains a number of built-in SLD-resolution calculi for modal
logics, including calculi for multimodal logics intended for reasoning about multi-
degree belief, for use in distributed systems of belief, or for reasoning about epis-
temic states of agents in multi-agent systems. SLD-resolution calculi for MPro-
log are specified using our framework given in [3, 4] and written in Prolog. They
contain rules (used as meta-clauses) for handling properties of the base modal
logic, definitions of auxiliary predicates, and definitions for a number of required
predicates (e.g., to specify the normal form of modalities).

In MProlog, modalities are represented as lists, e.g., 2i3j q(x) is represented
as [bel(I), pos(J)] : q(X), and 2xgod exists ← christian(x) is represented as
[bel(X)] : god exists :- christian(X). Notations of modal operators depend
on how the base SLD-resolution calculus is defined. As another example, for
MProlog-2 [4], which disallows existential modal operators in program clauses
and goals, we represent 2i1 . . .2ik

as [I1, . . . , Ik].
Syntactically, an MProlog program is a Prolog program. Each modal clause

in an MProlog program is of one of the following forms:
Context : (Head :- Body). or Head :- Body.

where Context is a list representing a modality, Head is of the form E or M : E,
E is a classical atom, and M is a list containing one modal operator.

In summary, our MProlog system is a tool for experimenting with applica-
tions of modal logic programming to AI. It is also a tool for developing and
experimenting with new SLD-resolution calculi for modal logic programming.

References

1. M. Baldoni, L. Giordano, and A. Martelli. A framework for a modal logic program-
ming. In Joint Int. Conf. and Symp. on Logic Prog., p.52–66. MIT Press, 1996.

2. L. Fariñas del Cerro. Molog: A system that extends Prolog with modal logic. New
Generation Computing, 4:35–50, 1986.

3. L.A. Nguyen. A fixpoint semantics and an SLD-resolution calculus for modal logic
programs. Fundamenta Informaticae, 55(1):63–100, 2003.

4. L.A. Nguyen. Multimodal logic programming and its applications to modal deduc-
tive databases. manuscript (served as a technical report), available on Internet at
http://www.mimuw.edu.pl/˜nguyen/papers.html, 2003.

5. L.A. Nguyen. Source files, calculi, and examples of MProlog. Available on Internet
at http://www.mimuw.edu.pl/˜nguyen/mprolog, 2004.

6. A. Nonnengart. How to use modalities and sorts in Prolog. In C. MacNish,
D. Pearce, and L.M. Pereira, editors, Proceedings of JELIA’94, LNCS 838, pages
365–378. Springer, 1994.

7. M.A. Orgun and W. Ma. An overview of temporal and modal logic programming. In
D.M. Gabbay and H.J. Ohlbach, editors, Proc. First Int. Conf. on Temporal Logic,
LNAI 827, pages 445–479. Springer-Verlag, 1994.

2


