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Abstract. We prove that negative hyper-resolution using any liftable and well-founded ordering
refinement is a sound and complete procedure for answering queries in disjunctive logic programs.
In our formulation, answers of queries are defined using disjunctive substitutions, which are more
flexible than answer literals used in theorem proving systems.

1. Introduction

Resolution can be used not only to prove theorems but also to answer questions. This was first shown by
Green in [6], where he introducedanswer literalsand a planning method using resolution. His technique
has become popular in AI.

Since resolution was introduced by Robinson [17] in 1965, many refinements of resolution have
been proposed by researchers in the field in order to cut down the search space and increase efficiency.
One of the most important refinements of resolution is hyper-resolution, which was also introduced by
Robinson [16] in the same year 1965. Hyper-resolution constructs a resolvent of a number of clauses at
each step. Thus it contracts a sequence of bare resolution steps into a single inference step and eliminates
interactions among intermediary resolvents, and interactions between them and other clauses. Another
way to improve resolution and hyper-resolution is to use ordering refinements. The idea is that only
“maximal” literals in clauses can beselected.

There are many completeness results in the literature for various refinements of resolution, but these
results usually derive refutation completeness, i.e. the empty clause will be derived if the input clauses
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are inconsistent. For question-answering systems, we want a stronger result calledanswer completeness:
for every correct answer there exists a more general computed answer.

A refinement of resolution for the Horn fragment, called SLD-resolution in [1], was first described
by Kowalski [7] for logic programming. It is a sound and complete procedure for answering queries in
definite logic programs. In [11], Loboet al. gave a linear resolution method with a selection function,
called SLO-resolution, for answering goals in disjunctive logic programs. SLO-resolution is an extension
of SLD-resolution, and both of them are answer complete under any selection function.

SLO-resolution extends SLD-resolution in a natural way, and in our opinion, it is a potential frame-
work for developing efficient proof procedures. However, queries and derivations formulated in SLO-
resolution allow only definite answers, and in fact, SLO-resolution is answer complete only for a certain
class of queries. Consider an example of [11] : given the programP = {p(a) ∨ p(b) ←} and the query
Q =← p(x), there is no computed answer in SLO-resolution forP ∪Q, while there exists a disjunctive
answer{{x/a}, {x/b}}. Of course, if we rewriteQ to Q′ = ← p(x) ∨ p(y) then there is a computed
answer{x/a, y/b}, but if the considered program is larger, it is difficult to know when and where we
need to rewrite goals, and furthermore, rewriting goals is inconvenient for users.

There are also other goal oriented proof procedures proposed for disjunctive logic programming:
nearHorn-Prolog procedures by Loveland [12], SLI-resolution by Loboet al. [10], and restart model
elimination (RME) by Baumgartneret al. [2]. The nearHorn-Prolog procedures extend SLD-resolution
and Prolog style for disjunctive logic programs, but they are of interest only when the considered program
contains very few non-Horn clauses. Both of SLI-resolution and RME are variants of the model elimi-
nation procedure. SLI-resolution is related to SLO-resolution, while RME is related to hyper tableaux.

In our opinion, it is very difficult for programmers to imagine behaviors of disjunctive logicprograms
as is possible when writing Prolog programs. Perhaps we should adopt the approach by Loveland and use
mechanisms of theorem proving for non-Horn fragments of disjunctive logic programs. But as mentioned
before, the nearHorn-Prolog procedures proposed by Loveland have advantages only for logic programs
containing very few non-Horn clauses. For general cases, why not to use strongest theorem provers as
proof procedures for disjunctive logic programming?

In this work, we formulate a negative hyper-resolution calculus as a proof procedure for disjunctive
logic programming and prove that negative hyper-resolution using any liftable and well-founded ordering
refinement is a sound and complete procedure for answering queries in disjunctive logic programs. In
our formulation, every clause set can be divided into a disjunctive logic program, which consists of non-
negative clauses, and a query. We define answers as disjunctive substitutions. To each goal appearing in
a derivation we attach a disjunctive substitution keeping bindings of variables of the initial query. Our
definition of answers is more flexible than answer literals used in theorem proving systems. In [3], Brass
and Lipeck also defined disjunctive answer as a set of normal substitutions, but they did not give further
properties of disjunctive substitutions as we do. Our definition of correct answers is compatible with the
semantics of answer literals given by Kunen [8]. The theory of answer literals was discussed earlier in
[6, 13, 4], but in those works the authors assume that answer literals appear only in one clause.

This paper is organized as follows: In Section 2, we give definitions for disjunctive substitutions,
disjunctive logic programs, queries, and correct answers. In Section 3, we specify a negative hyper-
resolution calculus as procedural semantics of disjunctive logic programs. In Section 4, we prove answer
soundness of that calculus. We give areversefixpoint semantics for disjunctive logic programs in Section
5 and use it in Section 6 to prove answer completeness of the calculus. In Section 7, we show that any
liftable and well-founded ordering is an answer complete refinement for negative hyper-resolution. The
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relationship between disjunctive substitutions and answer literals is considered in Section 8. Section 9
concludes this work.

2. Preliminaries

First-order logic is considered in this work and we assume that the reader is familiar with it. We now
give the most important definitions for our work.

By ∀(ϕ) we denote theuniversal closureof ϕ, which is the closed formula obtained by adding a
universal quantifier for every variable having a free occurrence inϕ.

An expressionis either a term or a formula without quantifiers. IfE is an expression, then byV ar(E)
we denote the set of all variables occurring inE.

TheHerbrand universeUΓ of a formula setΓ is the set of all ground terms that can be formed from
the constants and function symbols inΓ : if no constants occur inΓ then some arbitrary constant is used
instead.

TheHerbrand baseBΓ of a formula setΓ is the set consisting of all ground atoms that can be formed
from the predicate symbols inΓ and the terms inUΓ. WhenΓ is clear from the context, forM ⊆ BΓ,
we writeM to denote the setBΓ \M .

2.1. Disjunctive Substitutions

A normal substitutionis a finite setθ = {x1/t1, . . . , xn/tn}, wherex1, . . . , xn are different variables,
t1, . . . , tn are terms, andti 6= xi for all 1 ≤ i ≤ n. By ε we denote theempty normal substitution. The
setDom(θ) = {x1, . . . , xn} is called thedomainof θ. By Ran(θ) we denote the set of all variables
occurring int1, . . . , tn. DefineV ar(θ) = Dom(θ) ∪ Ran(θ). For a setX of variables, therestriction
of θ toX, denoted byθ|X , is the substitution{x/t | x/t ∈ θ andx ∈ X}.

Let θ = {x1/t1, . . . , xn/tn} be a normal substitution andE be an expression. ThenEθ, theinstance
ofE by θ, is the expression obtained fromE by simultaneously replacing each occurrence of the variable
xi in E by the termti, for 1 ≤ i ≤ n.

Let θ = {x1/t1, . . . , xn/tn} andδ = {y1/s1, . . . , ym/sm} be normal substitutions. Then thecom-
positionθδ of θ andδ is the substitution obtained from the set{x1/t1δ, . . . , xn/tnδ, y1/s1, . . . , ym/sm}
by deleting any bindingxi/tiδ for which xi = tiδ and deleting any bindingyj/sj for which yj ∈
{x1, . . . , xn}.

If θ andδ are normal substitutions such thatθδ = δθ = ε, then we call themrenaming substitutions
and useθ−1 to denoteδ (which is unique w.r.t.θ).

A disjunctive substitutionΘ is a finite and non-empty set of normal substitutions. DefineDom(Θ) =⋃
θ∈ΘDom(θ), Ran(Θ) =

⋃
θ∈ΘRan(θ), andV ar(Θ) = Dom(Θ) ∪ Ran(Θ). ForX ⊆ Dom(Θ),

therestrictionof Θ toX is denoted byΘ|X and defined as{θ|X | θ ∈ Θ}.
We treat a normal substitutionθ also as the disjunctive substitution{θ}.
If ϕ is a formula thenϕΘ =def {ϕθ | θ ∈ Θ}. If Γ is a set of formulas thenΓΘ =def {ϕθ | ϕ ∈

Γ, θ ∈ Θ}. The compositionΘ∆ of disjunctive substitutionsΘ and∆ is the disjunctive substitution
{θδ | θ ∈ Θ, δ ∈ ∆}.

A disjunctive substitutionΘ is more generalthan∆ if there exists a normal substitutionσ such that
for X = Dom(Θ) ∪Dom(∆), (Θσ)|X ⊆ ∆.
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As some properties of disjunctive substitutions, for an expressionE and disjunctive substitutionsΘ,
Θ1, Θ2, Θ3, we have:Θε = εΘ = Θ, (EΘ1)Θ2 = E(Θ1Θ2), and(Θ1Θ2)Θ3 = Θ1(Θ2Θ3).

2.2. Disjunctive Logic Programs and Queries

A clauseis a formula of the form

∀x1 . . .∀xh(A1 ∨ . . . ∨An ∨ ¬B1 ∨ . . . ∨ ¬Bm)

wherex1, . . . , xh are all the variables occurring in the rest of the formula,n ≥ 0,m ≥ 0, andAi andBj

are atoms. We write such a clause in the form

A1 ∨ . . . ∨An ← B1 ∧ . . . ∧Bm

We callA1 ∨ . . . ∨An theheadandB1 ∧ . . . ∧Bm thebodyof the clause. Ifn = 0 andm = 0 then the
clause isemptyand denoted by⊥. If n = 0 andm > 0 then the clause is agoal and we treat the body
B1 ∧ . . .∧Bm as a set of atoms. Ifn > 0 andm = 0 then the clause ispositive. If n > 0 then the clause
is a(disjunctive) program clause.

A (disjunctive) logic programis a finite set of disjunctive program clauses.
A (disjunctive) queryis a finite set of goals.
Let P be a logic program andQ = {← ϕ1, . . . , ← ϕn } be a query. We say that a disjunctive

substitutionΘ with Dom(Θ) ⊆ V ar(Q) is acorrect answerof P ∪Q if P |= ∀(
∨n

i=1

∨
θ∈Θ ϕiθ).

For example, ifP = { p(f(x)) ∨ p(g(x)) ← } andQ = { ← p(y) }, thenΘ = {{y/f(x)},
{y/g(x)}} is a correct answer ofP ∪Q.

In [8], Kunen characterized the semantics of answer literals used in theorem proving systems by the
following theorem: LetΣ be a set of sentences,∃xϕ(x) be a sentence, andΣ′ = Σ∪∀(ans(x)← ϕ(x)).
If eachτ i, for i = 1, . . . , k, is a tuple of terms of the same length asx, thenΣ′ |= ∀(ans(τ1) ∨ . . . ∨
ans(τk)) (this specifies an answer) iffΣ |= ∀(ϕ(τ1) ∨ . . . ∨ ϕ(τk)).

Our definition of correct answers is compatible with the semantics of answer literals by Kunen. To
see the compatibility, just takeΣ = P andϕ = ϕ1 ∨ . . . ∨ ϕn.

3. Negative Hyper-Resolution Semantics

An informative goalis a pairϕ : Θ, whereϕ is a goal andΘ is a disjunctive substitution. Informally,
Θ keeps the disjunctive substitution that has been applied to variables of the initial query in the process
of derivingϕ. We will ignore the word “informative” when it is clear from the context. An informative
goalϕ : Θ is said to begroundif ϕ is ground.

Letϕ = A1 ∨ . . .∨An ← B1 ∧ . . .∧Bm be a program clause (i.e.n > 0) andϕ1 : Θ1, . . . ,ϕn : Θn

be goals. Letϕi =← ξi ∧ ζi, for 1 ≤ i ≤ n, whereξi is a non-empty set of atoms called theselected
atoms ofϕi. If there exists an mguσ such thatAiσ = A′

i,jσ for every1 ≤ i ≤ n and everyA′
i,j ∈ ξi,

then we call the goal

← (B1 ∧ . . . ∧Bm ∧ ζ1 ∧ . . . ∧ ζn)σ : (Θ1 ∪ . . . ∪Θn)σ

ahyper-resolventof ϕ andϕ1 : Θ1, . . . ,ϕn : Θn. (Note that “factoring” is hidden in our definition.)
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Example 3.1. A hyper-resolvent of

p(x1) ∨ q(x1)← r(x1),
← p(x2) : {{x/x2, y/a}, {x/x2, y/b}},
← q(x3) : {{x/x3, y/c}, {x/x3, y/d}}

using mgu{x2/x1, x3/x1} is

← r(x1) : {{x/x2, y/a}, {x/x2, y/b}, {x/x3, y/c}, {x/x3, y/d}}{x2/x1, x3/x1}

whose disjunctive substitution is equivalent to{{x/x1, y/a, x2/x1, x3/x1}, {x/x1, y/b, x2/x1, x3/x1},
{x/x1, y/c, x2/x1, x3/x1}, {x/x1, y/d, x2/x1, x3/x1}}, which in turn can be represented by the com-
position{x/x1, x2/x1, x3/x1} {{y/a}, {y/b}, {y/c}, {y/d}}.

Before defining derivation and refutation we specify the process of standardizing variables apart.
Denote the original set of variables of the language byX , and assume that variables occurring in the
given logic program, the given query, or considered correct answers all belong toX . Let X ′ be an
infinite set of variables disjoint withX . We will use elements ofX ′ for renaming variables.

Letϕ be a program clause andϕ1 : Θ1, . . . ,ϕn : Θn be goals. Astandardized variantof the tuple(ϕ,
ϕ1 : Θ1, . . . ,ϕn : Θn) is a tuple(ϕδ, ϕ1δ1 : Θ1δ1, . . . ,ϕnδn : Θnδn) whereδ, δ1, . . . , δn are renaming
substitutions such thatDom(δ) = V ar(ϕ) andRan(δ) ⊂ X ′, Dom(δi) = V ar(ϕi) ∪ Ran(Θi) and
Ran(δi) ⊂ X ′ for all 1 ≤ i ≤ n, and the setsRan(δ),Ran(δ1), . . . ,Ran(δn) are disjoint. Assume that
standardizing variants is done by some unspecified deterministic procedure.

Let P be a logic program andQ a query. Aderivation from P ∪ Q is a sequenceϕ1 : Θ1, . . . ,
ϕn : Θn of goals such that for each1 ≤ i ≤ n :

1. eitherϕi is a clause ofQ andΘi = ε;

2. orϕi : Θi is a hyper-resolvent of a program clauseϕ′ and goalsϕ′i,1 : Θ′
i,1, . . . ,ϕ′i,ni

: Θ′
i,ni

, where
(ϕ′, ϕ′i,1 : Θ′

i,1, . . . ,ϕ′i,ni
: Θ′

i,ni
) is a standardized variant of(ϕ, ϕi,1 : Θi,1, . . . ,ϕi,ni : Θi,ni),

ϕ is a program clause ofP , andϕi,1 : Θi,1, . . . ,ϕi,ni : Θi,ni are goals from the sequenceϕ1 : Θ1,
. . . ,ϕi−1 : Θi−1.

For simplicity, Condition 2 of the above definition will be also stated asϕi : Θi is a hyper-resolvent
of a standardized variant of a program clauseϕ of P and standardized variants of some goals from
ϕ1 : Θ1, . . . ,ϕi−1 : Θi−1.

A refutationof P ∪Q is a derivation fromP ∪Qwith the last goal of the form⊥ : Θ. The disjunctive
substitutionΘ|V ar(Q) is called thecomputed answerof P ∪Q w.r.t. that refutation. (At the moment, we
do not consider ordering refinements yet.)

Example 3.2. Let P be the program consisting of the following clauses:

(1) s(x, a)← p(x)
(2) s(x, b)← q(x)
(3) p(x) ∨ q(x)← r(x)
(4) r(c)←

and letQ be the query consisting of the only following goal:
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(5) ← s(x, y)

Here is a refutation ofP ∪Q:

(6) ← s(x, y) : ε from (5)
(7) ← p(x2) : {x/x2, y/a, x1/x2, y2/a} (1), (6)

(Here, e.g., the renaming substitutions are{x/x1} and
{x/x2, y/y2}, and the used mgu is{x1/x2, y2/a}.)

(8) ← q(x4) : {x/x4, y/b, x3/x4, y4/b} (2), (6)
(9) ← r(x5) : {{x/x5, y/a, x1/x5, y2/a, x2/x5, x6/x5, x7/x5},

{x/x5, y/b, x3/x5, y4/b, x4/x5, x6/x5, x7/x5}} (3), (7), (8)
(10) ⊥ : {{x/c, y/a, x1/c, y2/a, x2/c, x6/c, x7/c, x5/c, x8/c},

{x/c, y/b, x3/c, y4/b, x4/c, x6/c, x7/c, x5/c, x8/c}} (4), (9)

The computed answer is{{x/c, y/a}, {x/c, y/b}}.

4. Answer Soundness

In this section, we show that for every logic programP and every queryQ, every computed answer of
P ∪Q is a correct answer ofP ∪Q.

Lemma 4.1. Let ← ψ : Θ be a hyper-resolvent of a program clauseϕ and goals← ϕ1 : Θ1, . . . ,
← ϕn : Θn with σ being the involved mgu. LetM be a model ofϕ. ThenM |=

∨n
i=1(ψ → ϕiσ). In

particular, ifψ is empty thenM |=
∨n

i=1 ϕiσ.

Proof:
Let ϕ = A1 ∨ . . . ∨ An ← B1 ∧ . . . ∧ Bm andϕi = ξi ∧ ζi, whereξi is the set of selected atoms of
← ϕi, for 1 ≤ i ≤ n. Thenψ = (B1 ∧ . . . ∧ Bm ∧ ζ1 ∧ . . . ∧ ζn)σ. Let V be an arbitrary variable
assignment. Suppose thatM,V |= ψ. BecauseM is a model ofϕ andM,V |= ψ, it follows that
M,V |= (A1∨ . . .∨An)σ. HenceM,V |=

∨n
i=1(Ai∧ζi)σ, sinceM,V |= ψ. ThusM,V |=

∨n
i=1 ϕiσ.

SinceV is an arbitrary variable assignment, we conclude thatM |=
∨n

i=1(ψ → ϕiσ). ut

Lemma 4.2. Let P be a logic program,Q = {← ϕ1, . . . ,← ϕn} be a query, and← ψ : Θ be the
last goal in a derivation fromP ∪ Q. LetM be a model ofP . ThenM |=

∨n
i=1

∨
θ∈Θ(ψ → ϕiθ). In

particular, ifψ is empty thenM |=
∨n

i=1

∨
θ∈Θ ϕiθ.

Proof:
We prove this lemma by induction on the length of the derivation. The case when← ψ is a clause ofQ
andΘ = ε is trivial. Suppose that← ψ : Θ is derived as a hyper-resolvent of a standardized variant of a
program clauseϕ and standardized variants of goals← ψ1 : Θ1, . . . ,← ψm : Θm. Letσ be the involved
mgu andδ, δ1, . . . , δm be the involved renaming substitutions. By the inductive assumption, we have
M |=

∨n
i=1

∨
θ∈Θj

(ψj → ϕiθ) for all 1 ≤ j ≤ m. ThusM |=
∨n

i=1

∨
θ∈Θj

(ψjδjσ → ϕiθδjσ), and
henceM |=

∨n
i=1

∨
θ∈Θjδjσ(ψjδjσ → ϕiθ), for all 1 ≤ j ≤ m. Note thatΘjδjσ ⊆ Θ. By Lemma 4.1,

M |=
∨m

j=1(ψ → ψjδjσ). These two assertions together imply thatM |=
∨n

i=1

∨
θ∈Θ(ψ → ϕiθ). ut
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Theorem 4.1. (Soundness)
LetP be a logic program,Q a query, andΘ a computed answer ofP ∪Q. ThenΘ is a correct answer of
P ∪Q.

Proof:
Let Q = {← ϕ1, . . . ,← ϕn} and let⊥ : Θ′ be the last goal in a refutation ofP ∪ Q such that
Θ = Θ′

|V ar(Q). LetM be an arbitrary model ofP . By Lemma 4.2,M |=
∨n

i=1

∨
θ∈Θ′ ϕiθ, and hence

M |=
∨n

i=1

∨
θ∈Θ ϕiθ. SinceM is an arbitrary model ofP , we deriveP |= ∀(

∨n
i=1

∨
θ∈Θ ϕiθ), which

means thatΘ is a correct answer ofP ∪Q. ut

5. Reverse Fixpoint Semantics

The fixpoint semantics of definite logic programs was first introduced by van Emden and Kowalski [5]
using the direct consequence operatorTP . This operator is monotonic, continuous, and has the least
fixpoint TP ↑ω =

⋃ω
n=0 TP ↑n, which forms the least Herbrand model of the given logic programP .

In [14], Minker and Rajasekar extended the fixpoint semantics to disjunctive logic programs. Their
direct consequence operator, denoted byT I

P , iterates over states, which are sets of disjunctions of ground
atoms. This operator is also monotonic, continuous, and has the least fixpoint which is the least model-
state characterizing the given programP .

In this section, we study a reversed analogue of the direct consequence operator called thedirect
derivation operator. The results of this section will be used to proveanswer completenessof the negative
hyper-resolution semantics.

LetP be a logic program,Q a query, andΓ the set obtained fromP ∪Q by replacing every positive
clause(A1∨ . . .∨An ←) by (A1∨ . . .∨An ← >), where> is a special atom not occurring inP andQ.

Thedirect derivation operatorDΓ is a function that maps a setG of informative goals to another set
of informative goals that can be directly derived fromΓ andG. It is formally defined as follows:DΓ(G)
is the set of all goalsϕ : Θ such that eitherϕ is a clause ofQ andΘ = ε or ϕ : Θ is a hyper-resolvent
of a program clauseψ′ and goalsψ′1 : Θ′

1, . . . , ψ′n : Θ′
n, where(ψ′, ψ′1 : Θ′

1, . . . , ψ′n : Θ′
n) is the

standardized variant of(ψ, ψ1 : Θ1, . . . ,ψn : Θn), ψ is a program clause ofΓ, andψ1 : Θ1, . . . ,ψn : Θn

are goals fromG.

Lemma 5.1. The operatorDΓ is monotonic, compact, and hence also continuous. It has the least fixpoint
DΓ ↑ω =

⋃ω
n=0DΓ ↑n, whereDΓ ↑0 = ∅ andDΓ ↑(n+ 1) =DΓ(DΓ ↑n).

The first assertion of the above lemma clearly holds. The second assertion immediately follows from
the first one by Kleene’s theorem (see, e.g., [9]).

LetGΓ denote the set of all ground goalsϕ such that there exists an informative goalϕ′ : Θ′ ∈ DΓ ↑ω
such thatϕ is a ground instance ofϕ′ (i.e.ϕ is obtained fromϕ′ by uniformly substituting variables by
terms fromUΓ).

Let G be a set of ground goals. Anegated representativeof G is a setΦ of pairs(ϕ,A) such that:
ϕ ∈ G andA is an atom ofϕ; and for everyψ ∈ G, there exists exactly one atomB of ψ (a negated
representative ofψ) such that(ψ,B) ∈ Φ.

Clearly, every set of ground goals has at least one negated representative.
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Definition 5.1. LetG be a set of ground goals andΦ a negated representative ofG. A setM of ground
atoms is called aminimal refinementof Φ (w.r.t.G) if the following conditions hold:

1. for eachA ∈M there exists(ϕ,A) ∈ Φ for someϕ;

2. for eachϕ ∈ G there existsA ∈M such thatA is an atom ofϕ;

3. for eachA ∈ M there existsϕ ∈ G such that for every atomB of ϕ different fromA, we have
B /∈M .

In this definition, Condition 1 states that members ofM come fromΦ. Condition 2 states that every
Herbrand model disjoint withM satisfiesG; in particular,M |= G. Condition 3 states thatM is a
minimal set satisfying the two preceding conditions.

Lemma 5.2. LetG be a set of ground goals. Then every negated representativeΦ of G has a minimal
refinement.

Proof:
Start fromM = {A | (ϕ,A) ∈ Φ for someϕ} and keeping in mind thatM will always satisfy the
first two conditions of the definition of minimal refinement, do the following: ifM is not a minimal
refinement ofΦ due to someA that violates the last condition of the definition, then remove thatA from
M . This operator has a fixpoint which is a minimal refinement ofΦ. ut

Theorem 5.1. Let Φ be a negated representative ofGΓ andM a minimal refinement ofΦ. ThenM is a
maximal Herbrand model ofΓ.

Proof:
SinceM is a minimal refinement ofΦ, due to Condition 3 of Definition 5.1, it is sufficient to prove that
M is a model ofΓ. Letϕ′ = A′

1 ∨ . . .∨A′
n ← B′

1 ∧ . . .∧B′
m be a clause ofΓ andϕ = ϕ′σ be a ground

instance ofϕ′ by a substitutionσ. LetAi = A′
iσ for 1 ≤ i ≤ n, andBj = B′

jσ for 1 ≤ j ≤ m. We have

ϕ = A1∨ . . .∨An ← B1∧ . . .∧Bm. It suffices to show thatM |= ϕ. Suppose thatM 2 A1∨ . . .∨An.
We show thatM 2 B1 ∧ . . . ∧Bm.

Since eachAi is a ground atom andM 2 A1 ∨ . . . ∨ An, we must haveAi ∈ M for all 1 ≤ i ≤ n.
SinceM is a minimal refinement ofΦ, it follows that for every1 ≤ i ≤ n there exists(ϕi, Ai) ∈ Φ such
thatϕi can be written as← Ai∧ζi andζi is false inM . SinceΦ is a negated representative ofGΓ, for all
1 ≤ i ≤ n, there exist a goalϕ′i : Θ′

i ∈ DΓ ↑ω and a substitutionσi such thatϕi = ϕ′iσi. For1 ≤ i ≤ n,
let ξ′i be the set of all atomsA′′

i,j of ϕ′i such thatA′′
i,jσi = Ai, and letζ ′i be the set of the remaining atoms

of ϕ′i. We haveϕ′i =← ξ′i ∧ ζ ′i.
Let δ, δ1, . . . , δn be renaming substitutions for standardizing(ϕ′, ϕ′1 : Θ′

1, . . . ,ϕ′n : Θ′
n). Let θ be

the normal substitution specified below

θ = (δ−1σ)|Dom(δ−1) ∪ (δ−1
1 σ1)|Dom(δ−1

1 ) ∪ . . . ∪ (δ−1
n σn)|Dom(δ−1

n )

Observe thatθ unifiesξ′iδi ∪ {A′
iδ} intoAi for 1 ≤ i ≤ n. We also haveζ ′iδiθ = ζi for 1 ≤ i ≤ n, and

B′
jδθ = Bj for 1 ≤ j ≤ m. Let θ′ be an mgu which unifiesξ′iδi ∪ {A′

iδ} for every1 ≤ i ≤ n. We have
θ = θ′γ for some substitutionγ.
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Let ψ′ : Θ′ be the hyper-resolvent of the program clauseϕ′δ and the goalsϕ′1δ1 : Θ′
1δ1, . . . ,ϕ′nδn :

Θ′
nδn with ξ′iδi as the set of selected atoms ofϕ′iδi and θ′ as mgu. Thusψ′ : Θ′ ∈ DΓ ↑ ω. It is

straightforward to check thatψ =← B1 ∧ . . . ∧ Bm ∧ ζ1 ∧ . . . ∧ ζn is a ground instance ofψ′ by the
substitutionγ.

Sinceψ′ : Θ′ ∈ DΓ ↑ω, we haveψ ∈ GΓ. By Condition 2 of Definition 5.1, we haveM |= GΓ. It
follows thatM |= ψ, which means thatM |= ¬B1 ∨ . . . ∨ ¬Bm ∨ ¬ζ1 ∨ . . . ∨ ¬ζn. Sinceζi is false in
M for all 1 ≤ i ≤ n, it follows thatM |= ¬B1 ∨ . . . ∨ ¬Bm, and henceM 2 B1 ∧ . . . ∧Bm. ut

Corollary 5.1. Every maximal model ofGΓ is a maximal model ofΓ.

Sketch.Every maximal model ofGΓ is the compliment of a minimal refinement of some negated repre-
sentative ofGΓ, and hence is a maximal model ofΓ.

6. Answer Completeness

In this section, we show that for every correct answerΘ of P ∪Q, whereP is a logic program andQ is
a query, there exists a computed answer ofP ∪Q which is more general thanΘ.

Lemma 6.1. (Lifting Lemma)
Let P be a logic program,Q a query, andΘ a disjunctive substitution. Letϕ′1 : Θ′

1, . . . ,ϕ′k : Θ′
k be a

derivation fromP ∪QΘ. Then there exist a derivationϕ1 : Θ1, . . . ,ϕk : Θk fromP ∪Q and substitutions
σi, for 1 ≤ i ≤ k, such thatϕiσi = ϕ′i and(Θiσi)|X ⊆ (ΘΘ′

i)|X .

Proof:
Simulate the derivationϕ′1 : Θ′

1, . . . ,ϕ′k : Θ′
k fromP ∪QΘ for P ∪Q so that, forψ ∈ Q andθ ∈ Θ, the

goalψθ ∈ QΘ is replaced byψ. Let the resulting derivation beϕ1 : Θ1, . . . ,ϕk : Θk.
We prove the assertion of this lemma by induction oni. The case whenϕi is a clause fromQ

andΘi = ε is trivial. Suppose thatϕi : Θi is derived as a hyper-resolvent of a standardized variant
of a program clauseϕ = A1 ∨ . . . ∨ An ← B1 ∧ . . . ∧ Bm of P and standardized variants of goals
ϕj1 : Θj1 , . . . , ϕjn : Θjn , wherej1, . . . , jn belong to1..(i − 1). Let δ, δ1, . . . , δn be the involved
renaming substitutions (for standardizing variants) andσ be the involved mgu. Letϕjt = ← ξjt ∧ ζjt

with ξjt as the set of selected atoms, for1 ≤ t ≤ n. We haveAtδσ = A′
tδtσ for every1 ≤ t ≤ n and

every atomA′
t of ξjt . The hyper-resolventϕi : Θi is equal to

← (B1δ ∧ . . . ∧Bmδ ∧ ζj1δ1 ∧ . . . ∧ ζjnδn)σ : (Θj1δ1 ∪ . . . ∪Θjnδn)σ

By the inductive assumption,ϕjtσjt = ϕ′jt
, for all 1 ≤ t ≤ n. Henceϕ′i : Θ′

i is a hyper-resolvent of a
standardized variant ofϕ and standardized variants ofϕj1σj1 : Θ′

j1
, . . . ,ϕjnσjn : Θ′

jn
. Let δ′, δ′1, . . . , δ

′
n

be the involved renaming substitutions (for standardizing variants) andσ′ be the involved mgu. We have
Atδ

′σ′ = A′
tσjtδ

′
tσ

′ for every1 ≤ t ≤ n and every atomA′
t of ξjt . The hyper-resolventϕ′i : Θ′

i is equal
to

← (B1δ
′ ∧ . . . ∧Bmδ

′ ∧ ζj1σj1δ
′
1 ∧ . . . ∧ ζjnσjnδ

′
n)σ′ : (Θ′

j1δ
′
1 ∪ . . . ∪Θ′

jn
δ′n)σ′

Let γ be the normal substitution specified below

γ = (δ−1δ′)|Dom(δ−1) ∪ (δ−1
1 σj1δ

′
1)|Dom(δ−1

1 ) ∪ . . . ∪ (δ−1
n σjnδ

′
n)|Dom(δ−1

n )
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Let 1 ≤ t ≤ n and letA′
t be an atom ofξjt . We haveAtδγ = Atδ

′ andA′
tδtγ = A′

tσjtδ
′
t. Since

Atδ
′σ′ = A′

tσjtδ
′
tσ

′, it follows thatAtδγσ
′ = A′

tδtγσ
′. Becauseσ is anmgusuch thatAtδσ = A′

tδtσ
for every1 ≤ t ≤ n and every atomA′

t of ξjt , there existsσi such thatγσ′ = σσi.
For 1 ≤ s ≤ m, we haveBsδσσi = Bsδγσ

′ = Bsδ
′σ′, and for1 ≤ t ≤ n, we haveζjtδtσσi =

ζjtδtγσ
′ = ζjtσjtδ

′
tσ

′. Henceϕiσi = ϕ′i.
For all1 ≤ t ≤ n, we have(Θjtδtσσi)|X = (Θjtδtγσ

′)|X = ((Θjtδtγ)|X σ′)|X = ((Θjtσjtδ
′
t)|X σ

′)|X
= (Θjtσjtδ

′
tσ

′)|X . By the inductive assumption,(Θjtσjt)|X ⊆ (ΘΘ′
jt

)|X , and hence(Θjtσjtδ
′
tσ

′)|X ⊆
(ΘΘ′

jt
δ′tσ

′)|X . We also haveΘ′
jt
δ′tσ

′ ⊆ Θ′
i, which implies that(ΘΘ′

jt
δ′tσ

′)|X ⊆ (ΘΘ′
i)|X . Hence

(Θjtδtσσi)|X ⊆ (ΘΘ′
i)|X . Therefore(Θiσi)|X ⊆ (ΘΘ′

i)|X , which completes the proof. ut

Theorem 6.1. (Completeness)
Let P be a logic program,Q a query, andΘ a correct answer ofP ∪ Q. Then there exists a computed
answerΘ′ of P ∪Q which is more general thanΘ.

Proof:
LetQ = {ϕ1, . . . , ϕn} andY = V ar(Q)∪Ran(Θ). For eachx ∈ Y , letax be a fresh constant symbol.
Let δ = {x/ax | x ∈ Y } andQ′ = QΘδ. SinceΘ is a correct answer ofP ∪Q, it follows thatP ∪Q′

is unsatisfiable.
Let P ′ be the set obtained fromP by replacing every positive clause(A1 ∨ . . . ∨An ←) by (A1 ∨

. . . ∨An ← >), and letΓ = P ′ ∪Q′. SinceP ∪Q′ is unsatisfiable, we haveΓ |= ¬>.
We first show that(← >) ∈ GΓ. Suppose oppositely that for everyϕ ∈ GΓ, ϕ 6= (← >). Then

there exists a negated representativeΦ of GΓ which does not contain any pair of the form(ϕ,>). LetM
be a minimal refinement ofΦ. We have thatM contains>. By Theorem 5.1,M |= Γ, which contradicts
with Γ |= ¬>.

The above assertion states that there exists a derivation fromΓ with the last goal of the form← > : ∆.
By simulating that derivation forP ∪Q′ with each(A1∨ . . .∨An ← >) replaced by(A1∨ . . .∨An ←),
we obtain a refutation with⊥ : ∆ as the last goal.

SinceQ′ = QΘδ, by Lemma 6.1, there exists a refutation ofP ∪Q with the last goal of the form⊥ :
Θ′′ and a substitutionσ′′ such that(Θ′′σ′′)|X ⊆ (Θδ∆)|X . We have thatΘ′ = Θ′′

|V ar(Q) is a computed
answer ofP∪Q. SinceX ′∩X = ∅, we haveV ar(∆)∩V ar(Q) = ∅ andV ar(∆)∩V ar(Θδ) = ∅. Since
(Θ′′σ′′)|X ⊆ (Θδ∆)|X , it follows that(Θ′′σ′′)|V ar(Q) ⊆ (Θδ)|V ar(Q). Now treat eachax as a variable
andδ as a renaming substitution. Then we have(Θ′′σ′′(δ−1))|V ar(Q) ⊆ (Θδ(δ−1))|V ar(Q). Since each
ax occurs neither inΘ nor in Θ′′, for σ′ = (σ′′δ−1)|Dom(σ′′), we can derive that(Θ′′σ′)|V ar(Q) ⊆ Θ.
Hence(Θ′σ′)|V ar(Q) ⊆ Θ andΘ′ is more general thanΘ. ut

7. Ordering Refinements

An order@ of atoms is an irreflexive and transitive binary relation between atoms.Negative hyper-
resolution using an ordering refinement@ is a restriction of negative hyper-resolution in the way that, in
the definition of hyper-resolvent, theset of selected atomsof eachϕi contains at least one@-maximal
atom ofϕi.

It is obvious that negative hyper-resolution using any ordering refinement is answer sound. An
ordering refinement@ is answer completefor negative hyper-resolution if for every logic programP ,
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every queryQ, and every correct answerΘ of P ∪ Q, there exists a refutation ofP ∪ Q by negative
hyper-resolution using the ordering refinement@ with a computed answer more general thanΘ.

An order@ of atoms isliftable if A @ B impliesAθ @ Bθ orAθ = Bθ, for every substitutionθ. An
order@ of atoms iswell-foundedif there does not exist any infinite decreasing (w.r.t.@) chain of atoms.

It is known that liftable ordering refinements are refutation complete for negative hyper-resolution.
In this section, we show that any liftable and well-founded ordering refinement is answer complete for
negative hyper-resolution. The additional requirement of well-foundedness is not severe, as mostly used
atom orderings are well-founded.

From now on, let@ denote a liftable and well-founded order of atoms. Let the analogues ofDΓ,
DΓ ↑ω, andGΓ under the ordering refinement@ beD@

Γ ,D@
Γ ↑ω, andG@

Γ , respectively.
LetG be a set of ground goals. Anegated@-representativeof G is a setΦ of pairs(ϕ,A) such that:

ϕ ∈ G andA is a@-maximal atom ofϕ; and for everyψ ∈ G, there exists exactly one atomB of ψ (a
negated@-representative ofψ) such that(ψ,B) ∈ Φ.

Definition 7.1. Let G be a set of ground goals andΦ a negated@-representative ofG. A setM of
ground atoms is a@-refinementof Φ (w.r.t.G) if the following conditions hold:

1. for eachA ∈M there exists(ϕ,A) ∈ Φ for someϕ;

2. for eachϕ ∈ G there existsA ∈M such thatA is an atom ofϕ;

3. for eachϕ ∈ G

(a) either there existsA ∈M such thatA is a@-maximal atom ofϕ;

(b) or for every atomA of ϕ that belongs toM there existsψ ∈ G such thatA is the only atom
of ψ belonging toM and is a@-maximal atom ofψ.

Conditions 1 and 2 of the above definition are the same as for Definition 5.1.
LetG be a set of ground goals andΦ a negated@-representative ofG. A setM of ground atoms is

called aminimal@-refinementof Φ if it is a @-refinement ofΦ and there is no@-refinementM ′ of Φ
such thatM ′ ⊂M .

Lemma 7.1. LetG be a set of ground goals. Then every negated@-representativeΦ ofG has a minimal
@-refinement.

Proof:
It is straightforward to verify that, ifM is a decreasing chain (w.r.t.⊆) of @-refinements ofΦ, then

⋂
M

is also a@-refinement ofΦ. Hence, by the Kuratowski–Zorn lemma, there exists a minimal@-refinement
of Φ. ut

The following lemma corresponds to Condition 3 of Definition 5.1.

Lemma 7.2. LetG be a set of ground goals,Φ a negated@-representative ofG, andM a minimal@-
refinement ofΦ. Then for everyA ∈M , there existsϕ ∈ G such thatA is the only atom ofϕ belonging
toM and is a@-maximal atom ofϕ.
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Proof:
Let S be the subset ofM consisting of all atoms violating the assertion of the lemma. Suppose thatS is
not empty and letA be a@-minimal atom ofS (here we use the assumption that@ is well-founded). Let
ϕ ∈ G be an arbitrary clause containingA.

SinceA ∈ S, eitherϕ contains some atom ofM different thanA orA is not a@-maximal atom of
ϕ. Suppose thatA is the only atom ofϕ belonging toM . It follows thatA is not a@-maximal atom ofϕ
andϕ does not satisfy Condition 3a of Definition 7.1. Henceϕ satisfies Condition 3b of Definition 7.1.
It follows thatA /∈ S, a contradiction. Henceϕ must contain also some atom ofM different thanA.

Observe that if we deleteA from M thenϕ still satisfies Condition 3 of Definition 7.1. In fact, if
ϕ will not satisfy Condition 3b of Definition 7.1 after deletingA fromM , thenϕ must contain another
atom ofS different thanA, and sinceA is a @-minimal atom ofS, it follows thatϕ will still satisfy
Condition 3a of Definition 7.1 after deletingA fromM .

Consequently,M\{A} is a@-refinement ofΦ, which contradicts the assumption thatM is a minimal
@-refinement ofΦ. ThereforeS is empty, which completes the proof. ut

(Note that if we define minimal@-refinement similarly as in Definition 5.1 by replacing Condition 3
in Definition 7.1 by the assertion of Lemma 7.2 then the proofs of both Lemmas 5.2 and 7.1 are not
adaptable.)

Here is a modified version of Theorem 5.1 w.r.t. ordering refinements:

Theorem 7.1. Let Φ be a negated@-representative ofG@
Γ andM a minimal@-refinement ofΦ. Then

M is a maximal Herbrand model ofΓ.

Proof:
Use the proof of Theorem 5.1 with the following modifications:

• GΓ is replaced byG@
Γ , andDΓ ↑ω is replaced byD@

Γ ↑ω.

• “negated representative” is replaced by “negated@-representative”.

• “minimal refinement” is replaced by “minimal@-refinement”.

• “Condition 3 of Definition 5.1” is replaced by “Lemma 7.2”.

• “Condition 2 of Definition 5.1” is replaced by “Condition 2 of Definition 7.1”.

• When specifying(ϕi, Ai), add the property thatAi is a@-maximal atom ofϕi (for all 1 ≤ i ≤ n).
Suchϕi exists by Lemma 7.2.

• Add the argumentation that, sinceAi is a@-maximal atom ofϕi and@ is liftable,ξ′i must contain
a@-maximal atom ofϕ′i (for all 1 ≤ i ≤ n).

ut

Since@ is liftable, Lifting Lemma 6.1 still holds for negative hyper-resolution using the ordering
refinement@. (Note that ifAθ is a@-maximal atom of a clauseϕθ thenA is a@-maximal atom ofϕ.)

The following theorem states that any liftable and well-founded ordering refinement is answer com-
plete for negative hyper-resolution.
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Theorem 7.2. (Completeness)
Let P be a logic program,Q a query,Θ a correct answer ofP ∪ Q, and@ a liftable and well-founded
order of atoms. Then there exists a refutation ofP ∪Q by negative hyper-resolution using the ordering
refinement@ with a computed answerΘ′ more general thanΘ.

Proof:
Let> be the smallest atom in the order@. Thus, if> is not the only atom of a goalψ then> cannot be a
negated@-representative ofψ. Our proof for this theorem is the proof of Theorem 6.1 with the following
modifications:

• GΓ is replaced byG@
Γ .

• “Theorem 5.1” is replaced by “Theorem 7.1”.

• “negated representative” is replaced by “negated@-representative”.

• “minimal refinement” is replaced by “minimal@-refinement”.

• The terms “derivation”, “refutation”, “computed answer”, and Lifting Lemma 6.1 are all consid-
ered under the ordering refinement@.

ut

8. Keeping Information for Computed Answers

In this section, we first modify the definition of derivation so that disjunctive substitutions in informative
goals keep only necessary information without violating soundness and completeness of the calculus.
We then show that informative goals can be simulated by normal goals using answer literals. We also
study cases when it is possible to make computed answers more compact.

LetP be a logic program,Q a query, andX ⊆ V ar(Q). A derivation restricted toX fromP ∪Q is
a modification of a derivation fromP ∪Q in which each newly derived hyper-resolventϕ : Θ is replaced
immediatelyby ϕ : Θ|X . (Note that such a replacement affects the remaining part of the derivation.) A
refutation restricted toX of P ∪ Q is a derivation restricted toX from P ∪ Q with the last goal of the
form⊥ : Θ.

Example 8.1. Reconsider Example 3.2. Here is a refutation restricted to{x, y} of P ∪Q :

(6) ← s(x, y) : ε from (5)
(7) ← p(x2) : {x/x2, y/a} (1), (6)
(8) ← q(x4) : {x/x4, y/b} (2), (6)
(9) ← r(x5) : {{x/x5, y/a}, {x/x5, y/b}} (3), (7), (8)
(10) ⊥ : {{x/c, y/a}, {x/c, y/b}} (4), (9)

Lemma 8.1. Let P be a logic program,Q a query, andX ⊆ V ar(Q). Let ϕ1 : Θ1, . . . ,ϕn : Θn be a
derivation fromP ∪Q andϕ1 : Θ′

1, . . . ,ϕn : Θ′
n be its version restricted toX. ThenΘ′

i = Θi|X for all
1 ≤ i ≤ n.
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This lemma can be proved by induction oni in a straightforward way.
The following theorem states that we can save memory when searching for refutations by restricting

kept disjunctive substitutions to the set of interested variables. The theorem immediately follows from
the above lemma.

Theorem 8.1. Let P be a logic program,Q a query, andX ⊆ V ar(Q). If ⊥ : Θ′ is the last goal of a
refutation restricted toX of P ∪Q, then there exists a computed answerΘ of P ∪Q such thatΘ′ = Θ|X .
Conversely, for every computed answerΘ of P ∪ Q, there exists a refutation restricted toX of P ∪ Q
with the last goal⊥ : Θ′ such thatΘ′ = Θ|X (in particular,Θ′ = Θ whenX = V ar(Q)).

We can simulate disjunctive substitutions by answer literals as follows.
For each variablex, let “x” be a constant symbol for keeping the name ofx. We use“x”/t, where

/ is an infix function symbol, to keep the bindingx/t. Let ans be a special predicate symbol which
can have different arities. Atoms of this predicate symbol will be always denoted either explicitly as
ans(. . .) or using a prefixAns. A literal ans(“x1”/t1, . . . , “xn”/tn) is called ananswer literal if
x1, . . . , xn are different variables. This answer literal can be treated as{x1/t1, . . . , xn/tn}. By deleting
from this set pairsxi/ti with ti = xi we obtain a normal substitution, which is called thesubstitution
corresponding to the answer literalans(“x1”/t1, . . . , “xn”/tn). If ϕ = Ans1 ∨ . . . ∨ Ansm andθi

is the substitution corresponding toAnsi, for 1 ≤ i ≤ m, then we call{θ1, . . . , θm} the disjunctive
substitution corresponding toϕ. Assume thatε is the substitution corresponding to the empty clause.

A goal with answer literalsis a clause of the following form, withn,m ≥ 0 :

Ans1 ∨ . . . ∨Ansn ← B1 ∧ . . . ∧Bm

Letϕ = A1∨. . .∨An ← B1∧. . .∧Bm be a program clause (n > 0), and(ψ1 ← ϕ1), . . . ,(ψn ← ϕn)
be goals with answer literals (i.e. eachψi is a disjunction of answer literals). Letϕi = (ξi ∧ ζi) for
1 ≤ i ≤ n, whereξi is a non-empty set of atomsselectedfor ϕi. If there exists an mguσ such that
Aiσ = A′

iσ for every1 ≤ i ≤ n and every atomA′
i of ξi, then we call the goal

(ψ1 ∨ . . . ∨ ψn ← B1 ∧ . . . ∧Bm ∧ ζ1 ∧ . . . ∧ ζn)σ

a hyper-resolvent (with answer literals)of ϕ and(ψ1 ← ϕ1), . . . , (ψn ← ϕn). Note that such a hyper-
resolvent is also a goal with answer literals.

Let P be a logic program,Q = {ϕ1, . . . , ϕn} a query, andX ⊆ V ar(Q). For each1 ≤ i ≤ n,
let V ar(ϕi) ∩X = {xi,1, . . . , xi,ki

}, ϕi =← ξi, andϕ′i = ans(“xi,1”/xi,1, . . . , “xi,ki
”/xi,ki

) ← ξi if
ki > 0, orϕ′i = ϕi if ki = 0. LetQ′ = {ϕ′1, . . . , ϕ′n}. A derivation fromP ∪Q with answer literals for
X is a sequenceψ1, . . . ,ψm of goals with answer literals such that for each1 ≤ j ≤ m, eitherψj ∈ Q′

or ψj is a hyper-resolvent with answer literals of a standardized variant of a program clause ofP and
standardized variants of some goals fromψ1, . . . ,ψj−1, where astandardized variantis a renaming of
all the variables in the original clause so that it does not contain variables of the other involved variants.
Such a derivation is called arefutation ofP ∪ Q with answer literals forX if the last goalψm is either
the empty clause or a positive clause (consisting of only answer literals).

Example 8.2. Reconsider Example 3.2. Here is a refutation ofP ∪Q with answer literals for{x, y} :
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(6) ans(“x”/x, “y”/y)← s(x, y) from (5)
(7) ans(“x”/x2, “y”/a)← p(x2) (1), (6)
(8) ans(“x”/x4, “y”/b)← q(x4) (2), (6)
(9) ans(“x”/x5, “y”/a) ∨ ans(“x”/x5, “y”/b)← r(x5) (3), (7), (8)
(10) ans(“x”/c, “y”/a) ∨ ans(“x”/c, “y”/b) (4), (9)

Theorem 8.2. Let P be a logic program,Q a query, andX ⊆ V ar(Q). If ψ is the last goal of a
refutation ofP ∪ Q with answer literals forX, then there exists a computed answerΘ of P ∪ Q such
thatΘ|X is the disjunctive substitution corresponding toψ. Conversely, for every computed answerΘ of
P ∪Q, there existsψ as the last goal of a refutation ofP ∪Q with answer literals forX such thatΘ|X
is the disjunctive substitution corresponding toψ.

Proof:
Given a refutation ofP ∪ Q with answer literals forX, simulate it by a refutation restricted toX of
P ∪ Q. For the converse direction, do it analogously. Letζi ← ψi and← ψi : Θi be the goals number
i in the two corresponding refutations. By induction oni, it is easy to see thatΘi is the disjunctive
substitution corresponding toζi. This together with Theorem 8.1 proves this theorem. ut

Keeping information for computed answers by using answer literals is just one of possible tech-
niques, which is not always optimal. For example,ans(“x”/a, “y”/y) ∨ ans(“x”/a, “y”/b) ∨
ans(“x”/a, “y”/c) can be better represented as the composition of{x/a} and{ε, {y/b}, {y/c}}.

We say thatΘ = {θ1, . . . , θn} has aconflict w.r.t.x if there exist bindingsx/t1 ∈ θi andx/t2 ∈ θj

for somei, j from 1..n such thatt1 6= t2. Suppose thatΘ is a computed answer ofP ∪Q andΘ has no
conflicts w.r.t. any variable. Then the normal substitutionθ =

⋃
Θ is also a correct answer ofP ∪ Q.

Despite thatθ is “tighter” thanΘ, from the point of view of users,θ is more intuitive and sufficient
enough.

Consider a more general case. Suppose thatΘ = {θ1, . . . , θn} is a computed answer ofP ∪ Q,
x ∈ Dom(Θ), andΘ has no conflicts w.r.t.x. Let x/t be the binding ofx that belongs to someθi,
1 ≤ i ≤ n. Let θ′j = θj − {x/t} for 1 ≤ j ≤ n. Then{x/t}{θ′1, . . . , θ′n} is also a correct answer
of P ∪ Q. This kind of extraction can be applied further for{θ′1, . . . , θ′n} and so on. The resulting
composition is a correct answer “tighter” thanΘ but it is more compact and still acceptable from the
point of view of users.

9. Conclusions

We have proved that negative hyper-resolution using any liftable and well-founded ordering refinement
is a sound and complete procedure for answering queries in disjunctive logic programs. This is a funda-
mental theoretical result for the intersection of theorem proving, disjunctive logic programming and AI.
Our completeness proof is based on our reverse fixpoint semantics of disjunctive logic programs.

We have also introduced disjunctive substitutions to represent answers of queries. Our definition
can be looked at as a formulation on the semantic level, while answer literals used in theorem proving
systems are defined on the syntactical level. Our formulation extracts the meaning of answers from
representation and in some situations allows a better encoding.
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The result that every liftable and well-founded ordering refinement is answer complete for negative
hyper-resolution is important (for increasing efficiency of the proof procedure) and its proof is not trivial.
Hence, this work is a significant extension of the conference paper [15].
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