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Abstract. We prove that negative hyper-resolution using any liftable and well-founded ordering
refinement is a sound and complete procedure for answering queries in disjunctive logic programs.
In our formulation, answers of queries are defined using disjunctive substitutions, which are more
flexible than answer literals used in theorem proving systems.

1. Introduction

Resolution can be used not only to prove theorems but also to answer questions. This was first shown by
Green in [6], where he introduceshswer literalsand a planning method using resolution. His technique
has become popular in Al.

Since resolution was introduced by Robinson [17] in 1965, many refinements of resolution have
been proposed by researchers in the field in order to cut down the search space and increase efficiency.
One of the most important refinements of resolution is hyper-resolution, which was also introduced by
Robinson [16] in the same year 1965. Hyper-resolution constructs a resolvent of a number of clauses at
each step. Thus it contracts a sequence of bare resolution steps into a single inference step and eliminates
interactions among intermediary resolvents, and interactions between them and other clauses. Another
way to improve resolution and hyper-resolution is to use ordering refinements. The idea is that only
“maximal’” literals in clauses can selected

There are many completeness results in the literature for various refinements of resolution, but these
results usually derive refutation completeness, i.e. the empty clause will be derived if the input clauses

*This work extends the conference paper [15] with a result on answer completeness of ordering refinements.
Address for correspondence: Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
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are inconsistent. For question-answering systems, we want a stronger resuthoallent completeness
for every correct answer there exists a more general computed answer.

A refinement of resolution for the Horn fragment, called SLD-resolution in [1], was first described
by Kowalski [7] for logic programming. It is a sound and complete procedure for answering queries in
definite logic programs. In [11], Lobet al. gave a linear resolution method with a selection function,
called SLO-resolution, for answering goals in disjunctive logic programs. SLO-resolution is an extension
of SLD-resolution, and both of them are answer complete under any selection function.

SLO-resolution extends SLD-resolution in a natural way, and in our opinion, it is a potential frame-
work for developing efficient proof procedures. However, queries and derivations formulated in SLO-
resolution allow only definite answers, and in fact, SLO-resolution is answer complete only for a certain
class of queries. Consider an example of [11] : given the progfam{p(a) V p(b) <} and the query
Q@ = < p(z), there is no computed answer in SLO-resolutionffav @), while there exists a disjunctive
answer{{x/a},{z/b}}. Of course, if we rewrit&) to Q" = «— p(x) V p(y) then there is a computed
answer{z/a,y/b}, but if the considered program is larger, it is difficult to know when and where we
need to rewrite goals, and furthermore, rewriting goals is inconvenient for users.

There are also other goal oriented proof procedures proposed for disjunctive logic programming:
nearHorn-Prolog procedures by Loveland [12], SLI-resolution by Lebal. [10], and restart model
elimination (RME) by Baumgartneat al. [2]. The nearHorn-Prolog procedures extend SLD-resolution
and Prolog style for disjunctive logic programs, but they are of interest only when the considered program
contains very few non-Horn clauses. Both of SLI-resolution and RME are variants of the model elimi-
nation procedure. SLI-resolution is related to SLO-resolution, while RME is related to hyper tableaux.

In our opinion, itis very difficult for programmers to imagine behaviors of disjunctive lpgigrams
as is possible when writing Prolog programs. Perhaps we should adopt the approach by Loveland and use
mechanisms of theorem proving for non-Horn fragments of disjunctive logic programs. But as mentioned
before, the nearHorn-Prolog procedures proposed by Loveland have advantages only for logic programs
containing very few non-Horn clauses. For general cases, why not to use strongest theorem provers as
proof procedures for disjunctive logic programming?

In this work, we formulate a negative hyper-resolution calculus as a proof procedure for disjunctive
logic programming and prove that negative hyper-resolution using any liftable and well-founded ordering
refinement is a sound and complete procedure for answering queries in disjunctive logic programs. In
our formulation, every clause set can be divided into a disjunctive logic program, which consists of non-
negative clauses, and a query. We define answers as disjunctive substitutions. To each goal appearing in
a derivation we attach a disjunctive substitution keeping bindings of variables of the initial query. Our
definition of answers is more flexible than answer literals used in theorem proving systems. In [3], Brass
and Lipeck also defined disjunctive answer as a set of normal substitutions, but they did not give further
properties of disjunctive substitutions as we do. Our definition of correct answers is compatible with the
semantics of answer literals given by Kunen [8]. The theory of answer literals was discussed earlier in
[6, 13, 4], but in those works the authors assume that answer literals appear only in one clause.

This paper is organized as follows: In Section 2, we give definitions for disjunctive substitutions,
disjunctive logic programs, queries, and correct answers. In Section 3, we specify a negative hyper-
resolution calculus as procedural semantics of disjunctive logic programs. In Section 4, we prove answer
soundness of that calculus. We givesgersefixpoint semantics for disjunctive logic programs in Section
5 and use it in Section 6 to prove answer completeness of the calculus. In Section 7, we show that any
liftable and well-founded ordering is an answer complete refinement for negative hyper-resolution. The
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relationship between disjunctive substitutions and answer literals is considered in Section 8. Section 9
concludes this work.

2. Preliminaries

First-order logic is considered in this work and we assume that the reader is familiar with it. We now
give the most important definitions for our work.

By V() we denote theuniversal closureof o, which is the closed formula obtained by adding a
universal quantifier for every variable having a free occurrence in

An expressioris either a term or a formula without quantifiers Hfis an expression, then Bar (E)
we denote the set of all variables occurringfin

TheHerbrand universd/r of a formula sel” is the set of all ground terms that can be formed from
the constants and function symboldin if no constants occur iff then some arbitrary constant is used
instead.

TheHerbrand baseBr of a formula set” is the set consisting of all ground atoms that can be formed
from the predicate symbols i and the terms i/r. WhenT is clear from the context, fok/ C Br,
we write M to denote the selbr \ M.

2.1. Disjunctive Substitutions

A normal substitutiornis a finite set) = {z1/t1,...,x,/t,}, Wherezq, ..., z, are different variables,
ti,...,t, are terms, and; # z; for all 1 < i < n. By ¢ we denote thempty normal substitutionThe
setDom(0) = {z1,...,z,} is called thedomainof 6. By Ran(f) we denote the set of all variables
occurring inty, . .., t,. DefineVar(0) = Dom(0) U Ran(f). For a setX of variables, theestriction
of ¢ to X, denoted by, x, is the substitutioqz/t | z/t € 6 andx € X}.

Letd = {x1/t1,...,z,/t,} be anormal substitution arfd be an expression. Thei¥, theinstance
of E by 6, is the expression obtained frafhby simultaneously replacing each occurrence of the variable
z; iIn E by the term¢;, for1 < i < n.

Letd = {x1/t1,...,zn/tn} @andd = {y1/s1,...,ym/sm} be normal substitutions. Then them-
positiondd of § ando is the substitution obtained from the et /16, . .., Tn/tnd, y1/S1, - - s Ym/Sm }
by deleting any binding;/¢;6 for which z; = t;0 and deleting any binding;/s; for which y; €
{331, ey J}n}

If # andd are normal substitutions such titat = 56 = ¢, then we call themmenaming substitutions
and us&~! to denotey (which is unique w.r.té).

A disjunctive substitutio® is a finite and non-empty set of normal substitutions. Defie:(0) =
Usco Dom(0), Ran(©) = Jyce Ran(0), andVar(©) = Dom(©) U Ran(©). For X C Dom(0),
therestrictionof © to X is denoted byo, x and defined agt|x | 6 € ©}.

We treat a normal substitutighalso as the disjunctive substitutigf}.

If ¢ is aformulathenp® =4 {¢f | 6 € ©}. If I' is a set of formulas theh® =;.¢ {0 | ¢ €
I',0 € ©}. Thecomposition®A of disjunctive substitution® and A is the disjunctive substitution
{660 €©,0 €A}

A disjunctive substitutior® is more generathanA if there exists a normal substitutiensuch that
for X = Dom(©) U Dom(A), (B0)x € A.
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As some properties of disjunctive substitutions, for an expresSiand disjunctive substitutiorts,
©1, O, O3, we have®e = 0 = O, (E@l)@z = E(@l@g), and(@1®g)®3 = @1(@293).

2.2. Disjunctive Logic Programs and Queries

A clauseis a formula of the form
Vay ... Vep(A1 V... VA, V-B1V...V-By)

wherez, ...,z are all the variables occurring in the rest of the formul&; 0, m > 0, andA; andB;
are atoms. We write such a clause in the form

AV ...VA,—BiA...\NB,

We callA; v...V A, theheadandB; A ... A By, thebodyof the clause. If» = 0 andm = 0 then the
clause imptyand denoted by . If n = 0 andm > 0 then the clause is goal and we treat the body
By A...N B, as asetofatoms. H > 0 andm = 0 then the clause igositive If n > 0 then the clause
is a(disjunctive) program clause

A (disjunctive) logic progranis a finite set of disjunctive program clauses.

A (disjunctive) querys a finite set of goals.

Let P be a logic program and = { < 1, ..., < ¢, } be a query. We say that a disjunctive
substitution® with Dom(©) C Var(Q) is acorrect answenf P U Q if P |=Y(\/7_; Vyeco ¢if).

For example, ifP = { p(f(z)) V plg(z)) — } andQ = { — p(y) }, then© = {{y/f(x)},
{y/g(x)}} is a correct answer aP U Q).

In [8], Kunen characterized the semantics of answer literals used in theorem proving systems by the
following theorem: Let be a set of sentences; ¢ (z) be a sentence, attl = LUV(ans(z) — ¢(T)).
If each7;, fori = 1,...,k, is a tuple of terms of the same lengthshenY’ = V(ans(71) V...V
ans(Ty)) (this specifies an answer) ¥ = V(p(71) V... V ©(Tk))-

Our definition of correct answers is compatible with the semantics of answer literals by Kunen. To
see the compatibility, justtakeé = P andy = ¢1 V...V @,.

3. Negative Hyper-Resolution Semantics

An informative goalis a pairy : ©, whereyp is a goal and is a disjunctive substitution. Informally,
O keeps the disjunctive substitution that has been applied to variables of the initial query in the process
of deriving . We will ignore the word “informative” when it is clear from the context. An informative
goaly : © is said to begroundif ¢ is ground.
Letop=A;Vv...VA, «— BiA...\ By, be aprogram clause (i.e.> 0) andy; : ©1, ...,¢, : O,
be goals. Letp; = «— & A, for 1 < i < n, whereg; is a non-empty set of atoms called thelected
atoms ofy;. If there exists an mgu such thatd;c = A;JU for everyl < i < n and everyAgyj €&,
then we call the goal

— (BIN...ABu NG A...ANG)o: (B1U...UBy)o

ahyper-resolvendf p andy; : ©4, ..., ¢, : ©,. (Note that “factoring” is hidden in our definition.)
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Example 3.1. A hyper-resolvent of

p(x1) V q(x1) « r(21),
—p(z2) : {{z/22,y/a}, {z/x2,y/b}},
—q(z3) : {{z/x3,y/c}, {x/x3,y/d}}

using mgwzo/x1, x3/x1} is

—r(e1): Hafea,y/ay {x/we, y/0) {x/as,y/c} {x /w3, y/d} }{wa /w1, w3/ 21}

whose disjunctive substitution is equivalenftac /z1,y/a, xo/x1, v3/21}, {x/21, /b, 22/ 21, 3 /21 },
{x/x1,y/c,xa/x1,23/21}, {x/21,y/d, 29/ 21, 23/21 } }, Which in turn can be represented by the com-

position{x /w1, x2/21, x3/x1} {{y/a}, {y/b}, {y/c}, {y/d}}.

Before defining derivation and refutation we specify the process of standardizing variables apart.
Denote the original set of variables of the languageXthyand assume that variables occurring in the
given logic program, the given query, or considered correct answers all belokig foet X’ be an
infinite set of variables disjoint witd’. We will use elements ok’ for renaming variables.

Letp be aprogram clause agd : ©4, ...,p, : ©,, be goals. Astandardized variantf the tuple(¢,
©1: 01, ...,0n : Op)isatuple(pd, 101 : O161, ..., Pndn : ©,d,) Whered, oy, . .., 4, are renaming
substitutions such thddom(0) = Var(y) and Ran(d) C X', Dom(d;) = Var(p;) U Ran(©;) and
Ran(é;) C X' forall1 < i < n, and the set®an(d), Ran(d1), ..., Ran(d,) are disjoint. Assume that
standardizing variants is done by some unspecified deterministic procedure.

Let P be a logic program and a query. Aderivationfrom P U @ is a sequence; : O, ...,
vn : O, of goals such that for each< i < n:

1. eithery; is a clause of) and©; = ¢;

2. ory; : ©; is a hyper-resolvent of a program clayseand goalsy; ; : ©; , ...,¢; .. : ©} ., where
(¢ @i 2 Oy, -y, ¢ ©),,) is a standardized variant 6p, i1 : ©i1, .-, Pin; * Oin,),
@ is a program clause d?, andy; 1 : ©; 1, ...,9in, : O;p, are goals from the sequenge : ©1,

c i1 1 O,

For simplicity, Condition 2 of the above definition will be also stategas ©; is a hyper-resolvent
of a standardized variant of a program claysef P and standardized variants of some goals from
©1:01,...,0i-1:0;_1.

A refutationof PUQ is a derivation fromP U @ with the last goal of the form. : ©. The disjunctive
substitution®|y,,.(q) is called thecomputed answesf P U @ w.r.t. that refutation. (At the moment, we
do not consider ordering refinements yet.)

Example 3.2. Let P be the program consisting of the following clauses:

(1) s(z,a) < p(z)

(2) s(x,b) — q(2)
3) p(z)Vq(z) —r(z)
(4) r(c) <

and let@ be the query consisting of the only following goal:
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(5) < s(z,y)
Here is a refutation o U Q:

6) «—s(z,y):e from (5)

(1)« p(x2) : {x/22,y/a, 21 /22, 92/} (1), (6)
(Here, e.g., the renaming substitutions &r¢x; } and

{x/22,y/y2}, and the used mgu ise1 /s, y/a}.)

(8) « q(x4) : {z/24,y/b,x3/74,y4/} (2), (6)
) «r(xs): {z/x5,y/a,21/75,92/a, 22/ 75,26 /75, 27/ 75},
{z/25,y/b,x3/25,y4/b, 24 /75,26 /5, X7 /5 } } (3), (7), (8)
(10) L: {{z/c,y/a,x1/c,y2/a,xa/c,x6/c, x7/c, x5/ ¢, 8/},
{z/c,y/b,x3/c,ys/b, x4/, x6/C,x7/c,x5/c,x8/c}} 4), 9)

The computed answer {§z/c,y/a}, {x/c,y/b}}.

4. Answer Soundness

In this section, we show that for every logic progrdtrand every query), every computed answer of
P UQisacorrect answer aP U Q.

Lemma4.l. Let — ¢ : © be a hyper-resolvent of a program claysend goals— ¢1 : O, ...,
— ¢y, : ©, with o being the involved mgu. Let/ be a model ofp. ThenM = \/i_, (¢ — ;o). In
particular, ify is empty thenM = /i, pio.

Proof:

Letop = A1 V...VA, — By A...\ By andy; = & A (;, whereg; is the set of selected atoms of
— ¢, forl <i<n. Theny = (Bi1A...ANBy A A...N(y,)o. LetV be an arbitrary variable
assignment. Suppose thaf, V' = . BecauselM is a model ofp and M,V = 1, it follows that
M,V = (A1V...VAy)o. HenceM, V |= /I | (A; A ()o, sinceM, V = ¢. ThusM, V = /', gio.
SinceV is an arbitrary variable assignment, we conclude Mal= \/}"_, (v — ¢;0). O

Lemma 4.2. Let P be a logic program@) = {<— ¢1, ..., <— ¢, } be a query, and- ¢ : © be the
last goal in a derivation fron® U Q. Let M be a model ofP. ThenM |= \/i_; \/ycq (1) — @if). In
particular, ift is empty themM = \/I, \/geq ©if.

Proof:

We prove this lemma by induction on the length of the derivation. The case wheris a clause of)

and© = e is trivial. Suppose that- ¢ : © is derived as a hyper-resolvent of a standardized variant of a
program clause» and standardized variants of goalsy; : ©1, ..., ¥, : ©,,. Leto be the involved

mgu andd, 41, ..., d,, be the involved renaming substitutions. By the inductive assumption, we have
M = VI Voo, () — @if) forall 1 < j < m. ThusM = Vi_) Vyeo, (45050 — 9i60;0), and
henceM = \/i_, Vyce 5,0 (V5050 — @if)), forall 1 < j < m. Note thato;d;0 € ©. By Lemma 4.1,

M = VL, (¥ — ¢;6;0). These two assertions together imply that= VL, Voo (¥ — 9if). O
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Theorem 4.1. (Soundness)
Let P be a logic program() a query, and® a computed answer @ U ). Then® is a correct answer of
PUQ.

Proof:
Let @ = {« ¢1, ..., ¢,} and letL : © be the last goal in a refutation d? U @ such that
© = Oy, (- LetM be an arbitrary model of. By Lemma 4.2M = \/i_; Vyco #if, and hence

M = \Vi_i Vyeo @if. SinceM is an arbitrary model of?, we deriveP = V(\/;_; Vyco i), which
means tha® is a correct answer af U Q. O

5. Reverse Fixpoint Semantics

The fixpoint semantics of definite logic programs was first introduced by van Emden and Kowalski [5]
using the direct consequence operdafpr This operator is monotonic, continuous, and has the least
fixpoint Tp Tw = {U,,_, Tp 11, Which forms the least Herbrand model of the given logic progfam
In [14], Minker and Rajasekar extended the fixpoint semantics to disjunctive logic programs. Their
direct consequence operator, denoted Byiterates over states, which are sets of disjunctions of ground
atoms. This operator is also monotonic, continuous, and has the least fixpoint which is the least model-
state characterizing the given progrdm
In this section, we study a reversed analogue of the direct consequence operator caliegtcthe
derivation operator The results of this section will be used to prareswer completenesfthe negative
hyper-resolution semantics.
Let P be a logic program) a query, and" the set obtained fron®? U @) by replacing every positive
clause(A; V...V A, —)by (A1 V...V A, « T),whereT is a special atom not occurring ihand@.
Thedirect derivation operatoiDr is a function that maps a s€tof informative goals to another set
of informative goals that can be directly derived fréhandG. It is formally defined as followsDr (G)
is the set of all goals : © such that eithep is a clause of) and® = ¢ or ¢ : O is a hyper-resolvent
of a program claus@’ and goalsy| : ©%, ..., : ©, where(y/, ¢} : 0}, ..., ¢! : ©)is the
standardized variant ¢f), ¢, : ©1, ...,1, : ©,,), ¢ is a program clause @f, andy; : ©1, ...,¢, : O,
are goals fronG.

Lemma 5.1. The operatoDr is monotonic, compact, and hence also continuous. It has the least fixpoint
Driw= U:::O Dr1n,whereDr 10 = ¢ andDr T (n + 1) = DF(DFTH)

The first assertion of the above lemma clearly holds. The second assertion immediately follows from
the first one by Kleene’s theorem (see, e.g., [9]).

Let Gr denote the set of all ground goalsuch that there exists an informative gpat ©' € DrTw
such thatp is a ground instance af’ (i.e. ¢ is obtained fromy’ by uniformly substituting variables by
terms fromUr).

Let G be a set of ground goals. Aegated representative G is a setd of pairs(p, A) such that:
¢ € G and A is an atom ofp; and for everyy € G, there exists exactly one atom of ¢ (a negated
representative ap) such that(y), B) € ®.

Clearly, every set of ground goals has at least one negated representative.
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Definition 5.1. Let G be a set of ground goals adda negated representative@f A set M of ground
atoms is called aninimal refinemenof ® (w.r.t. ) if the following conditions hold:

1. for eachA € M there existgp, A) € ® for somey;
2. for eachy € G there existsd € M such thatA is an atom ofp;

3. for eachA € M there existsy € G such that for every atom® of ¢ different from A, we have
B¢ M.

In this definition, Condition 1 states that member%fcgme from®. Condition 2 states that every
Herbrand model disjoint with\/ satisfiesG; in particular, M/ = G. Condition 3 states that/ is a
minimal set satisfying the two preceding conditions.

Lemma5.2. Let G be a set of ground goals. Then every negated represendatife> has a minimal
refinement.

Proof:

Start fromM = {A | (p,A) € @ for someyp} and keeping in mind that/ will always satisfy the
first two conditions of the definition of minimal refinement, do the following:Mf is not a minimal
refinement of® due to somed that violates the last condition of the definition, then remove thiabm
M. This operator has a fixpoint which is a minimal refinemen®of O

Theorem 5.1. Let ® be a negated representativegf andM a minimal refinement ob. ThenM is a
maximal Herbrand model df.

Proof:

SinceM is a minimal refinement ob, due to Condition 3 of Definition 5.1, it is sufficient to prove that
M isamodel of. Lety’ = Ay V...V Al «— B/ A...A B! beaclause of andy = ¢’o be a ground
instance ofy’ by a substitutiorr. Let A; = Ajo for1 <i <n,andB; = B;.a for1 < j < m. We have
©o=A1V...VA, «— BiA...ABy,. Itsuffices to show that/ |= ¢. Suppose thalZ # A; V...V A,.
We show that\l # B; A ... A B,.

Since eachy; is a ground atom andl/ ¥ A, V...V A,, we must havel; € M forall 1 < i < n.
SinceM is a minimal refinement ob, it follows that for everyl < i < n there exist§y;, A;) € ® such
thaty; can be written as— A; A (; and(; is false inM . Since® is a negated representative®f, for all
1 <i < n,there exista goap, : ©, € Dr w and a substitution; such thatp; = ¢,o;. Forl <i <n,
let&; be the set of all atoma?; of ¢} such thatd} ;0; = A;, and let(; be the set of the remaining atoms
of ¢!. We havep, = — & A (.

Letd, 41, ..., 0, be renaming substitutions for standardizing, ¢ : 0}, ..., ¢, : ©)). Letd be
the normal substitution specified below

0= (6""0)|pom(s-1) U (5;101)|D0m(551) U...u (57;1%)‘[,07”(6;1)

Observe thaf unifies¢/d; U { A5} into A; for 1 < i < n. We also haveéd;0 = (; for 1 < i < n, and
B§59 = Bj for1 < j < m. Let#' be an mgu which unifiegé; U {A}d} for everyl < i < n. We have
6 = 0'~ for some substitution.
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Lety’ : © be the hyper-resolvent of the program clayé&and the goals)|d; : ©161, ..., )0 :
0,0, with £/6; as the set of selected atoms s, and#’ as mgu. Thus)’ : © € Dp [ w. Itis
straightforward to check that = <« By A ... A B,, A(1 A ... A, is a ground instance af’ by the
substitutiony.

Sincey’ : ©' € Dr 1w, we haveyy € Gr. By Condition 2 of Definition 5.1, we hav&/ = Gr. It
follows thatM |= +, which means that/ = —B; V...V =B, V =1 V...V =(,. Since(; is false in
M forall 1 < i < n,itfollowsthatM = =By V...V =B, and hencél ¥ By A ... A B,. O

Corollary 5.1. Every maximal model of7r is a maximal model of.

Sketch Every maximal model of-r is the compliment of a minimal refinement of some negated repre-
sentative ofGr, and hence is a maximal modelbf

6. Answer Completeness

In this section, we show that for every correct answesf P U (), whereP is a logic program and) is
a query, there exists a computed answePaf ) which is more general thad.

Lemma 6.1. (Lifting Lemma)

Let P be a logic program() a query, and a disjunctive substitution. Let| : ©7, ..., ¢} : ©) be a
derivation fromPU@®©. Then there exist a derivatian : O4, ...,y : O from PUQ and substitutions
i, for1 <i <k, such thatp;o; = ¢! and(0;0;)jx C (@6;)‘;(.

Proof:
Simulate the derivatiop’, : ©1, ..., ¢}, : ©) from PUQO for PUQ so that, for) € Q andf € ©, the
goalyd € QO is replaced by). Let the resulting derivation be; : ©4, ..., : O.

We prove the assertion of this lemma by inductionionThe case wherp; is a clause front)
and©; = e is trivial. Suppose thap; : O; is derived as a hyper-resolvent of a standardized variant
of a program clause = A; V...V A, «— By A... A\ B, of P and standardized variants of goals
0 ¢ O, .., 4, ¢ O, Wherejy, ..., j, belong tol..(i — 1). Leté,d,...,d, be the involved
renaming substitutions (for standardizing variants) artge the involved mgu. Lep;, = «— &, A (j,
with &;, as the set of selected atoms, foK ¢t < n. We haved;do = A;é;o for everyl < ¢ < n and
every atomA; of &;,. The hyper-resolvenp; : ©; is equal to

— (315 A...ANBpoA leél VAN <j7L5n)U : (@j1(51 U...J G)jnén)a

By the inductive assumption;, o, = ¢’ , forall 1 <t < n. Hencey] : ©; is a hyper-resolvent of a
standardized variant of and standardized variants@f,oj, : ©’ , ..., ¢;,0;, : © . Letd’,dy,..., 0,
be the involved renaming substitutions (for standardizing variantsyabd the involved mgu. We have
A’ = Ajoj,0,0" for everyl < t < n and every atomd; of ¢;,. The hyper-resolvent, : ©/ is equal
to

— (B10' Ao . ABpd' NG040y A N GL04,6,)0 (O 01U UG 6 )0

Let~ be the normal substitution specified below

v = (5_15/)\Dom(6—1) U (6;10j161)\Dom(5f1) U...U (57:10]'” ’:l)|Dom((5;1)



360 L.A. Nguyen/Negative Ordered Hyper-Resolution as a Proof Procedure for Disjunctive Logic Programming

Letl < ¢ < nand letA; be an atom of;,. We haved;dy = A;0’ and A}é,y = Ajo;,0;. Since
Aid'o’ = Ajoj, 6,0, it follows that A.dvo’ = Ajdyyo’. Becauser is anmgusuch thatd;oc = Ajdo
for everyl <t < n and every ator; of §;,, there existe; such thatyo’ = oo;.

Forl < s < m, we haveB,do0; = Bsdyo’' = Bsd'c’, and forl < ¢t < n, we have(;,d,00; =
G 0ryo' = (j,05,0,0". Hencep;o; = ).

Foralll <t < n, we have(©;,6:00:) x = (0;,6:70") 2 = ((0;,0:7)1x o)1 x = ((©;,05,67) 1 )2
= (0;,05,0,0") |- By the inductive assumptiont;,0;,)jx € (067,)x, and hence®;,0;,6;0")x C
(00’ 6;0")x. We also haved’, 5,0’ C O, which implies that(©©’. ;0")x C (00!))x. Hence

gt t? /| 310t i _ 31 9t9 | i)l

0,,0;00;)x C (00)) y. Therefore(©;0;), 1+ C (00!), 5, which completes the proof. O
Ji | i/ | i/l

Theorem 6.1. (Completeness)
Let P be a logic program@ a query, and® a correct answer oP U (). Then there exists a computed
answer®’ of P U @ which is more general thad.

Proof:

Let@Q = {¢1,...,pn} andY = Var(Q)U Ran(©). For eachr € Y, leta, be a fresh constant symbol.
Letd = {z/a, | 2 € Y} andQ' = QO4. SinceO is a correct answer aP U @, it follows that P U @’

is unsatisfiable.

Let P’ be the set obtained fror? by replacing every positive clausel; vV ...V A, <) by (4; Vv
...V A, T),andletl’ = P’ UQ’. SinceP U Q' is unsatisfiable, we have = —T.

We first show that«— T) € Gr. Suppose oppositely that for evegye Gr, ¢ # («+ T). Then
there exists a negated representadvef G which does not contain any pair of the fofig, T). Let M
be a minimal refinement ab. We have thaf/ containsT. By Theorem 5.1M |= T', which contradicts
with T’ ): =T,

The above assertion states that there exists a derivatiorireith the last goal of the forma- T : A.
By simulating that derivation foP U Q’ with each(A4; V...V A,, < T) replaced by 4, V...V A, <),
we obtain a refutation with_ : A as the last goal.

Since@’ = QO4, by Lemma 6.1, there exists a refutationfof) () with the last goal of the form. :
©” and a substitutioa” such thaf{©®”¢") » C (0JA)x. We have tha®' = @ﬁ/m(@ is a computed
answer ofPUQ. SinceX’'NX = (), we haveV ar(A)NVar(Q) = dandVar(A)NVar(©4§) = . Since
(©"0")1x C (B5A))x, it follows that (©”0") v ar (@) € (O9)var(g)- NOw treat eachu, as a variable
and as a renaming substitution. Then we h#@&c” (6~"))v4r(q) € (©6(671))|var(q)- Since each
a, occurs neither if® nor in ©”, for o’ = (6”67 1) | pom(o), We can derive that®” o)y ,(q) € ©.
Hence(©'o’)|vqr(g) € © and©’ is more general tha®. 0

7. Ordering Refinements

An orderC of atoms is an irreflexive and transitive binary relation between ataNegative hyper-
resolution using an ordering refinememntis a restriction of negative hyper-resolution in the way that, in
the definition of hyper-resolvent, treet of selected atontd eachy; contains at least ong-maximal
atom of ;.

It is obvious that negative hyper-resolution using any ordering refinement is answer sound. An
ordering refinement is answer completéor negative hyper-resolution if for every logic prograf
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every queryQ, and every correct answé of P U (), there exists a refutation d? U @ by negative
hyper-resolution using the ordering refinementvith a computed answer more general tigan

An orderC of atoms idiftable if A = B implies A0 C B6 or A9 = B0, for every substitutiodd. An
orderC of atoms iswell-foundedf there does not exist any infinite decreasing (wir}.chain of atoms.

It is known that liftable ordering refinements are refutation complete for negative hyper-resolution.
In this section, we show that any liftable and well-founded ordering refinement is answer complete for
negative hyper-resolution. The additional requirement of well-foundedness is not severe, as mostly used
atom orderings are well-founded.

From now on, letC denote a liftable and well-founded order of atoms. Let the analogués-of
Dr 1w, andGr under the ordering refinementbe D, DE 1w, andGE, respectively.

Let G be a set of ground goals. Regated_-representativef G is a setd of pairs(p, A) such that:
¢ € G and A is aC-maximal atom ofp; and for every) € G, there exists exactly one atoBhof ¢ (a
negated_-representative o) such thaiy, B) € ®.

Definition 7.1. Let G be a set of ground goals arde a negated_-representative ofs. A set M of
ground atoms is a-refinemenof ® (w.r.t. G) if the following conditions hold:

1. for each4d € M there existgp, A) € ® for somey;
2. for eachpy € G there existsA € M such thatA is an atom ofp;
3. foreachy € G

(a) either there existd € M such thatd is aC-maximal atom ofp;

(b) or for every atomi of ¢ that belongs td\/ there exists) € G such thatA is the only atom
of ¢ belonging toM and is a_-maximal atom ofi).

Conditions 1 and 2 of the above definition are the same as for Definition 5.1.

Let G be a set of ground goals adda negated--representative off. A setM of ground atoms is
called aminimal C-refinemenbf & if it is a C-refinement of® and there is na-refinement)’ of ®
such thatM’ c M.

Lemma 7.1. Let G be a set of ground goals. Then every negateepresentativé of G has a minimal
C-refinement.

Proof:

It is straightforward to verify that, iM is a decreasing chain (w.r) of C-refinements o, then(| M
is also aC-refinement ofb. Hence, by the Kuratowski—Zorn lemma, there exists a minimegfinement
of ®. O

The following lemma corresponds to Condition 3 of Definition 5.1.
Lemma 7.2. Let G be a set of ground goal®, a negated--representative of7, and M a minimalC-

refinement ofb. Then for everyAd € M, there existg € G such thatA is the only atom ofy belonging
to M and is a_-maximal atom ofp.
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Proof:
Let S be the subset ai/ consisting of all atoms violating the assertion of the lemma. Suppos# tilsat
not empty and lefd be ac-minimal atom ofS (here we use the assumption thats well-founded). Let
@ € G be an arbitrary clause containing

SinceA € S, eithery contains some atom dff different thanA or A is not ac—-maximal atom of
. Suppose that is the only atom ofp belonging toM . It follows that A is not a—_-maximal atom ofp
and does not satisfy Condition 3a of Definition 7.1. Hengsatisfies Condition 3b of Definition 7.1.
It follows that A ¢ S, a contradiction. Hencg must contain also some atom f different thanA.

Observe that if we deletd from M then still satisfies Condition 3 of Definition 7.1. In fact, if
o will not satisfy Condition 3b of Definition 7.1 after deleting from M, theny must contain another
atom of S different thanA, and sinceA is a _-minimal atom ofS, it follows that will still satisfy
Condition 3a of Definition 7.1 after deleting from M.

Consequently)/\ { A} is aC-refinement ofb, which contradicts the assumption tidtis a minimal
C-refinement ofb. ThereforeS is empty, which completes the proof. O

(Note that if we define minimat-refinement similarly as in Definition 5.1 by replacing Condition 3
in Definition 7.1 by the assertion of Lemma 7.2 then the proofs of both Lemmas 5.2 and 7.1 are not
adaptable.)

Here is a modified version of Theorem 5.1 w.r.t. ordering refinements:

Theorem 7.1. Let @ be a negated -representative of/5 and M a minimalC-refinement ofd. Then
M is a maximal Herbrand model &f

Proof:
Use the proof of Theorem 5.1 with the following modifications:

e Grisreplaced byG%, andDr 1w is replaced byDf Tw.

e “negated representative” is replaced by “negaterkpresentative”.

¢ “minimal refinement” is replaced by “minimat -refinement”.

e “Condition 3 of Definition 5.1” is replaced by “Lemma 7.2".

e “Condition 2 of Definition 5.1” is replaced by “Condition 2 of Definition 7.1".

e When specifyindy;, A;), add the property that; is aC-maximal atom ofp; (forall 1 <i < n).
Suchy; exists by Lemma 7.2.

e Add the argumentation that, sinek is ar_-maximal atom ofp; andC is liftable, £ must contain
aC-maximal atom ofy} (forall 1 < i < n).
O

Sincer is liftable, Lifting Lemma 6.1 still holds for negative hyper-resolution using the ordering
refinementC. (Note that ifA6 is a_-maximal atom of a clausef then A is aC_-maximal atom ofp.)

The following theorem states that any liftable and well-founded ordering refinement is answer com-
plete for negative hyper-resolution.



L.A. Nguyen/Negative Ordered Hyper-Resolution as a Proof Procedure for Disjunctive Logic ProgrammiBg3

Theorem 7.2. (Completeness)

Let P be a logic program¢ a query,© a correct answer oP U @), and a liftable and well-founded
order of atoms. Then there exists a refutatiorPafl () by negative hyper-resolution using the ordering
refinementC with a computed answé’ more general tha®.

Proof:

Let T be the smallest atom in the order Thus, if T is not the only atom of a goal thenT cannot be a
negated--representative af. Our proof for this theorem is the proof of Theorem 6.1 with the following
modifications:

e Grisreplaced byzk.
e “Theorem 5.1" is replaced by “Theorem 7.1".
e “negated representative” is replaced by “negaterkpresentative”.

¢ “minimal refinement” is replaced by “minimat -refinement”.

e The terms “derivation”, “refutation”, “computed answer”, and Lifting Lemma 6.1 are all consid-
ered under the ordering refinement
O

8. Keeping Information for Computed Answers

In this section, we first modify the definition of derivation so that disjunctive substitutions in informative
goals keep only necessary information without violating soundness and completeness of the calculus.
We then show that informative goals can be simulated by normal goals using answer literals. We also
study cases when it is possible to make computed answers more compact.

Let P be a logic program a query, andX C Var(Q). A derivation restricted toX from P U Q is
a modification of a derivation fron? U () in which each newly derived hyper-resolvent © is replaced
immediatelyby ¢ : ©)x. (Note that such a replacement affects the remaining part of the derivation.) A
refutation restricted taX of P U @ is a derivation restricted t& from P U Q with the last goal of the
form L : ©.

Example 8.1. Reconsider Example 3.2. Here is a refutation restrictgd:tg} of PU Q@ :

6) «— s(x,y):e from (5)
(7) — p(x2) : {z/22,y/a} (1), (6)
(8) — q(wa) : {x/a4,y/b} (2), (6)
©) < r(xs): {z/z5,y/a},{z/z5,y/b}} 3. (7). (8)
(10) L: {{z/c,y/a}, {x/c,y/b}} (4), (9)

Lemma 8.1. Let P be a logic program@ a query, andX C Var(Q). Lety; : ©1,...,¢, : O, be a
derivation fromP U Q andy; : ©1, ..., ¢, : O], be its version restricted t&. Then®, = 0;x for all
1< <n.



364 L.A. Nguyen/Negative Ordered Hyper-Resolution as a Proof Procedure for Disjunctive Logic Programming

This lemma can be proved by induction bim a straightforward way.

The following theorem states that we can save memory when searching for refutations by restricting
kept disjunctive substitutions to the set of interested variables. The theorem immediately follows from
the above lemma.

Theorem 8.1. Let P be a logic program( a query, andX C Var(Q). If L : ©'is the last goal of a
refutation restricted t& of PUQ), then there exists a computed answesf PUQ such tha®’ = 0.
Conversely, for every computed ansvieiof P U @, there exists a refutation restrictedXoof P U @
with the last goall : ©" such thal®’ = ©|x (in particular,®’ = © whenX = Var(Q)).

We can simulate disjunctive substitutions by answer literals as follows.

For each variable;, let “z” be a constant symbol for keeping the name:oiWe use“z” /¢, where
/ is an infix function symbol, to keep the binding't. Let ans be a special predicate symbol which
can have different arities. Atoms of this predicate symbol will be always denoted either explicitly as
ans(...) or using a prefixAns. A literal ans(“x,” /t1,..., “x,” /t,) is called ananswer literalif
x1,...,x, are different variables. This answer literal can be treatefd:ast1, . . ., x,, /t,, }. By deleting
from this set pairs;; /t; with t; = x; we obtain a normal substitution, which is called ébstitution
corresponding to the answer literahs(“z1” /t1,..., “z,” /tn). If ¢ = Ans; V...V Ans,, andb;
is the substitution corresponding tns;, for 1 < i < m, then we cal{6y,...,#0,,} thedisjunctive
substitution corresponding tp. Assume that is the substitution corresponding to the empty clause.

A goal with answer literalgs a clause of the following form, with, m > 0 :

Ansi V...V Ans, — B1 A...\ By,

Letp = A1V... VA, <« BiA...ABy, be aprogram clause (> 0), and(1 < ¢1), ...,({¥n < ¢n)
be goals with answer literals (i.e. eag¢his a disjunction of answer literals). Let; = (& A ;) for
1 < i < n, whereg; is a non-empty set of atonselectedor ;. If there exists an mgu such that
Ao = Alo for everyl < i < n and every atord of ¢;, then we call the goal

(V1V...Vahy =By A...ABpy ACGLA ... ANCp)o

ahyper-resolvent (with answer literalsf ¢ and (¢ < ¢1), ..., (¥, < ¢,). Note that such a hyper-
resolvent is also a goal with answer literals.
Let P be a logic program@ = {¢1,...,pn} a query, andX C Var(Q). For eachl < i < n,

let Var(pi) N X = {zi1, ..., 2k} @i =« & andy; = ans(“2i) " /@i, .., "ok, [2ig,) < & if
k; > 0,0r¢) = ¢; if k; =0. LetQ' = {¢],...,¢,}. Aderivation fromP U @ with answer literals for
X is a sequencey, ...,1,, of goals with answer literals such that for edck j < m, eithery; € Q'

or 7; is a hyper-resolvent with answer literals of a standardized variant of a program claffsanaf
standardized variants of some goals frgm ..., ;_1, where astandardized varianis a renaming of

all the variables in the original clause so that it does not contain variables of the other involved variants.
Such a derivation is calledrafutation of P U @ with answer literals forX if the last goak),, is either

the empty clause or a positive clause (consisting of only answer literals).

Example 8.2. Reconsider Example 3.2. Here is a refutatiorPofl @ with answer literals fo{x, y} :
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(6) ans(“2”/z, "y’ /y) « s(z,y) from (5)
(7) 5(“ 7 /x2, *y”/a) — p(z2) (1), (8)
(8) ans(“a” /x4, “y”/b) « q(x4) (2), (6)
(9) ans(“z” /x5, “y” /a) V ans(“z” x5, “y” /b) — r(z5) (3), (7). (8)
(10) ans(“ " /e,y Ja) Voans(“x” e, “y” Jb) 4, (9)

Theorem 8.2. Let P be a logic program() a query, andX C Var(Q). If ¢ is the last goal of a
refutation of P U @ with answer literals forX, then there exists a computed answeof P U () such
that©, y is the disjunctive substitution corresponding/toConversely, for every computed ansvof
P U Q, there exists) as the last goal of a refutation éfU @ with answer literals fofX' such tha®©, x
is the disjunctive substitution corresponding/to

Proof:

Given a refutation ofP U Q with answer literals forX, simulate it by a refutation restricted o of
P U Q. For the converse direction, do it analogously. {et— v; and< 1; : ©; be the goals humber
7 in the two corresponding refutations. By induction @rit is easy to see thad; is the disjunctive
substitution corresponding tg. This together with Theorem 8.1 proves this theorem. O

Keeping information for computed answers by using answer literals is just one of possible tech-
niques, which is not always optimal. For exampleys(“z” /a, “y” /y) V ans(“x” /a, “y” /b) V
ans(“x” /a, “y” /c) can be better represented as the compositid:¢f } and{e, {y/b},{y/c}}.

We say tha® = {61, ...,6,} has aconflict w.r.t.z if there exist bindings:/t; € 6, andz/ty € 0;
for somei, j from 1..n such that; # ¢5. Suppose thab is a computed answer ¢t U (Q and® has no
conflicts w.r.t. any variable. Then the normal substitutfos: | © is also a correct answer éf U Q.
Despite that is “tighter” than©, from the point of view of users] is more intuitive and sufficient
enough.

Consider a more general case. Supposeé@hat {6,,...,0,} is a computed answer d? U Q,

x € Dom(©), and© has no conflicts w.r.tz. Let z/t be the binding ofr that belongs to some;,

1 <i<n Letd =0; — {z/t} for 1 < j < n. Then{z/t}{0;,...,0,} is also a correct answer
of P U Q. This kind of extraction can be applied further fo#},...,6,,} and so on. The resulting
composition is a correct answer “tighter” th&nbut it is more compact and still acceptable from the
point of view of users.

9. Conclusions

We have proved that negative hyper-resolution using any liftable and well-founded ordering refinement
is a sound and complete procedure for answering queries in disjunctive logic programs. This is a funda-
mental theoretical result for the intersection of theorem proving, disjunctive logic programming and Al.
Our completeness proof is based on our reverse fixpoint semantics of disjunctive logic programs.

We have also introduced disjunctive substitutions to represent answers of queries. Our definition
can be looked at as a formulation on the semantic level, while answer literals used in theorem proving
systems are defined on the syntactical level. Our formulation extracts the meaning of answers from
representation and in some situations allows a better encoding.
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The result that every liftable and well-founded ordering refinement is answer complete for negative
hyper-resolution is important (for increasing efficiency of the proof procedure) and its proof is not trivial.
Hence, this work is a significant extension of the conference paper [15].
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