Negative Hyper-Resolution as Procedural
Semantics of Disjunctive Logic Programs *

Linh Anh Nguyen

Institute of Informatics, University of Warsaw
ul. Banacha 2, 02-097 Warsaw, Poland
nguyen@mimuw.edu.pl

Abstract. We prove that negative hyper-resolution is a sound and com-
plete procedure for answering queries in disjunctive logic programs. In
our formulation, answers of queries are defined using disjunctive sub-
stitutions, which are more flexible than answer literals used in theorem
proving systems.

1 Introduction

Resolution can be used not only to prove theorems but also to answer questions.
This was first shown by Green in [5], where he introduced answer literals and a
planning method using resolution. His technique has become popular in Al

Since resolution was introduced by Robinson [13] in 1965, many refinements
of resolution have been proposed by researchers in the field in order to cut down
the search space and increase efficiency. One of the most important refinements
of resolution is hyper-resolution, which was also introduced by Robinson [12]
in the same year 1965. Hyper-resolution constructs a resolvent of a number of
clauses at each step. Thus it contracts a sequence of bare resolution steps into a
single inference step and eliminates interactions among intermediary resolvents,
and interactions between them and other clauses.

There are many completeness results in the literature for various refinements
of resolution, but these results usually derive refutation completeness, i.e. the
empty clause will be derived if the input clauses are inconsistent. For question-
answering systems, we want a stronger result called answer completeness: for
every correct answer there exists a more general computed answer.

A refinement of resolution for the Horn fragment, called SLD-resolution in [1],
was first described by Kowalski [6] for logic programming. It is a sound and
complete procedure for answering queries in definite logic programs. In [9], Lobo
et al gave a linear resolution method with a selection function, called SLO-
resolution, for answering goals in disjunctive logic programs. SLO-resolution is
an extension of SLD-resolution, and both of them are answer complete under
any selection function.

* In J.J. Alferes and J.A. Leite (Eds.): Logics in Artificial Intelligence, 9th European
Conference, JELIA 2004, Lisbon, Portugal, September 27-30, 2004, Proceedings.
LNCS 3229, pages 565-577, Springer, 2004.

SLO-resolution extends SLD-resolution in a natural way, and in our opinion,
it is a potential framework for developing efficient proof procedures. However,
queries and derivations formulated in SLO-resolution allow only definite answers,
and in fact, SLO-resolution is answer complete only for a certain class of queries.
Consider an example of [9] : given the program P = {p(a) V p(b) <} and the
query @ = < p(x), there is no computed answer in SLO-resolution for P U Q,
while there exists a disjunctive answer {{z/a}, {x/b}}. Of course, if we rewrite
Q to Q" = «— p(x) V p(y) then there is a computed answer {z/a,y/b}, but if the
considered program is larger, it is difficult to know when and where we need to
rewrite goals, and furthermore, rewriting goals is inconvenient for users.

There are also other goal oriented proof procedures proposed for disjunctive
logic programming: nearHorn-Prolog procedures by Loveland [10], SLI-resolution
by Lobo et al [8], and restart model elimination (RME) by Baumgartner et al
[2]. The nearHorn-Prolog procedures extend SLD-resolution and Prolog style for
disjunctive logic programs, but they are of interest only when the considered
program contains very few non-Horn clauses. Both of SLI-resolution and RME
are variants of the model elimination procedure. SLI-resolution is related to
SLO-resolution, while RME is related to hyper tableaux.

In our opinion, it is very difficult for programmers to imagine behaviors of dis-
junctive logic programs as is possible when writing Prolog programs. Perhaps we
should adopt the approach by Loveland and use mechanisms of theorem proving
for non-Horn fragments of disjunctive logic programs. But as mentioned before,
the nearHorn-Prolog procedures proposed by Loveland have advantages only for
logic programs containing very few non-Horn clauses. For general cases, why
don’t we just use strongest theorem provers as proof procedures for disjunctive
logic programming?

In this work, we formulate a negative hyper-resolution calculus as a proof
procedure for disjunctive logic programming. In our formulation, every clause set
can be divided into a disjunctive logic program, which consists of non-negative
clauses, and a query. We define answers as disjunctive substitutions. To each goal
appearing in a derivation we attach a disjunctive substitution keeping bindings
of variables of the initial query. Our definition of answers is more flexible than
answer literals used in theorem proving systems. In [3], Brass and Lipeck also
defined disjunctive answer as a set of normal substitutions, but they did not give
further properties of disjunctive substitutions as we do. Our definition of correct
answers is compatible with the semantics of answer literals given by Kunen [7].
The theory of answer literals was discussed earlier in [5, 11, 4], but in those works
the authors assume that answer literals appear only in one clause.

As far as we know, answer completeness of negative hyper-resolution in our
setting of queries has not previously been studied. Here, we prove that negative
hyper-resolution is a sound and complete procedure for answering queries in
disjunctive logic programs.

This paper is organized as follows: In Section 2, we give definitions for dis-
junctive substitutions, disjunctive logic programs, queries, and correct answers.
In Section 3, we specify a negative hyper-resolution calculus as procedural se-

mantics of disjunctive logic programs. In Section 4, we prove answer soundness
of that calculus. We give a reverse fixpoint semantics for disjunctive logic pro-
grams in Section 5 and use it in Section 6 to prove answer completeness of the
calculus. The relationship between disjunctive substitutions and answer literals
is considered in Section 7. Section 8 concludes this work.

2 Preliminaries

First-order logic is considered in this work and we assume that the reader is
familiar with it. We now give the most important definitions for our work.

By V(¢) we denote the universal closure of o, which is the closed formula
obtained by adding a universal quantifier for every free variable of .

An expression is either a term or a formula. If E is an expression, then by
Var(E) we denote the set of all variables occurring in F.

The Herbrand universe Up of a formula set I is the set of all ground terms
that can be formed from the constants and function symbols in I" : if no constants
occur in I' then some arbitrary constant is used instead.

The Herbrand base B of a formula set I" is the set consisting of all ground
atoms that can be formed from the predicate symbols in I" and the terms in Up.
When I is clear from the context, for M C Bp, we write M to denote the set
Br — M.

2.1 Disjunctive Substitutions

A normal substitution is a finite set 6 = {x1/t1,...,2,/tn}, where z1,...,z,
are different variables, t,...,t, are terms, and ¢; # x; for all 1 < i < n. By
e we denote the empty normal substitution. The set Dom(0) = {z1,...,x,} is
called the domain of 6. By Ran() we denote the set of all variables occurring
in ty,...,t,. Define Var(8) = Dom(0) U Ran(f). For a set X of variables, the
restriction of 6 to X, denoted by 0x, is the substitution {z/t | z/t € 6 and
xeX}.

Let 6 = {x1/t1,...,2,/t,} be a normal substitution and E be an expression.
Then E6, the instance of E by 0, is the expression obtained from F by simul-
taneously replacing each occurrence of the variable x; in F by the term t;, for
1<i<n.

Let 0 = {x1/t1,...,2n/tn} and § = {y1/81,...,Ym/Sm} be normal substi-
tutions. Then the composition 686 of 6 and 0 is the substitution obtained from
the set {z1/t16, ..., X0 /tn0,y1/81, - -, Ym/Sm} by deleting any binding x; /t;d for
which x; = ¢;0 and deleting any binding y,/s; for which y; € {z1,..., 2z}

If 6 and § are normal substitutions such that 85 = 0 = ¢, then we call them
renaming substitutions and use =1 to denote & (which is unique w.r.t.).

A disjunctive substitution © is a finite and non-empty set of normal sub-
stitutions. Define Dom(0) = Uycg Dom(0), Ran(0) = Jyco Ran(f), and
Var(©) = Dom(O) U Ran(O). For X C Dom(©), the restriction of © to X

is denoted by ©|x and defined as {0|x | # € ©}. We treat a normal substitution
0 also as the disjunctive substitution {6}.

If ¢ is a formula then O =45 {@f | 8 € O}. If I' is a set of formulas then
I'e =g.5 {0 | p € I',6 € O}. The composition O A of disjunctive substitutions
O and A is the disjunctive substitution {64 | 6 € ©,6 € A}.

A disjunctive substitution @ is more general than A if there exists a normal
substitution o such that for X = Dom(6)U Dom(4), (O0)x C A.

As some properties of disjunctive substitutions, for an expression E and
disjunctive substitutions ©, @1, O3, O3, we have: Oc = cO = O, (EO1)O2 =
E(@1@2)7 and (@1@2)@3 = 91(@2@3).

2.2 Disjunctive Logic Programs and Queries

A clause is a formula of the form
V,Il...VJC}L(Al\/...\/An\/—\Bl\/...\/—‘Bm)

where 1, ..., xj, are all the variables occurring in the rest of the formula, n > 0,
m > 0, and A; and B; are atoms. We write such a clause in the form

Al\/...\/An<—Bl/\.../\Bm

We call A1 V...V A, the head and By A...A B, the body of the clause. If n =0
and m = 0 then the clause is empty and denoted by L. If n = 0 and m > 0 then
the clause is a goal. If n > 0 and m = 0 then the clause is positive. If n > 0 then
the clause is a (disjunctive) program clause.

A (disjunctive) logic program is a finite set of disjunctive program clauses. A
(disjunctive) query is a finite set of goals.

Let P be a logic program and Q = { < ¢1, ..., < @, } be a query. We say
that a disjunctive substitution © with Dom(©) C Var(Q) is a correct answer of
PUQif PEY(V_; Voeo #if)-

For example, if P = { p(f(x)) Vp(g(z)) < } and Q@ = { < p(y) }, then
O ={{y/f(®)},{y/g(x)}} is a correct answer of P U Q.

In [7], Kunen characterized the semantics of answer literals used in theorem

proving systems by the following theorem: Let X be a set of sentences, 3T ¢(T)
be a sentence, and X = X UV(ans(Z) «— ¢(T)). If each 75, for i = 1,...,k, is
a tuple of terms of the same length of Z, then X’ E V(ans(71) V... V ans(Ty))
(this specifies an answer) iff ¥ F V(p(T1) V...V o(Tk)).

Our definition of correct answers is compatible with the semantics of answer
literals by Kunen. To see the compatibility, take 3’ = P, assume that ¢1,..., ¢,
have disjoint sets of variables, and let ¢ = 1 V...V @y,.

3 Negative Hyper-Resolution Semantics

An informative goal is a pair ¢ : @, where ¢ is a goal and @ is a disjunctive sub-
stitution. Informally, @ keeps the disjunctive substitution that has been applied

to variables of the initial query in the process of deriving ¢. We will ignore the
word “informative” when it is clear from the context. An informative goal ¢ : ©
is said to be ground if ¢ is ground.
Let p=A;V...VA, «— Bi A...\ By, be a program clause (i.e. n > 0) and
1:01, ..., ©n: Oy be goals. Let p; = «— & A, for 1 < i < n, where & is a
non-empty set of atoms called the selected atoms of ;. If there exists an mgu
o such that A;o0 = A;a for every 1 < i < n and every A; € &;, then we call the
goal
— (BIN...ABu, AGA...ANCp)o: (O1U...UBOy,)o

a hyper-resolvent of ¢ and @1 : O1, ..., @y : Op.

Note that “factoring” is hidden in our definition.

Before defining derivation and refutation we specify the process of standard-
izing variables apart. Denote the original set of variables of the language by
X, and assume that variables occurring in the given logic program, the given
query, or considered correct answers all belong to X. Let X’ be an infinite set of
variables disjoint with X'. We will use elements of X’ for renaming variables.

Let ¢ be a program clause and ¢1 : 1, ..., @, : O, be goals. A standardized
variant of the set {p, ©1 : O1, ..., @n : Op} is a set {pd, Y161 : O101, ...,
©ndn : Opdy} where 6,01, . .., 0, are renaming substitutions such that Dom/(§) =
Var(e) and Ran(d) C X', Dom(d;) = Var(e;) U Ran(6;) and Ran(é;) C X’ for
all 1 < i <mn, and the sets Ran(d), Ran(d1), ..., Ran(d,) are disjoint. Assume
that standardizing variants is done by some unspecified deterministic procedure.

Let P be a logic program and @ a query. A derivation from P U Q is a
sequence 1 : 61, ..., v, : O, of goals such that for each 1 <7 < n:

1. either ¢; is a clause of @ and ©; = ¢;
2. or ; : ©; is a hyper-resolvent of a program clause ¢' and goals ¢, : O] 1,

oy Pigy O,y where {0 @l 1O, .., @l 1O, is a standardized
variant of {¢, ©i1 : ©i1, .-+, Yin; : Oin,}, @ is a program clause of P,
and @;1 : 051, ..., Pin, : O, are goals from the sequence ¢; : 61, ...,
wi—1:60;1.

For simplicity, Condition 2 of the above definition will be also stated as
@; : ©; is a hyper-resolvent of a standardized variant of a program clause ¢ of
P and standardized variants of some goals from ¢y : ©1, ..., p;—1 : O;_1.

A refutation of P U Q is a derivation from P U @ with the last goal of the
form L : ©. The disjunctive substitution Oy, (@) is called the computed answer
of PUQ w.r.t. that refutation.

Ezample 1. Let P be the program consisting of the following clauses:

(1) s(z,a) — p(z)
(2) s(z,b) — q(x)
3) p(x)Vq(r) — r(z)
(4) r(

~—

)

) —
and let @) be the query consisting of the only following goal:

(5) « s(z,y)
Here is a refutation of P U Q:

(6) «— s(z,y):¢€ from (5)
(1)« p(x2) : {z/22,y/a, 21/22,y2/a} (1),(6)
(8) « q(w4) : {x/24,y/b,x3/T4,y4/b} (2),(6)
9) —r(xs) - {{z/x5,y/a, 21 /x5, y2/a, x2 /x5, 26 /5, 27 /T35 },

{z/x5,y/b,23/75,ya/b, 24/ T5, 6 /75,27 /5 }} (3),(7),(8)
(10) L : {{z/c,y/a,x1/c,y2/a, xa/c, x6/c, x7/c,x5/c, x5/},
{z/c,y/b,x3/c,ys/b,xs/c,x6/c, 27/, x5/c,x8/c}} (4),(9)

The computed answer is {{z/c,y/a},{z/c,y/b}}.

4 Answer Soundness

In this section, we show that for every logic program P and every query @, every
computed answer of P U is a correct answer of P U Q.

Lemma 1. Let < 1 : © be a hyper-resolvent of a program clause ¢ and goals
— 1 :601, ..., — oy Oy with o being the involved mgu. Let M be a model of
¢. Then M E /(¢ — ;o). In particular, if ¢ is empty then M & \/]_, p;o.

Proof. Let o = A1V...VA, «— BiA...AB,, and ¢; = & N\ (;, where ; is the set
of selected atoms of «— ¢;, for 1 < i <mn.Then) = (BiA...ABnAGA...A(y)o.
Let V' be an arbitrary variable assignment. Suppose that M,V E 1. Because M
is a model of ¢ and M,V E 1), it follows that M,V E (41 V...V A,)o. Hence
M,V EV_ (A A)o, since M,V E 4. Thus M,V E \/!_| p;0. Since V is an
arbitrary variable assignment, we conclude that M E \/!_, (v — ¢;0).

Lemma 2. Let P be a logic program, Q = {«— 1, ..., < @n} be a query,
and «— v : O be the last goal in a derivation from P U Q. Let M be a model
of P. Then M E\7_1 \geo (b — @if). In particular, if o is empty then M &

Vizi Voeo ©if-

Proof. We prove this lemma by induction on the length of the derivation. The
case when « 1 is a clause of @) and @ = ¢ is trivial. Suppose that «— ¢ : @ is
derived as a hyper-resolvent of a standardized variant of a program clause ¢ and
standardized variants of goals < 11 : ©1, ..., < ¥y, : Op,. Let o be the involved
mgu and 4, d1,...,d,, be the involved renaming substitutions. By the inductive
assumption, we have M F \/!'_, Voco, (¥j — @if)) for all 1 < j <m. Thus M F

Vi1 Voeo, (500 — ¢i00;0), and hence M E Vi Vocg 5, (V500 — ©if),
for all 1 < j < m. Note that ©;0;0 C 6. By Lemma 1, M & /7", () — v;9;0).
These two assertions together imply that M E\/\, Voo (¥ — ¢if).

Theorem 1 (Soundness). Let P be a logic program, Q a query, and © a
computed answer of PU Q. Then © is a correct answer of PU Q.

Proof. Let Q = {«— @1, ..., ¢n}andlet L : O be the last goal in a refutation

of PUQ such that © = @|/Var(Q)' Let M be an arbitrary model of P. By Lemma 2,

M E 7 Vocor @if, and hence M = /7, \/oq pi0. Since M is an arbitrary
model of P, we derive P & V(\/_| \/pco ©i0), which means that © is a correct
answer of P U Q.

5 Reverse Fixpoint Semantics

The fixpoint semantics of definite logic programs was first introduced by van
Emden and Kowalski [14] using the direct consequences operator Tp. This oper-
ator is monotonic, continuous, and has the least fixpoint Tp Tw = UZ:O Tpn,
which forms the least Herbrand model of the given logic program P. In [9], Lobo
et al extended the fixpoint semantics to disjunctive logic programs. Their direct
consequences operator, denoted by T, iterates over model-states, which are sets
of disjunctions of ground atoms. This operator is also monotonic, continuous,
and has a least fixpoint which is a least model-state characterizing the given
program P.

In this section, we study a reversed analogue of the “direct consequences”
operator called the direct derivation operator. The results of this section will be
used to prove answer completeness of the negative hyper-resolution semantics.

Let P be a logic program, @) a query, and I the set obtained from P UQ by
replacing every positive clause (A1 V...V A, <) by (A1 V...V A, « T), where
T is a special atom not occurring in P and Q.

The direct derivation operator Dp is a function that maps a set G of informa-
tive goals to another set of informative goals that can be directly derived from
I" and G. Tt is formally defined as follows: D (G) is the set of all goals ¢ : ©
such that either ¢ is a clause of @ and ©® = ¢ or ¢ : @ is a hyper-resolvent

of a program clause ¢’ and goals ¢} : O], ..., ¢!, : O, where {¢', ¥ : O,
., 2 @O0} is the standardized variant of {¢, ¥y : O1, ..., ¥y 1 Op}, Y is a
program clause of I', and ¢ : @1, ..., ¥, : O, are goals from G.

Lemma 3. The operator Dr is monotonic, compact, and hence also continuous.
It has the least fizpoint D fw = J;_o Dr1n, where Dp10 =0 and Dr 1 (n + 1)
= DF(DF TTL) .

The first assertion of the above lemma clearly holds. The second assertion
immediately follows from the first one, by the Kleene theorem.

Let G denote the set of all ground goals ¢ such that there exists an infor-
mative goal ¢’ : @ € Dr 1w such that ¢ is a ground instance of ¢’ (i.e. ¢ is
obtained from ¢’ by uniformly substituting variables by terms from Ur).

A negated representative of Gr is a set @ of pairs (¢, A) such that: p € Gp
and A is an atom of ¢; and for every ¥ € G, there exists exactly one atom B
of ¥ (a negated representative of 1) such that (¢, B) € ®.

Clearly, every G has at least one negated representative.

Let @ be a negated representative of Gr. A set M of ground atoms is called
a minimal refinement of @ (w.r.t. Gr) if the following conditions hold:

1. for each A € M there exists (p, A) € @ for some ;

2. for each ¢ € G there exists A € M such that A is an atom of ¢;

3. for each A € M there exists ¢ € G such that for every atom B of ¢ different
from A, we have B ¢ M.

Condition 1 states that members of M come from ¢. Condition 2 states that
every Herbrand model disjoint with M satisfies G; in particular, M & G. Con-
dition 3 states that M is a minimal set satisfying the two preceding conditions.

Lemma 4. FEvery negated representative @ of Gr has a minimal refinement.

Proof. Start from M = {A | (p,A) € @ for some ¢} and keeping in mind
that M will always satisfy the first two conditions of the definition of minimal
refinement, do the following: if M is not a minimal refinement of ¢ due to some
A that violates the last condition of the definition, then remove that A from M.
This operator has a fixpoint which is a minimal refinement of &.

Theorem 2. Let @ be a negated representative of Gr and M a minimal refine-
ment of . Then M is a maximal Herbrand model of I'.

Proof. Since M is a minimal refinement of @, due to Condition 3 of its definition,
it is sufficient to prove that M is a model of I'. Let ¢ = A; V...V A4, «
By A...A B, be a ground instance of some clause ¢’ of I" by a substitution o.
It suffices to show that M F ¢. Suppose that M ¥ A; V...V A,. We show that
MEBiA...\B,,.

Since each A; is a ground atom and M ¥ A; V...V A, we must have A; € M
for all 1 < ¢ < n. Since M is a minimal refinement of @, it follows that for every
1 <4 < n there exists (¢;, 4;) € @ such that p; can be written as «— A; A {; and
(; is false in M. Since @ is a negated representative of G, for all 1 < ¢ < n,
there exist a goal ¢} : O} € Dr Tw and a substitution o; such that ¢; = ¢}o;.
For 1 <14 <n, let & be the set of all atoms A} of ¢} such that A)o; = A;, and
let ¢! be the set of the remaining atoms of ¢. We have ¢, = «— & A (/.

Let {¢", ¢ : OF,... ¢l . O} be the standardized variant of {¢’, ¢} : 61,

oy b 1O} with §, 41, ..., 0, being the involved renaming substitutions. For
1 <i<n,let & be the set of atoms of ! originated from . Let ¢’ : @' be
a hyper-resolvent of the program clause ¢” and the goals ¢ : ©F, ..., ¢! : O/
with & as the set of selected atoms of ¢}. Thus ¢’ : @' € Dp T w. We have
o = ¢o = ¢"5 o and p; = oy = /6, oy, for all 1 < i < n. Hence
Y=« BiAN...ANB, AN A... N\, is a ground instance of 9.

Since ¢’ : ©' € Drlw, we have 1 € Gp. By Condition 2 of the definition of
minimal refinement, we have M E Gp. It follows that M kE 1, which means that
ME-B,V...V=B,V-(V...V~(,. Since ¢ is false in M for all 1 <3 < n,
it follows that M E —~B; V...V —B,,, and hence M ¥ By A ... A B,,.

Corollary 1. Every maximal model of G is a model of I'.

Sketch. Every maximal model of G is the compliment of a minimal refinement
of some negated representative of G, and hence is a model of I".

6 Answer Completeness

In this section, we show that for every correct answer @ of P U @, where P is a
logic program and @ is a query, there exists a computed answer of P U @ which
is more general than 6.

Lemma 5 (Lifting Lemma). Let P be a logic program, Q a query, and © a

disjunctive substitution. Let @} : O, ..., ¢} : O} be a derivation from PUQO.
Then there exist a derivation p1 : O1, ..., gk : O from PUQ and substitutions
oy, for 1 <i <k, such that ;o = p; and (0;0;)|1x € (06])x.

Proof. Simulate the derivation ¢} : 01, ..., ¢} : O}, from P U QO for PUQ so
that, for ¢ € Q and 8 € O, the goal 10 € QO is replaced by 1. Let the resulting
derivation be @1 : O1, ..., pi : O.

We prove the assertion of this lemma by induction on i. The case when ¢;
is a clause from @ and ©; = ¢ is trivial. Suppose that ¢; : ©; is derived as a
hyper-resolvent of a standardized variant of a program clause p = A; V...V
Ay — By A ...\ By, of P and standardized variants of goals ¢;, : Oy, ...,
©;, O, where ji,...,j, belong to 1..(¢ — 1). Let 6,01, .., 6, be the involved
renaming substitutions (for standardizing variants) and o be the involved mgu.
Let ;, = « &5, A(;, with £, as the set of selected atoms, for 1 <t < n. We have
Ado = Ajd,o for every 1 <t < n and every atom A} of ¢;,. The hyper-resolvent
w; : ©; is equal to

— (Bﬂ;/\ VAN Bmé/\ <j161 VANIAN §jn5n)0 : (8j1§1 U...u @jnén)a

By the inductive assumption, ¢j,0;, = ¢}, for all 1 <t < n. Hence ¢} : O]
is a hyper-resolvent of a standardized variant of ¢ and standardized variants
of pj,045, : 0%, ..., p;,05, 0 . Let §, d,...,0, be the involved renaming
substitutions (for standardizing variants) and o’ be the involved mgu. We have
Ao’ = Ajoj,0.0" for every 1 <t < n and every atom A; of ;,. The hyper-
resolvent ¢} : O} is equal to

— (B10' Ao . ABpd' NG 05,00 Ao NGGL05,0,)0" (06, U...UO) §,,)0
Let v be the normal substitution specified as below
N = (5_1(5l)|D0m(5—1) U (5;10j1611)|Dom(6f1) U...u (5;10]'”(5;1)“307”(6;1)

Let 1 <t < n and let A be an atom of ¢;,. We have 4,0y = A0’ and
Adyy = Ajoj,0;. Since Aid'o’ = Ajoj,d,07, it follows that Advo’ = Aldyo’.
Because o is an mgu such that A;dc = Ajdi0 for every 1 < t < n and every
atom Aj of &;,, there exists o; such that yo' = oo;.

For 1 < s < m, we have B,docc; = Bsdyo' = Bsd'c’, and for 1 <t < n, we
have (;,0,00;, = (j,01v0" = (;,04,6;0". Hence p;o; = ¢,

For all 1 <t < n, we have (0;,0;00;)|x = (0;,0:70")|1x = ((0;,6:7)|x 0')|x =
((©4,04,00)|x 0")|x = (0;,0;,0i0")|x. By the inductive assumption, (0;,0;,)x C
(©07,)|x, and hence (0;,0;,0;0")|x C (06 0;0') . We also have O ;0" C O,
which implies that (©0},6;0")|x C (06;)x. Hence (0;,0:00:)jx C (OO))x.
Therefore (©;0;)|x C (00;)x, which completes the proof.

Theorem 3 (Completeness). Let P be a logic program, Q a query, and © a
correct answer of PUQ. Then there exists a computed answer @' of PUQ which
is more general than ©.

Proof. Let Q = {¢1,...,0n} and Y = Var(Q) U Ran(O). For each z € Y, let
a; be a fresh constant symbol. Let 6 = {z/a, | z € Y} and Q' = QOJ. Since O
is a correct answer of P U @, it follows that P U @’ is unsatisfiable.

Let P’ be the set obtained from P by replacing every positive clause
(AiV...VA,)by (A V...VA, — T),and let I' = P"UQ'. Since PU Q’
is unsatisfiable, we have I"' F —T.

We first show that (« T) € Gr. Suppose oppositely that for every ¢ € G,
¢ # (« T). Then there exists a negated representative ¢ of G which does not
contain T. Let M be a minimal refinement of . We have that M contains T.
By Theorem 2, M E I', which contradicts with I" = —T.

The above assertion states that there exists a derivation from I" with the last
goal of the form « T : A. By simulating that derivation for P U Q" with each
(A1 V...V A, — T)replaced by (A1 V...V A, <), we obtain a refutation with
1 : A as the last goal.

Since Q' = QOJ§, by Lemma 5, there exists a refutation of P U @ with
the last goal of the form L : ©” and a substitution ¢” such that (6"0")x C
(©6A)x. We have that © = Oy, o) is a computed answer of P U Q. Since
X'NX = 0, we have Var(A) N Var(Q) = 0 and Var(A) N Var(©§) = 0.
Since (@HJ”)‘X - (@5A)|X7 it follows that (@”U”)WQT(Q) - (@5)“/&7,(@). Now
treat each a, as a variable and § as a renaming substitution. Then we have
(©"0" (07 var@) S (B6(671))var(q)- Since each a, occurs neither in @ nor
in ©", for o’ = (6”671) | pom(orr), We can derive that (0”0")y4r(q) € ©. Hence
(0'0")var(@) € © and O is more general than 6.

7 Keeping Information for Computed Answers

In this section, we first modify the definition of derivation so that disjunctive sub-
stitutions in informative goals keep only necessary information without violating
soundness and completeness of the calculus. We then show that informative goals
can be simulated by normal goals using answer literals. We also study cases when
it is possible to make computed answers more compact.

Let P be a logic program, Q a query, and X C Var(Q). A derivation re-
stricted to X from P U @ is a modification of a derivation from P U @ in which
each newly derived hyper-resolvent ¢ : © is replaced immediately by ¢ : O)x.
(Note that such a replacement affects the remaining part of the derivation.) A
refutation restricted to X of P U @ is a derivation restricted to X from P U @
with the last goal of the form 1 : 6.

Ezample 2. Reconsider Example 1. Here is a refutation restricted to {z,y} of
PUQ:

(6) —s(z,y):e from (5)

—p(x2) : {z/22,y/0} (

—q(x4) : {z/24,9/} (2

—r(zs) : {{z/x5,y/a}, {x/25,y/b}} (3),(7),(8
) L:{{z/c,y/a},{x/c,y/b}} (4),(9)

Lemma 6. Let P be a logic program, Q a query, and X C Var(Q). Let 1 : 1,
vy Pn Op be a derivation from PUQ and p1 : O, ..., o : O be its version
restricted to X. Then O] = Qi\x foralll <i<mn.

7
8
9
1

(7)
(8)
(9)
(10

This lemma can be proved by induction on ¢ in a straightforward way.

The following theorem states that we can save memory when searching for
refutations by restricting kept disjunctive substitutions to the set of interested
variables. The theorem immediately follows from the above lemma.

Theorem 4. Let P be a logic program, Q a query, and X C Var(Q). If L : ©' is
the last goal of a refutation restricted to X of PUQ, then there exists a computed
answer © of PUQ such that ©' = Ox. Conversely, for every computed answer
O of PUQ, there exists a refutation restricted to X of P U Q with the last goal
L : @ such that @ = O|x (in particular, @ = 6 when X = Var(Q)).

We can simulate disjunctive substitutions by answer literals as follows.

For each variable x, let “x” be a constant symbol for keeping the name of x.
We use “a”/t, where / is an infix function symbol, to keep the binding xz/t.
Let ans be a special predicate symbol which can have different arities. Atoms
of this predicate symbol will be always denoted either explicitly as ans(...)
or using a prefix Ans. A literal ans(“z1” /t1,..., “x,” /t,) is called an answer
literal if xq,...,x, are different variables. This answer literal can be treated
as {x1/t1,...,2n/tn}. By deleting from this set pairs x;/t; with t; = x; we
obtain a normal substitution, which is called the substitution corresponding to
the answer literal ans(“x1” [t1,. .., “xy” [tn). @ = Ansi V...V Ans,, and 6; is
the substitution corresponding to Ans;, for 1 < i < m, then we call {61,...,0,,}
the disjunctive substitution corresponding to p. Assume that ¢ is the substitution
corresponding to the empty clause.

A goal with answer literals is a clause of the following form, with n,m >0 :

Ansi V...V Ans, — Bi1A...ANB,,

Let ¢ = Ay V...VA, — By A... \ By, be a program clause (n > 0),
and (Y1 «— ¢1), ..., (¥n — @n) be goals with answer literals (i.e. each v; is
a disjunction of answer literals). Let ¢; = (& A () for 1 < i < n, where &; is
a non-empty set of atoms selected for ;. If there exists an mgu o such that
Ao = Alo for every 1 < i < n and every atom A} of &;, then we call the goal

(Y1V ...V —BiA...ABn AGA...ACp)o

a hyper-resolvent (with answer literals) of ¢ and (Y1 — ¢1), ..., (¥n — ©n).
Note that such a hyper-resolvent is also a goal with answer literals.

Let P be a logic program, @ = {¢1,...,¢,} a query, and X C Var(Q).
For each 1 < i < n, let Var(p,) N X = {x;1,..., ik}, i = < &, and ¢} =

ans(“zi1” Jxia, ., T Tik,) — & if ki > 0, or ¢ = ¢; if k; = 0. Let
= {¢],..., ¢l }. A derivation from P U Q with answer literals for X is a
sequence Y1, ..., ¥, of goals with answer literals such that for each 1 < j < m,

either ¢; € Q' or v, is a hyper-resolvent with answer literals of a standardized
variant of a program clause of P and standardized variants of some goals from
Y1, ..., Yj_1, where a standardized variant is a renaming of all the variables
in the original clause so that it does not contain variables of the other involved
variants. Such a derivation is called a refutation of PUQ with answer literals for
X if the last goal v, is either the empty clause or a positive clause (consisting
of only answer literals).

Ezample 3. Reconsider Example 1. Here is a refutation of P U @ with answer
literals for {x,y} :

(6) ans(“a”/x,“y” Jy) «— s(z,y) from (5)
(7) ans(“z” /22, “y" /a) < p(z2) (1),(6)
(8) ans(“z” /x4, “y” /b) «— q(z4) (2),(6)
(9) ans(“z”/xs, “y”/a) V ans(“z” /x5, “y” [b) — r(2s5) (3),(7),(8)
(10) ans(“a” /e, “y” [a) V ans(“x” [c, “y” /b) (4),(9)

Theorem 5. Let P be a logic program, @ a query, and X C Var(Q). If ¢ is
the last goal of a refutation of PUQ with answer literals for X, then there exists
a computed answer © of P U Q such that O|x is the disjunctive substitution
corresponding to . Conversely, for every computed answer @ of P U Q, there
exists ¥ as the last goal of a refutation of PUQ with answer literals for X such
that ©|x is the disjunctive substitution corresponding to .

Proof. Given a refutation of P U @ with answer literals for X, simulate it by a
refutation restricted to X of PUQ. For the converse direction, do it analogously.
Let §; < ¢; and « v, : ©; be the goals number ¢ in the two corresponding refu-
tations. By induction on i, it is easy to see that ©; is the disjunctive substitution
corresponding to (;. This together with Theorem 4 proves this theorem.

Keeping information for computed answers by using answer literals is
just one of possible techniques, which is not always optimal. For example,
ans(“x” [a, “y” [y) V ans(“x” Ja, “y” /b) V ans(“x” [a, “y” [c) can be better repre-
sented as the composition of {x/a} and {e, {y/b},{y/c}}.

We say that @ = {61,...,0,} has a conflict w.r.t. x if there exist bindings
z/t; € 6; and x/ty € 6, for some i, j from 1..n such that ¢, # to. Suppose that ©
is a computed answer of P U@ and @ has no conflicts w.r.t. any variable. Then
the normal substitution § = |J © is also a correct answer of P U Q. Despite that
0 is “tighter” than ©, from the point of view of users, # is more intuitive and
sufficient enough.

Consider a more general case. Suppose that © = {6y,...,0,} is a computed
answer of PU @, x € Dom(O0), and © has no conflicts w.r.t. z. Let x/t be

the binding of = that belongs to some 6;, 1 < i < n. Let 0;- = 0; — {z/t} for
1 <j<n.Then {z/t}{0],...,0,} is also a correct answer of P U Q. This kind
of extraction can be applied further for {6},...,6"}, and so on. The resulting
composition is a correct answer “tighter” than @ but it is more compact and
still acceptable from the point of view of users.

8 Conclusions

We have proved that negative hyper-resolution is a sound and complete proce-
dure for answering queries in disjunctive logic programs. This is a fundamental
theoretical result for the intersection of theorem proving, disjunctive logic pro-
gramming and AI. Our completeness proof is short and based on our reverse
fixpoint semantics of disjunctive logic programs.

We have also introduced disjunctive substitutions to represent answers of
queries. Our definition can be looked at as a formulation on the semantic level,
while answer literals used in theorem proving systems are defined on the syntac-
tical level. Our formulation extracts the meaning of answers from representation
and in some situations allows a better encoding.

As a future work, we will study answer completeness of negative hyper-
resolution under ordering refinements.

Acknowledgements: The author would like to thank Dr. Rajeev Goré and the
anonymous reviewers for helpful comments.

References

1. K.R. Apt and M.H. van Emden. Contributions to the theory of logic programming.
Journal of the ACM, 29(3):841-862, 1982.

2. P. Baumgartner and U. Furbach. Calculi for disjunctive logic programming. In Jan
Maluszynski, editor, Proc. of ILPS 1997, pages 229-243. The MIT Press, 1997.

3. S. Brass and U.W. Lipeck. Generalized bottom-up query evaluation. In G. Gottlob
A. Pirotte, C. Delobel, editor, Advances in Database Technology — EDBT’92, 3rd
Int. Conf., volume LNCS 580, pages 88—103. Springer-Verlag, 1992.

4. C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, 1973.

5. C.C. Green. Theorem proving by resolution as basis for question-answering sys-
tems. Machine Intelligence, 4:183-205, 1969.

6. R.A. Kowalski. Predicate logic as a programming language. Information Processing
Letters, 74:569-574, 1974.

7. K. Kunen. The semantics of answer literals. Journal of Automated Reasoning,
17(1):83-95, 1996.

8. J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Program-
ming. MIT Press, 1992.

9. J. Lobo, A. Rajasekar, and J. Minker. Semantics of Horn and disjunctive logic
programs. Theoretical Computer Science, 86(1):93-106, 1991.

10. D. Loveland. Near-Horn Prolog. In J.-L. Lassez, editor, Proc. of the 4th Int. Conf.
on Logic Programming, pages 456—-469. The MIT Press, 1987.

11.

12.

13.

14.

D. Luckham and N.J. Nilsson. Extracting information from resolution proof trees.
Artificial Intelligence, 2:27-54, 1971.

J.A. Robinson. Automatic deduction with hyper-resolution. International Journal
of Computer Mathematics, 1:227-234, 1965.

J.A. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23-41, 1965.

M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a pro-
gramming language. Journal of the ACM, 23(4):733-742, 1976.

