Constructing Finite Least Kripke Models
for Positive Logic Programs
in Serial Regular Grammar Logics*

Linh Anh Nguyen

Institute of Informatics, University of Warsaw
ul. Banacha 2, 02-097 Warsaw, Poland
nguyen@mimuw.edu.pl

Abstract

A serial context-free grammar logic is a normal multimodal logic L characterized by
the seriality axioms and a set of inclusion axioms of the form Oy — O, ... O, ¢. Such an
inclusion axiom corresponds to the grammar rule ¢t — s;...s;. Thus the inclusion axioms
of L capture a context-free grammar G(L). If for every modal index t, the set of words
derivable from ¢ using G(L) is a regular language, then L is a serial regular grammar logic.

In this paper, we present an algorithm that, given a positive multimodal logic program
P and a set of finite automata specifying a serial regular grammar logic L, constructs a
finite least L-model of P. (A model M is less than or equal to model M’ if for every
positive formula ¢, if M | ¢ then M’ = ¢.) A least L-model M of P has the property
that for every positive formula ¢, P |= ¢ iff M = . The algorithm runs in exponential
time and returns a model with size 2°0("). We give examples of P and L, for both of the
case when L is fixed or P is fixed, such that every finite least L-model of P must have
size 2") . We also prove that if G is a context-free grammar and L is the serial grammar
logic corresponding to G then there exists a finite least L-model of Ogp iff the set of words
derivable from s using G is a regular language.

1 Introduction

Grammar logics were introduced by Farinas del Cerro and Penttonen in [9] and have been
studied widely [3, 7, 28, 13, 8, 10]. They are normal multimodal logics characterized by
“inclusion” axioms like Oy, ... 0y, ¢ — Oy, ... Oy, . Inclusion axioms correspond to grammar
rules of the form t1ts ...t — $182... 8, when modal indices are treated as grammar symbols.
A grammar logic L is called a context-free grammar logic if the corresponding grammar G(L) is
context-free, and is called a regular grammar logic if for every modal index ¢, the set of words
derivable from ¢ using G(L) is a regular language. A serial regular (resp. context-free) grammar
logic is a regular (resp. context-free) grammar logic extended by the seriality axioms (i.e. O T
for all modal indices t). These classes of serial multimodal logics contain useful epistemic logics.
The seriality axioms (written in the form O;p — —0;—¢p) state that knowledge and belief are
consistent, while inclusion axioms can be used, for example, to express positive introspection
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of knowledge and belief (O; — 0;0;¢p) or to represent knowledge sharing between agents or
groups of agents (e.g. O;¢0 — Ojp or Jjp — T;0,¢).

Horn fragments of logics have received lot of attention because of the fact that logical
implication in the form By A ... A B — A is widely used in practice and the fact that by
restricting to Horn fragments the computational complexity may be reduced in some cases.
For example, Hustadt et al. [14] proved that the data complexity of the Horn-SHZ Q fragment
of the expressive description logic SHZQ is in PTIME, while the data complexity of SHZQ is
coNP-complete. Since a positive logic program in a propositional modal logic can be used as a
TBox in description logic for defining concepts, the study of Horn fragments of propositional
modal logics is fully justifiable. Also note that the works on modal logic programming [1, 6,
25, 2, 20, 22] are based on Horn fragments of (first-order) modal logics, and the combination
of description logics and Horn logic have recently been studied by a considerable number of
researchers, e.g. [16, 4, 11, 5].

In this work, we study the Horn fragment of serial regular/context-free grammar logics.
In particular, we study the problem of checking P =, ¢ for a positive logic program P and a
positive formula ¢ in a serial regular/context-free grammar logic L. Our method is bottom-up
and based on constructing a finite least L-model M of P. (Kripke models are ordered by
comparing the sets of positive consequences.) Thus, for any positive formula ¢, P | ¢ iff
M = ¢. As an example of application, we use this to formalize and solve the wise men puzzle.
Our method is especially useful when P plays the role of a knowledge base that rarely changes,
while ¢ is a query and varies. At least it seems more efficient than the usual tableau-based
method when we have to check P =1, ¢ for a fixed positive logic program P and many positive
formulae .

The problem of constructing a finite least L-model M of P is not trivial at all. When L is
classical propositional logic (CPL), any model of P can be minimized into a least model of P,
but the problem is not easy for modal logics. The reason is that a Kripke model has a structure
which is not flat as in the case of CPL, and here we want to minimize the model w.r.t. the
set of positive consequences but not w.r.t. the size. When L is a serial modal logic, if one
translates the program P (together with the specification of the logic) into classical first-order
logic using the functional translation [26, 6] or the semi-functional translation [25], then one
obtains a Horn clause theory, which has a minimal Herbrand model. However, proving that
this model can be collapsed into a finite model seems more complicated. Besides, converting
a Herbrand model back into a Kripke model is hard in the case of the functional translation.
Also note that the relational translation does not preserve the Horn property (e.g. applying the
relational translation to the program clause p < Og results in Vz(p(x) V Jy(R(z,y) A —q(y))),
where R is the accessibility relation). Furthermore, there are positive modal logic programs
that do not have any least L-model, e.g. for L = K or L = K4 (the problem of non-serial
logics; see [19]). In some cases, for example P = {p} and L € {KDB, B}, a least L-model of P
exists but it must be infinite.

In this paper, we present an algorithm that, given a positive multimodal logic program P
and a set of finite automata specifying a serial regular grammar logic L, constructs a finite
least L-model of P. The algorithm runs in exponential time and returns a model with size
20(n%)  We give examples of P and L, for both of the case when L is fixed or P is fixed,
such that every finite least L-model of P must have size 2. We also prove that if G is a
context-free grammar and L is the serial grammar logic corresponding to GG then there exists a
finite least L-model of Ogp iff the set of words derivable from s using G is a regular language.

This work is related to our previous work [19] and our joint work with Goré [10]. In [19]
we gave an algorithm that for a given positive logic program P in a serial monomodal logic



L e {KD, T, KDB, B, KD4, 54, KD5, KD45, S5} constructs a least L-model of P, which
is finite if L ¢ {KDB, B}. When shifting to serial regular grammar logics, from the point
of view of [19], the challenge is to manage to obtain the stop property (it is not easy when
inclusion axioms are included) and exponential upper bound (instead of double exponential
time and size). The solution is to use formulae with automaton-modal operators as in [10],
which are similar to formulae of automaton propositional dynamic logic (APDL) [12]. In [10],
we together with Goré used such formulae for developing analytic tableau calculi with the
superformula property for regular grammar logics.! The technique used in the present work
for constructing least L-models for the case when L is a serial regular grammar logic is a
combination of the technique of [19], the use of automaton-modal operators [10, 12], and a
special caching technique. It seems quite natural following [19, 10]. However, a more important
matter is that with it, we obtain a much more significant result, as the class of serial regular
grammar logics is large and contains useful epistemic logics, while the monomodal logics KD,
T, KD4, S4 considered in [19] are just simple logics of this class.

The rest of this paper is structured as follows. In Section 1.1, we present the wise men
puzzle as a motivational example. In Section 2, we define serial regular/context-free gram-
mar logics, positive modal logic programs, an ordering of Kripke models, and formulae with
automaton-modal operators. In Section 3, we present our algorithm for constructing finite
least Kripke models of positive modal logic programs in serial regular grammar logics. Sec-
tion 4 concerns complexity lower bounds of the considered problem. In Section 5, we show
that a serial context-free grammar logic has the finite least Kripke model property for positive
modal logic programs iff it is a serial regular grammar logic. Section 6 concludes this work.

1.1 A Motivational Example

The wise men puzzle is a famous benchmark introduced by McCarthy [18] for AI and has
previously been studied in a considerable number of works (see [24] for some of them). The
puzzle can be stated as follows (cf. [15]). A king wishes to know whether his three advisors (a,
b, c¢) are as wise as they claim to be. Three chairs are lined up, all facing the same direction,
with one behind the other. The wise men are instructed to sit down in the order a, b, ¢ with
a on front. Each of the men can see the backs of the men sitting before them (e.g. ¢ can see a
and b). The king informs the wise men that he has three cards, all of which are either black
or white, at least one of which is white. He places one card, face up, behind each of the three
wise men, explaining that each wise man must determine the color of his own card. Each wise
man must announce the color of his own card as soon as he knows what it is. All know that
this will happen. The room is silent; then, after a while, wise man a says “My card is white!”.

For t € {a,b,c}, let O,p stand for “the wise man ¢ believes in ¢”, p; stand for “the card
of ¢ is white”, and ¢; stand for “the card of ¢ is black”. Let g denote the group {a,b,c} and
let O, informally stand for a certain operator of “common belief” of the group g. Let Ly
be the serial regular grammar logic with modal indices g, a, b, ¢ and the following inclusion
axioms:

Ogp — O and Opp — 0,040 for t € {g,a,b,c}.

The wise men puzzle can be formalized as follows.

It is a common belief of the group that if y sits behind x then z’s card is white whenever

!The superformula property is better known as the subformula property. It is just a matter of name. See
[10] for a precise definition.



y considers this possible:
ap (pa — < pa)
mp (pa — O pa)
Og (P < Oepo)

The following clauses are “dual” to the above ones:

Dg (Db Ga Q(z)
Dg (Dc da — Qa)
|:'g (Dc qb < Qb)

It is a common belief of the group that at least one of the wise men has a white card:

Oy (Pa < @b> Gc)
Dg (pb (e, Qa)
Dg (pc “— {qa, Qb)

It is a common belief of the group that: each of b and ¢ does not know the color of his own
card; in particular, each of the men considers that it is possible that his own card is black:

050 ap
Dg<>c qc

Let Pymp be the “positive logic program” consisting of the above “program clauses”.
The goal is to check whether wise man a believes that his card is white: that is, whether
Oapa is a logical consequence in Ly 0f Pymp. We will continue this example in Figure 1.

2 Preliminaries

2.1 Definitions for Multimodal Logics

Our modal language is built from two disjoint sets: MOD is a finite set of modal indices and
PROP is a set of primitive propositions. We use p for an element of PROP and use t and s
for elements of MOD. Formulae of our primitive language are recursively defined using the
BNF grammar below:

eu=T|p|l@|leAe|lpVe|lp—o|0p| O

A Kripke frameis a tuple (W, 7, (R;)temop), where W is a nonempty set of possible worlds,
T € W is the actual world, and each R; is a binary relation on W, called the accessibility
relation for O; and <y. If Ry(w,u) holds then we say that the world u is accessible from the
world w via R;.

A Kripke modelis a tuple (W, 7, (Ry)temop, h), where (W, 7, (Ry)te mop) is a Kripke frame
and h is a function mapping worlds to sets of primitive propositions. For w € W, the set of
primitive propositions “true” at w is h(w).

A model graph is a tuple (W, 7, (R¢)te mop, H), where (W, 7, (Ry)temop) is a Kripke frame
and H is a function mapping worlds to formula sets.

Given a Kripke model M = (W, 7, (R;)iemop, h) and a world w € W, the satisfaction
relation = is defined as usual for the classical connectives with two extra clauses for the
modalities as below:

M,w = O iff Yo € W.Ry(w,v) implies M,v = ¢
M,w k= Owp iff Fv e W.Ri(w,v) and M, v |= ¢.

4



We say that ¢ is true at w in M if M,w |= ¢. We say that ¢ is true in M and call M a
model of p if M, T |= ¢.?

If we consider only Kripke models, with no restrictions on R;, we obtain a normal multi-
modal logic with a standard Hilbert-style axiomatization K ).

2.2 Serial Regular Grammar Logics

Recall that a finite automaton A is a tuple (X,Q, 1,9, F), where ¥ is the alphabet (for our
case, ¥ = MOD), Q is a finite set of states, I C @ is the set of initial states, § C Q x X x Q
is the transition relation, and F' C @ is the set of accepting states. A run of A on a word
S1...Sk is a finite sequence of states qo, q1, . .., g such that go € I and 6(g;—1, S, g;) holds for
every 1 < i < k. It is an accepting run if g, € F. We say that A accepts word w if there
exists an accepting run of A on w. The set of all words accepted/recognized by A is denoted
by L(A).

Given two binary relations Ry and Ro over W, their relational composition R; o Ry =
{(z,y) | 3z € W. Ri(z,z) & Ra(z,y)} is also a binary relation over W.

A grammar logic is a multimodal logic extending K(,,) with “inclusion axioms” of the
form Oy, ... 04,0 — Oy, ... Oy, 0, where {t1,...th,51,...5,} € MOD. Each inclusion axiom
corresponds to the frame restriction Ry, o...0 R;, € Ry, o...0 Ry, where the corresponding
side stands for the identity relation if K =0 or h = 0. A serial grammar logic is an extension
of a grammar logic with the seriality axioms ;T for all £ € MOD. Each seriality axiom < T
corresponds to the frame restriction Va.3y.R¢(x,y). For a serial grammar logic L, the L-frame
restrictions are the set of all the mentioned corresponding frame restrictions. A Kripke model
is an L-model if its frame satisfies all the L-frame restrictions.

A formula ¢ is L-satisfiable if there exists an L-model of ¢. Similarly, a formula set I' is
L-satisfiable if there exists an L-model of T (i.e. an L-model satisfying all the formulae of T).
A formula ¢ is L-valid if it is true in all L-models. A formula ¢ is a logical consequence in L
of T', write I' =1, ¢, if every L-model of T" is also a model of ¢.

An inclusion axiom Oy, ...04 ¢ — Oy ...0g ¢ can also be seen as the grammar rule
t1...tnp — S1...sE where the corresponding side stands for the empty word if k =0 or h = 0.
Thus the inclusion axioms of a (serial) grammar logic L capture a grammar G(L). G(L) is
context-free if its rules are of the form ¢ — s1...sk, and is regular if it is context-free and
for every t € MOD there exists a finite automaton A; that recognizes the words derivable
from ¢ using G(L). If a context-free grammar over alphabet MOD contains a rule of the
form t — s1...s, then we call t a variable of the grammar, otherwise we call t a terminal.
The alphabet MOD (of words recognized by the grammar) thus contains both variables and
terminals. If ¢ is a terminal then A; = (MOD, {0,1},{0},{(0,¢,1)},{1}).

A serial regular (resp. context-free) grammar logic L is a serial grammar logic whose inclu-
sion axioms correspond to grammar rules that collectively capture a regular (resp. context-free)
grammar G(L). A regular language is traditionally specified either by a regular expression or
by a left/right linear grammar or by a finite automaton. The first two forms can be trans-
formed in PTIME to an equivalent finite automaton that is at most polynomially larger. But
checking whether a context-free grammar generates a regular language is undecidable (see,
e.g., [17]). Hence, we cannot compute these automata if we are given an arbitrary serial regu-
lar grammar logic. We therefore assume that for each t € MOD we are given an automaton

2 As in modal logic programming (see, e.g., [22]), we treat a given modal logic program as local assumptions
to the actual world. In description logics, however, a program representing the TBox is treated as global
assumptions. As demonstrated in [21], our method works also for the second case.



A; recognizing the words derivable from ¢ using G(L). This is the set of automata specifying L.

Example 1 Let MOD = {1,...,m} for a fixed m. Consider the serial grammar logic with
the inclusion axioms O;p — 0O;0;¢ for any 4,j € MOD and U;¢p — Ojp if i > j. This is a
serial regular grammar logic because the set of words derivable from 7 using the corresponding
grammar is represented by (1 | ... | m)*(1|...|4). For each i, the set is recognized by the
automatOf A; = (MOD,{p,q},{p},0i,{g}) with &; = {(p,5,p) | 1 < j < m} U {(p.j,9) |
1<y <.

Example 2 Let A = (3,Q,{qr},0, F), where gy € Q and 6 : Q x X — @, be a deterministic
finite automaton. Let G be the standard right-linear regular grammar generating the language
recognized by A, i.e. G has alphabet X, variables X, for ¢ € @, the start symbol X, and
rules X, — 0X5(4,) for o € 3, X; — ¢ for ¢ € F. Extending the alphabet to ¥ U @ and
treating X, as ¢, we obtain from G a regular grammar G’ over the extended alphabet. This
regular grammar corresponds to the serial regular grammar logic specified by MOD = QU X
and the inclusion axioms Ogp — Oy05, 59 for ¢ € Q and o € ¥, and Ogp — ¢ for g € F'.
The set of automata specifying this serial regular grammar logic (and corresponding to G')
consists of the automata A; = (QU X, QU {f},{q},dq, FU{[f}) for ¢ € Q, where f ¢ Q and
dg =0U{(p,p. f) | p€Q}, and A, = (QUX,{0,1},{0},{(0,0,1)},{1}) for o € X.

Lemma 1 (cf. [3, 7, 10]) Let L be a serial context-free grammar logic. Then the following
conditions are equivalent:

(1) s1...8k is derivable from t using the grammar G(L),
(2) the formula Opp — Oy, ... Oy, ¢ is L-valid,

(3) the inclusion Ry, o --- o Rs, C Ry is a consequence of the L-frame restrictions.

Proof. The implication (1) = (2) follows by induction on the length of the derivation of sy .. . sp
from t by the grammar G(L), using substitution, the K-axiom O;(¢ — ¢) — (Opp — Ou0)
and the modal necessitation rule ¢/0;p. The equivalence (2) < (3) is well-known from
correspondence theory [27]. The implication (3) = (1) follows by induction on the length of
the derivation of Ry, o...0Rs, C Ry from the L-frame restrictions (for this, first observe that
the conditions of seriality are not essential for the derivation of Ry, o---0 R, C R; from the

L-frame restrictions).3 o

2.3 Positive Modal Logic Programs

A program clause is a formula of the form ®(B; A ... A By — A), where @ is a (possibly
empty) sequence of universal modal operators (i.e. O;), k > 0, and By, ..., Bg, A are simple
modal atoms of the form p, Ogp, or Ggp. We often write program clauses in the form E(A «—
Bi,...,By), where @ is called the modal context, A the head, and By, ..., B the body of the
program clause.

A positive (multimodal) logic program is a finite set of program clauses.

A formula is in negation normal form if it does not contain the connective — and each
negation occurs immediately before a primitive proposition. Every formula can be transformed
to its equivalent negation normal form in the usual way. A formula is called positive if its

3The conditions of seriality do not play any role in this proof. They are needed somewhere else to guarantee
the existence of least Kripke models of positive logic programs.



negation normal form does not contain negation. A formula is called negative if its negation
is a positive formula.

Horn formulae are recursively defined as follows: a primitive proposition is a Horn formula;
a negative formula is a Horn formula; if ¢ and ¢ are Horn formulae and ¢ is a negative formula
then Oy, Orp, @ A, and @ V € are Horn formulae.

It can be shown that for every set X of Horn formulae, there exists a positive logic program
P and a set @ of negative formulae such that X is L-satisfiable iff PUQ) is L-satisfiable (see [19]
for the technique). Note that P U @ is L-satisfiable iff P ¥ ¢, where ¢ is the negation of
the conjunction of the formulae of @ (and thus a positive formula). As we will show, if L is a
serial regular grammar logic, then P has a “least L-model” M such that P = ¢ iff M | 4,
for every positive formula ).

2.4 Ordering Kripke Models

A model M is said to be less than or equal to M', write M < M, if for any positive formula
o, if M satisfies ¢ then M’ also satisfies ¢. This relation < is a pre-order. We write M = M’
to denote that M < M’ and M’ < M.

An L-model is a least L-model of a positive logic program P if it is an L-model of P and
is less than or equal to every L-model of P.

Note that M = M’ does not mean that M = M’. In particular, if M and M’ are least
L-models of P then M = M’ but we do not have that M = M’. The equivalence M = M’
only says that for every positive formula ¢, M = ¢ iff M’ = ¢.

Let M = (W, 7, (Ri)temop, h) and M' = (W' 7' (R})temop, h') be Kripke models. We
say that M is less than or equal to M’ w.r.t. a binary relation r C W x W', and write M <, M’,
if the following conditions hold for every t € MOD, x € W and 2’ € W":

L. r(r,7")

2. Vy e W (Ri(z,y) Ar(x, ') — Fy' € W(RL(',4') Ar(y,y)))
3. vy e W (Ri(«,y') Ar(z,2') — Fy € W (Ri(z,y) Ar(y, y)))
4. r(z,2") — h(z) C h(z)

In the above definition, the first three conditions state that r is a kind of bisimulation of
the frames of M and M’. (If we replace h(x) C h(2’) in the last condition by h(z) = h(z')
then r will be a bisimulation of M and M’.) Intuitively, r(x,2’) states that the world x is less
than or equal to z'.

Lemma 2 If M <, M’ then M < M’.

The order <, was introduced in our previous work [19], in which we proved the above
lemma for normal monomodal logics. The proof for normal multimodal logics is similar (i.e.
by induction on the length of ¢ that, if M, w = ¢ then M’ w = ¢).

We give below a converse of the above lemma.

If M = (W,7,(Rt)temon,h) and w € W then by (M,w) we denote the Kripke model
obtained from M by using w as the actual world.

A Kripke model M = (W, 7, (Rt)icpmop, h) is said to be finitely branching if for every
u € W and every t € MOD, the set {v | R¢(u,v)} is finite.

4
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Lemma 3 Let M and M’ be finitely branching Kripke models such that M < M'. Then
M <, M’ for some r.

Proof. Let M = (W, 7, (R¢)temonp, h) and M' = (W' 7', (R})temop, h'). Define r = {(w,w’) |
weW,w eW, (Mw)< (M, w)}. We prove that M <, M’'. Clearly, »(7,7’) holds, and if
r(z,x’) holds then h(z) C h(z').

Suppose that Ri(z,y) and r(xz,2’) hold. We show that there exists 3’ € W’ such that
Ri(z',y') and 7(y,y’) hold. For the sake of contradiction, suppose that for every y' € W’ such
that Rj(2’,y") holds, r(y,y’) does not hold, i.e. there exists a positive formula ¢,/ such that
M,y = ¢y but M’y ¥ ¢,. For every y' € W’ such that Rj(2’,y’) holds, choose such a
¢y. Then because M’ is finitely branching, one can construct a finite conjunction ¢ from the
chosen ¢,/. We have M,z = Oy, while M’, 2/ # Oy, which contradicts the assumption that
r(z,x’) holds.

Suppose that Rj(z',y’) and r(x,2’) hold. We show that there exists y € W such that
Ri(z,y) and r(y,y’) hold. For the sake of contradiction, suppose that for every y € W such
that R:(z,y) holds, r(y,y’) does not hold, i.e. there exists a positive formula ¢, such that
M,y = ¢, but M,y ¥ ¢,. For every y € W such that R;(x,y) holds, choose such a ¢,.
Then because M is finitely branching, one can construct a finite disjunction ¢ from the chosen
¢y. We have M,z |= Oy, while M’, 2’ ¥ O, which contradicts the assumption that r(x, z’)
holds. This completes the proof. °

2.5 Automaton-Modal Operators

If A is a finite automaton, @ is a subset of the states of A, and ¢ is a formula in the primitive
language then we call [A, Q] a (universal) automaton-modal operator and [A, Q]p a formula
(in the extended language). In [10], [A, Q] is denoted by (A, Q) : ¢ and called an automaton-
labeled formula.

Fix a serial regular grammar logic L and let (A; = (MOD, Q, It, 6¢, F1))temop be the
automata specifying L. Let §;(Q,s) = {¢'| 3¢ € Q.(¢,5,¢') € &;} be the states which can be
reached from @ via an s-transition using A;. Let € be the empty word and define 6;(Q,¢) = Q
and 6¢(Q, s1...8k) = 0:(6¢(Q, 51 ... 8k—-1), Sk)-

The formal semantics of formulae with automaton-modal operators is defined as follows:
M, wy = [As, Qe if M, wy, |= ¢ for every path woRs, w1 ... wg—1Rs, wi, with k& > 0 such that
gt(Q, $1...86)NFy £ 0 (i.e. s1...sg is accepted by A; when starting from some state from Q).

It can be easily seen that formulae with automaton-modal operators satisfy the following
reasoning rules:

e A formula of the form O,p at a world u is represented by [Ay, It]e.

o If [A, Qlp occurs at u and Rs(u,v) holds then we add the formula [A, 6:(Q, s)]¢ to v. In
particular, if [A, I;]p appears in world u and Rg(u,v) holds then we add [A¢, 0:(1, s)]p
to the world v.

o If [A4, Qe and [As, Q'] occur at u then we replace them by [A:, Q U Q']p.
o If [A;, Q]p occurs at u and @ contains an accepting state of A, then we add ¢ to w.

Our formulae with automaton-modal operators are similar to formulae of automaton propo-
sitional dynamic logic (APDL) [12]. A formula involving automata in APDL is of the form



[A]p, where A is a finite automaton with one initial state and one accepting state. A for-
mula like our [A;, Qe with @ = {q1,¢2,...,qr} can be simulated by the APDL formula
[Bi]g V...V [Bgle where each B; is an automaton with one accepting state equivalent to the
automaton A; restricted to start at the initial state ¢;. Thus our formulation uses a more com-
pact representation in which APDL formulae that differ only in their initial state are grouped
together.

From now on, by a formula we mean a formula in the extended language.

3 Constructing Finite Least Kripke Models

In this section, we present an algorithm that, given a positive logic program P and a serial
regular grammar logic L specified by a set of finite automata, constructs a finite least L-model
of P. The seriality axioms are needed to guarantee the existence of least Kripke models of
positive logic programs. Recall that there are positive modal logic programs that do not have
any least Kripke model in the non-serial modal logics K and K4 [19].

Let X be a set of formulae. The saturation of X, denoted by Sat(X), is defined to be the
least extension of X such that:

e if O, € Sat(X) then [A, It]p € Sat(X),
o if [A, Qlp € Sat(X) and Q N F; # O then ¢ € Sat(X),
o T € Sat(X) and 4T € Sat(X) for every t € MOD.

The transfer of X through <, denoted by Trans(X, t), is defined to be Sat({[As, 65(Q,t)]¢ |

[As, QY € X }).
The compact form of X, denoted by CF(X), is the least set of formulae obtained as follows:

e if o € X and ¢ is not of the form [A;, Q¢ then ¢ € CF(X),

o if [A;,Q]Y € X and Qq,...,Qy are all the sets such that [A;, Q] € X for 1 < i < k,
then [A;, Q1 U...U QY € CF(X).

The algorithm given below will construct the following data structures:
e W : a set of possible worlds, where 7 € W is the actual world.
e H : for every w € W, H(w) is a set of formulae called the content of w.

o Next : W x ({O4T |t € MODYU{Owp | t € MOD,p € PROP}) — W, a partial
function which has the following intuitive meaning: Next(u,Orp) = v means Opp €
H(u), ¢ € H(v), and <y is “realized” at w by going to v.

Using the above data structures, we define:
e h to be the restriction of H such that h(u) = H(u) N PROP for u € W;

e R; to be the accessibility relation on W such that R}(u,v) holds if Next(u, Oip) = v for
some ;

e R, to be the least extension of R such that (R;)iepmop satisfies all the L-frame restric-
tions except the seriality conditions;



o M = (W, 7, (Rt)temon, h).

In the algorithm given below, we use the procedure Find(X, W, H) defined as: if there
exists a world u € W with H(u) = X then return u, else add a new world u to W with
H(u) = X and return u.

A finite least L-model of P is constructed by building an L-model graph of P. At the
beginning the model graph contains only one world with content P. Then for every world u
and every formula ¢ belonging to the content of u, if ¢ is not true at u then the algorithm
makes a change to satisfy it. There are three main forms for ¢ : A « By,..., B, with k > 1,
[As, QlY, and Oup (the form O, is reduced to [Ay, I;]Y). For the case of A «— By,..., By,
if all By,..., By are true and will remain true® at w then we would like to add A to the
content of w. But if we do so then this may result in the situation that H(u) = H(u') for
some u’ # u. To restrict the size of the constructed model graph, we prevent that situation as
follows. Instead of adding A to the content of u, we redirect the connections to u to a world
with an appropriate content, which is created if necessary. That is we use another world with
an appropriate content to “replace” the role of w. The world u is not deleted, as we want
to cache all worlds appearing during the process in order to increase efficiency. For the case
when ¢ is of the form [A;, @]y, we would like to add [A, §:(Q, s)]¥ to the content of every
world w accessible directly from u via R., for s € MOD. But modifying the content of w
may affect the other worlds connected to w. For example, if R;(v,w) holds then adding p to
H(w) causes ¢;p true at v. So, analogously as for the previous case, instead of modifying
contents of worlds, we just redirect connections appropriately. For the case when ¢ is of the
form <Oy, to satisfy ¢ at u, we connect u via R} to the world with content consisting of 1)
and the formulae “inherited” from u via R;. To guarantee the constructed model graph to
be smallest, we add <4 T, for t € MOD, to the content of every world. Adding <4 T to the
content of u causes u be connected to a “minimal” world via R;. It also guarantees R; to be
serial at w.

Algorithm 1
Input: A positive logic program P and a serial regular grammar logic L specified by a set of
finite automata A; = (MOD, Qy, I, 6, F;) for t € MOD.

Output: M = (W, 7, (R¢)temop, h) — a finite least L-model of P.
1. W:={r}; H(t) := CF(Sat(P));
2. for every u € W and every ¢ € H(u)
(a) case ¢ = A < By,..., By for some k > 1: if for every 1 <i < k, M,u = B; and if
B; = Oyp then Next(u,<;T) is defined, then
i. uy := Find(CF(H (u) U Sat({A})), W, H);
ii. for every v e W, t € MOD, and ¢ € {T} UPROP,
if Next(v, Cup) = u then Next(v, Op)) 1= uy;
iii. if 7 = u then 7 := uy;
(b) case ¢ = [As, Q] : for every w € W and s € MOD s.t. R,(u,w) holds:
i. wy = Find(CF(H (w) U Trans({¢}, s)), W, H);

50Observe that if at some step w is the only world accessible from u via R, and p € H(w) then M,u = Oyp,
but this does not mean that O;p follows from the content of u. The truth of p or ¢up at u can be checked in
the usual way, but O¢p is true and will remain true at u only if p is true at the world Nexzt(u, O T).
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ii. for every £ € {T} UPROP,
if Next(u,©s€) = w then Next(u, Os) := wy;

(c) case p = O (for ¢ € {T}UPROP):
if Next(u, 1)) is not defined then
Next(u, Opp) := Find(CF(Trans(H (u),t)) U{y}, W, H);

3. while some change occurred, repeat step 2.

Note that in the step 2a, if u, # u then after executing the steps 2(a)i-2(a)iii, the world
u is not reachable from 7 (via any path using the accessibility relations R}, t € MOD).
As example, in Figure 1 we apply the above algorithm to the wise men puzzle.

Proposition 4 Algorithm 1 terminates in 20(n%) steps and returns a Kripke model with 20(n?)
worlds, where n is the size of input (i.e. the sum of the lengths of the clauses of P, the size of
MOD, and the sizes of the automata specifying L).

Proof. For each u € W and ¢ € H(u), ¢ is either a subformula of a clause of P or a formula of
the form [A;, Q]¢ with ¢ being a subformula of a clause of P. There are less than n possible
values for ¢, less than 2" possible values for (), and less than n possible values for 1. Hence,
due to the compact form, there are no more than 20(n%) possible values for H(u). Since the
worlds of W have different contents, the size of W is 20(n%) " Also note that the worlds of W
are never deleted and their contents do not change.

The step 2¢ makes a change no more than 20(n%) 1y n = 20(*) times. For the steps 2a
and 2b, note that the content of w, (resp. wy) is “bigger” than the content of u (resp. w).
Hence Next is modified by the steps 2a or 2b no more than 20(n%) 1 . 20(?%) = 20(n?) times,
and 7 is modified no more than 20" times.

Therefore, we conclude that Algorithm 1 terminates in 20(n%) steps and returns a Kripke
model with 2°0("") worlds, where each world is of size O(n). o

Lemma 5 Consider a moment in an execution of Algorithm 1. Suppose that Ry(u,w) holds.
Then there exist wy, ..., wy in W with wy = u, wi, = w, and indices s1,...,8, € MOD such
that R} (w;—1,w;) holds for 1 < i <k, and Rs, o...0 R, C Ry follows from the L-frame
restrictions.

Proof. By induction on the number of inferences in the derivation of R;(u,w) when extending
R, to Rs for s € MOD using the L-frame restrictions. °

Lemma 6 Let P be a positive logic program, L be a serial reqular grammar logic, and M be
the model returned by Algorithm 1 for P and L. Then M is an L-model of P.

Proof. We will refer to the data structures used in Algorithm 1. It is clear that M is an
L-model. To prove that M = P, we show that for every u € W reachable from 7 via a path
using the accessibility relations R} and for every formula ¢ € H(u) without automaton-modal
operators, M,u = ¢. We prove this by induction on the structure of ¢. The case when
p = O is trivial.

Consider the case when ¢ = A < By, ..., By, and the steps 2(a)ii and 2(a)iii are executed.
As no changes occur (at the end) and u is reachable from 7 via a path using the accessibility
relations Rj, we have that u, = u. Thus, by the inductive assumption, M,u = A, and hence

M,u = .
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In this figure, we continue the example about the wise men puzzle. Recall that the program used

for formalizing the puzzle is Pymp = {Ogp1, ..., Ogp11}, where
= (pa < b Pa) 07 = (Pa < > Gc)
902 = (pa « ©cPa) s = (Pb < e, da)
= (pp = Ocpp) ©9 = (Pe < qa, I)
904 = (Obqa + qa) 010 =y q
805—( anan) v11 = <cqe
Y6 = ( cqp Qb)

The used logic Lyymp has MOD = {g, a,b, c} and is specified by the set of the following automata:

Ay = (MOD,{0,1},{0},{(0,¢,0),(0,¢,1) | t € MOD}, {1}),
and for t € {a,b,c} : Ay = (MOD,{0,1},{0},{(0,¢,1)}, {1}).
Let
P = Sat(P)=PU{[A4, {0}y |1 <i <11} U{T}U{O>,T |t € MOD},
= {[Ag, {0, i, i | 1 <0 <TTFU{TFU{OT | £ € MODY,

1N LU {[Ac, {0}]a},
I = TU{[A,{0,1}q}.

We give below the model graph created by Algorithm 1 for P, and Lyym,p. The initial node 7
is the node with a shaded frame. In the graph, an edge from a node u to a node w with a label
t € MOD means an edge from u to w via R;. The formula p, is added to the right bottom node
due to 7, and after that it is added to the other nodes except 7 due to ¢ or w3. We do not
show in the graph the nodes that are not directly nor indirectly accessible from the initial node 7.

g,a,b

", b, Oes, Pa =T, g, b, Do, Pa |

U U

Cc Cc

The formula O,p, is true in the corresponding Li,m,,-model of the model graph. By Theorem 9,
which is presented and proved in the follows, O,p, is a logical consequence in Ly of Pymp.

Figure 1: An application of Algorithm 1 to the wise men puzzle
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Consider the case when ¢ = 0. Suppose that R;(u,w) holds. By the inductive assump-
tion, it is sufficient to show that ¢» € H(w). Since Ri(u,w) holds, by Lemma 5, there exist
wo, . .., wg in W with wo = u, wy, = w, and indices s1, ..., s, € MOD such that R} (w;_1,w;)
holds for 1 < ¢ < k, and R, o...0 Rs;, C R; follows from the L-frame restrictions. By
Lemma 1, s1... s is accepted by A;. Hence (i([t, $1...85)NFy # . Since ¢ € H(u), we have
[As, QY € H(wp) for some Q D I, and hence [Ay, Q'J¢ € H(wy,) for some Q' D 6,(Iy, 51 . . . sp).-
It follows that ¢ € H(wy), which means ¢ € H(w). .

Lemma 7 Let P be a positive logic program, L be a serial reqular grammar logic, and M’ =
(W' 7', (St)temop, h') be an arbitrary L-model of P. Consider a moment after executing a
numerated step in an execution of Algorithm 1 for P and L. Let r = {(z,2') € W x W' |
M' 2" = H(x)}. (Here, W and H are the data structures used in Algorithm 1.) Then:

a) r(7,7") holds,

b) for every x,y e W, 2/,y' e W', 1 € MOD, ¢ € {T} UPROP,
if r(x,2") holds, Next(xz, ) =y, Si(2',y") holds, and M',y' =1, then r(y,y') holds.

Proof. By induction on the number of executed steps.

The base case occurs after executing step 1 and the assertions clearly hold.

Consider some latter step of the algorithm. As induction hypothesis, assume that the
assertions hold before executing that step. Suppose that after executing the step we have
My, Wa, Ha, Nexty, Ry,, R (for t € MOD), and ry in the places of M, W, H, Next, R,
R;, and r. We prove that, a) ro(7,7’) holds, b) for every x,y € Wa, o',y € W', | € MOD,
Y € {TIUPROP, if ro(z,2") holds, Nexts(x, Orp) =y, Si(2’,y') holds, and M',y’ |= 1), then
r2(y, ") holds.

It suffices to consider steps 2(a)ii, 2(a)iii, 2(b)ii, and 2c.

Consider the steps 2(a)ii and 2(a)iii. Let «’ be a world of W’ such that r(u,u’) holds. Tt
is sufficient to show that r3(u., u’) holds. Suppose that for every 1 < i < k, M,u |= B; and if
B; = O;p then Next(u,O¢T) is defined. We need only to show that M’ u' = A. Since r(u,u’)
holds, M',u' |= (A <« By,...,Bg). Hence, it is sufficient to show that M’ v’ = B; for every
1 <4 < k. Fix such an index 7. There are three cases to consider:

e Case B; = p: Since M,u = B;, we have p € H(u). Since r(u,u) holds, it follows that
M/, u’ ’: BZ

o Case B; = Op : Thus there exists w € W such that R:(u,w) holds and p € H(w). By
Lemma 5, there exist wo,...,w; in W with wg = u, wp = w, and indices si,...,s; €
MOD such that R (w;—1,w;) holds for 1 < i < k, and R, o...0 R, C R; follows
from the L-frame restrictions, which we denote by (*). Let 11,...,1; be formulae of
{T}UPROP such that Next(w;_1,s;1i) = w;. By the definition of r and the inductive
assumption, there exist wy = v/, w},...,w;, in W’ such that Sy, (w]_,,w)) and r(w;, w})
hold for every 1 < i < k. By (*), we have that S;(w(,wy;,) holds. Since p € H(w),

w = wy, and r(wy, w)) holds, we have M’', w) = p. It follows that M’ wj = <4p, which

means M’ v’ = B;.

e Case B; = Oyp : Let w = Next(u, ¢ T). Since M, u |= B;, we have that p € H(w). Let
w’ be an arbitrary world of W’ such that Sy(u/, w’) holds. By the inductive assumption,
we have that r(w,w’). Hence M',w’ = p. Tt follows that M’ «/ | Oyp, which means
]\4',7 u’ ': Bz
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Consider the step 2(b)ii. It suffices to show that if 7(u,u) holds, Next(u,Osth) = w,
Ss(u',w') holds, and M',w’ = ¢ then M',w' | H(w,). Suppose that r(u,u’) holds,
Next(u,Osp) = w, Ss(u/,w’) holds, and M’ ,w’ = . By the inductive assumption,
M’ w' = H(w). Since r(u,u’) holds and [A¢, QY € H(u), it follows that M’ v = [As, QY.
Hence M’ w' = [Ag, 04(Q, s)]¢ (since Ss(u',w') holds). Consequently, M’ w' = H(w.).

Consider the step 2c. Let w denote the world Find(CF(Trans(H (u),t)) U {y}, W, H). Sup-
pose that r(u,u') and S¢(v', w’) hold and M’ w' |= 1. Tt suffices to show that M’ w' = Ha(w).
Since r(u,u') holds, M',v' = H(u). It follows that M’ w' = Trans(H (u),t) (since Si(u/,w’)
holds). Hence M’ ,w' | Ha(w). o

Lemma 8 Let P be a positive logic program, L be a serial reqular grammar logic, M be the
model returned by Algorithm 1 for P and L, and M' = (W' 7', (St)temon, h') be an arbitrary
L-model of P. Then M < M’.

Proof. We will refer to the data structures used in Algorithm 1. Let r be the relation
specified in Lemma 7 for the end of an execution of Algorithm 1 for P and L. By definition,
Va, o' r(z,2") — h(z) C h(2') is true. By Lemma 7, r(7,7") holds.

We first prove that Vt,z, 2,y Re(x,y) Ar(z,2") — Iy Se(2,y') Ar(y,y’). Suppose that
Ry(z,y) and r(z,2’) hold. By Lemma 5, there exist wo, ..., wg in W with wy = z, w, = y, and
indices s1, ..., s, € MOD such that R’Si (wi—1,w;) holds for 1 <i <k, and Rs,0...0R,, C R;
follows from the L-frame restrictions (denote this by (*)). Let t1,...,¢; be formulae of
{T}UPROP such that Next(w;_1,<s,1;) = w;. Let wj = &’. Since r(wp,w() holds and
M,wy | ©s,¢1, we have that M w) & O ¢1. Let w) € W’ be the world such that
Ss, (w(, w)) holds and M’ ,w] |= ¢;. By Lemma 7, r(w;,w]) holds. Analogously, we claim
that there exist wy = 2/, w], ..., w}, in W’ such that Sy, (w]_;,w}) and r(w;, w}) hold for every
1 <i<k. By (*), Si(wp, wy,) holds. Hence, we can choose y' = wy.

We now prove that Vi, z, 2",y Si(2',y') A r(x,2’) — Jy Re(z,y) Ar(y,y’). Suppose that
Si(2',y') and r(x,2’) hold. Let y = Next(x,;T). Clearly, Ri(z,y) holds. By Lemma 7,
r(y,y') also holds.

We have proved that M <, M’. Therefore M < M’. .

Theorem 9 Let P be a positive logic program and L be a serial reqular grammar logic. Then
the model M returned by Algorithm 1 for P and L is a least L-model of P.

This theorem follows from Lemmas 6 and 8.

4 Lower Bounds

Let P denote a positive logic program and L denote a serial grammar logic. In this section,
we give examples of P and L, for both of the case when L is fixed or P is fixed, such that
every finite least L-model of P must have size 224",

Lemma 10 Let M = (W, 1, (R¢)temon, h) be a finite Kripke model. Let ¥ be a subset of
MOD such that for everyt € ¥, Ry is a total function on W, i.e. Ve3ly.Ry(x,y). Let U be the
subset of W defined by w € U iff there exists a path TRy, w1 Ry, wa ... Ry, wy, with wy, = w and
t1, ...tk € X. Suppose that M' = (W' 7' (R})temop, h') is a finite Kripke model equivalent
to M (i.e. M' = M ). Then for every w € U there exists w' € W' such that (M,w) = (M',w').
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Proof. It suffices to prove by induction on k that if 7Ry wiRi,wa ... Ry, wy is a path in M
with ¢1, ..., tx € ¥ then there exists wj, € W’ such that (M, wy) = (M',w;,), where wo = 7.
The base case holds for w({, = 7/. For the induction step, suppose that the hypothesis holds
for k, and Ry, , (wg, wg+1) holds for some t,1 € X. We show that there exists w;,; € W' such
that (M, wyy1) = (M’ wy ). Since (M,wy) < (M',wy,) and Ry, (wg, wg41) holds, analo-
gously as for the proof of Lemma 3, there exists wj ,; € W’ such that R}, (w},wj_ ) holds and
(M, wg+1) < (M',wy ). Once again, since (M',wy) < (M, wy) and R}, (wy,w;, ) holds,
analogously as for the proof of Lemma 3, there exists wy +1 € W such that Ry, (wg, wy +1)
holds and (M',wy ) < (M,wy,,). Since Ry, is a function, w} ; = w41, and hence
(M, wy 1) = (M’ W), y)- .

Proposition 11 There are reqular grammars G such that if L is a serial reqular grammar
logic corresponding to G then every least L-model of {Osp} has size 29n) " where n is the size

of G.

Proof. Let n > 0 be a natural number. Consider the grammar G with rules s — a(z)"~! | zs
and ¢ — a | b. This grammar with s as the start symbol generates words over alphabet
{a,b,z} with a at the n-th last position. The automaton specifying this language is

As = ({a,b,z,s},{0,...,n},0,0,{n})

where 6 = {(0,0,0), (k,0,k+1) | o €{a,b,z} and 1 <k <n}U{(0,a,1)}.

Let L be the serial regular grammar logic corresponding to G and M =
(W, 7, (Rt)te moD, h) be the least L-model of {Ogp} constructed by Algorithm 1.

Let ¥ = {a,b}. For a, € ¥*, define that o ~ [ if for every v € ¥*, ay € L(A;) iff
B~ € L(As). The equivalence relation ~ has exactly 2" abstract classes.

Let o, 0 € ¥* and o = (3. Suppose that a« =¢1 ...t and 8 = s1...sp. There exist w, and
wg such that (7,wa) € Ry, 0---0 Ry, and (7,wg) € Rs, 0---0 R, . Since a ~ 3, there exists
v =01...01 € ¥* such that exactly one of ary and v belongs to L(As). Thus, O, ... Ogp
is true at exactly one of the worlds w, and wg. Hence (M, wq) = (M, ws) does not hold. By
Lemma 10, it follows that every least L-model of Ogp has at least 2" worlds. °

One can observe that the exponent 22" in Proposition 11 can be completely explained
from the determinization of the automaton A,;. That is, if As is a deterministic finite au-
tomaton, then there exists a least L-model of {Ogp} that has a linear size. This is because
of the chosen program {Osp}. The observation is not necessarily true for other cases. For
example, if the program is {J;0,p} and the automaton A has several accepting states, then
the situation is already more complicated. The following proposition states that in general
the rank 29 is not due to the chosen logic and its corresponding automata.

Proposition 12 There exists a serial regular grammar logic L such that there are positive
logic programs whose least L-models have size of rank 22 | where n is the size of the program.

Proof. Consider the regular grammar consisting of the rules

0—alb
1— a2
2—c¢cla2|b2

Let L be the serial regular grammar logic corresponding to this grammar, where MOD =
{0,1,2,a,b}. Let P = {Oyp1, OpO1p2, Do0001ps, -- ., Dg_lDlpn} for some n and different
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primitive propositions pi,...,p,. Let M = (W, 7, (R;)temop, h) be the least L-model of P
constructed by Algorithm 1. Let ¥ = {a,b} and U be the subset of W defined by w € U iff
there exists a path 7Ry w1 Ry, wa ... Ry, wy with wp, = w and tq,...,t; € ¥. Observe that for
every subset X of {pi1,...,pn}, there exists w € U such that h(w) = X. Hence U contains at
least 2™ worlds which are not equivalent to each other. By Lemma 10, it follows that every
least L-model of P has at least 2" worlds. °

5 Characterizing Serial Context-Free Grammar Logics Using
Least L-Models

Theorem 13 Let G be a context-free grammar and L be the serial grammar logic correspond-
ing to G. Then there exists a finite least L-model of Ogp iff the set of words derivable from s
using G is a regular language.

Proof. The “if” assertion follows from Algorithm 1 and Theorem 9. Consider the “only if”
assertion. Suppose that M = (W, 7, (R¢)temop, h) is a finite least L-model of Ogp. We show
that the set of words derivable from s using G, which we denote by L(G,s), is a regular
language.

Let M' = (MOD*, ¢, (R})temop,h’) be the Kripke model specified as follows: for ¢t €
MOD, R; is the least extension of {(u,ut) | u € MOD*} such that (R})ic mop satisfies all the
L-frame restrictions; h/(t1 ...tx) = {p} if t1 ...ty is derivable from s by G, and h/(t1 ...tx) =0
otherwise.

We first study properties of M’.

Clearly, M’ is an L-model of Ogp.

For w € MOD*, let {w} 1L(G, s) denote the set {w' € MOD* | ww' € L(G,s)}. Let
7 C MOD* x MOD* be {(w,w') | {w} 1L(G,s) C {w'}1L(G,s)}. Observe that h'(w) =
{p}iff we L(G,s) iff e € {w}1L(G,s). It is easy to check that M’ <,, M.

We show that for any u,v € MOD*, if Rj(u,uv) holds than (M’ ut) < (M’,uv), which
means that ut is the least world among the worlds accessible from u via Rj. Let v = s1... s,
where s1,...,8, € MOD. Since Rj(u,uv) holds, we have that R, C R o---o R is
a consequence of the L-frame restrictions, and hence s;...s; is derivable from ¢ using G
(by Lemma 1). Hence {ut} 1L(G,s) C {uv} 1L(G,s), and r'(ut,uv) holds. Consequently,
(M ut) <o (M',uv), and hence (M’ ut) < (M’ uv).

As a consequence of the above assertion, for any u,w € MOD* and t € MOD, if (M, u) =
(M',w) then (M’ ut) = (M',wt). In fact, if  is a positive formula such that M’ ut = ¢ but
M’ wt ¥ ¢ then M, u = Oy but M, w ¥ Oyp.

We now study the relation between M’ and M.

Let r C MOD* x W be defined as follows: r(e,7) holds; if there is a path
TRy, w1 Ry, ws ... wi_1 Ry, wy in M then r(¢; ... tx, wy) holds. It is easy to check that M’ <, M.
Therefore M’ is a least L-model of Ogp, and hence M’ = M.

We now define a function f : MOD* — W such that (M',u) = (M, f(u)) and
R.(f(u), f(ut)) holds for every u € MOD* and t € MOD. Since M’ = M, let f(e) = 7.
Assume that f(u) is already defined, (M’ ,u) = (M, f(u)), and if w = t1...¢; then
Ry, (f(t1...ti1), f(t1...t;)) holds for every 1 < i < k. We recursively define f(ut) as fol-
lows. Since (M, f(u)) < (M',u), analogously as for the proof of Lemma 3, there exists w € W
such that R;(f(u),w) holds and (M,w) < (M’,ut). Define f(ut) = w. Thus we have that
R(f(u), f(ut)) holds and (M, f(ut)) < (M’,ut). By the definition of r, we also have that
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(M’ ut) < (M, f(ut)). Hence (M’ ut) = (M, f(ut)). Thus the function f satisfies the require-
ments. Furthermore, since (M’ ut) = (M’ wt) if (M',u) = (M',w), we can require also that,
if f(u) = f(w) then f(ut) = f(wt) for any u,w € MOD* and t € MOD.

Define S : W x MOD — W to be the partial function such that S(f(u),t) = f(ut) for
u € MOD* and t € MOD. Define S* : W x MOD* — W to be the partial function such
that S*(w,e) = w and S*(f(u),vt) = S(S*(f(u),v),t) for u,v € MOD* and t € MOD. Thus
fluww) = 5*(f(u),v).

We now prove the claim of the theorem.

For u,w € MOD*, define that u ~ w if for every v € MOD*, uv is derivable from s by G
iff wv is derivable from s by G. By Myhill-Nerode theorem, the language consisting of words
derivable from s using G is regular iff the equivalence relation ~ has finitely many abstract
classes. We show that if f(u) = f(w) then u ~ w. Since the image of f is finite, this will
imply that ~ has finitely many abstract classes. Suppose that f(u) = f(w). Let v =¢1 ...t
be an arbitrary word over MOD. The following conditions are equivalent

1. ww is derivable from s by G,

[\)

. b (uv) = {p} (by the definition of M"),
3. h(S*(f(u),v)) = {p} (since (M',wv) = (M, f(uv)) and f(uwv) = S*(f(u),v))
4. h(S*(f(w),v)) = {p} (since f(u) = f(w)),

(

. W (wv) = {p} (similarly as for item 3),

ot

6. wv is derivable from s by G (by the definition of M’).

Therefore u ~ w, which completes the proof. °

6 Conclusions

We have given an algorithm of constructing finite least Kripke models for positive logic pro-
grams in serial regular grammar logics. This class of logics is large and contains many useful
multimodal logics (e.g., KD4(y,), S4(y), the logics KDI4 and KDI4 for reasoning about
multi-degree belief [22], the logic K D41, for reasoning about beliefs of agents and groups of
agents [24]). Our algorithm gives a bottom-up method for checking P =1 ¢ for a positive
logic program P and a positive formula ¢ in a serial regular grammar logic L. The method is
especially useful when P plays the role of a knowledge base that rarely changes, while ¢ is a
query and varies.

The proof of correctness of our algorithm is simpler and shorter than our proof given for
KD4 and S4 in [19] (3 pages of this paper in comparison with 11 pages in FI style). This
is due to the use of a different technique for building model graphs. The algorithm given
in this work uses graphs instead of trees and uses a special caching technique for building
model graphs. These techniques are essential for getting the exponential upper bound for the
time complexity and the size of the constructed model. When realizing a formula of the form
A« Bj,...,By at a possible world w, we do not add A to the content of w, but just simulate
the task by using another world. We also use such a technique for realizing formulae of the
form [As, Q]ip. Without this technique merging duplicates is necessary and the old nodes may
need to be re-created later, and hence the performance is slowed down and complexity analysis
could be difficult.
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Our algorithm runs in exponential time and returns a model with exponential size. This
exponential complexity is not surprising. However, we were able to prove a lower bound as
well. We conjecture that the satisfiability problem of the Horn fragment of serial regular
grammar logics is EXPTIME-hard (and therefore EXPTIME-complete). It remains an open
problem. (The method of this work for checking L-satisfiability of P U {—¢}, where P is a
positive logic program and ¢ is a positive formula, is to build a least L-model M of P and
check whether M ¥ ¢. Our conjecture is that: the complexity of the satisfiability problem is
EXPTIME-hard, independently from the used method.)

Our method is adaptable for non-serial modal logics, in particular, for the deterministic
Horn fragments of the description logic ALC [21] and test-free PDL [23]. When using a regular
grammar logic as a description logic (where a primitive proposition stands for a concept, a
modal operator stands for a role quantifier, and a positive logic program treated as global
assumptions stands for a TBox), the seriality axioms do not hold anymore, and by putting a
further restriction to obtain the deterministic Horn fragment as in [21, 23], one can show that
the data complexity is reduced from coNP-complete to PTIME, which is interesting from a
practical point of view.

Our results are interesting by themselves from a theoretical point of view. The theorem
that “for G being a context-free grammar and L being the serial grammar logic corresponding
to G, there exists a finite least L-model of Ogp iff the set of words derivable from s using G is
a regular language” is a nice theoretical result.
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