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Abstract. Developing a good formalism and an efficient decision procedure for the in-
stance checking problem is desirable for practical application of description logics. The data
complexity of the instance checking problem is coNP-complete even for Horn knowledge
bases in the basic description logic ALC. In this paper, we present and study weakenings
with PTime data complexity of the instance checking problem for Horn knowledge bases in
regular description logics. We also study cases when the weakenings are an exact approx-
imation. In contrast to previous related work of other authors, our approach deals with
the case when the constructor ∀ is allowed in premises of program clauses that are used as
terminological axioms.

1 Introduction

Description logics (DLs) are a family of knowledge representation languages which can be
used to represent the terminological knowledge of an application domain in a structured
and formally well-understood way [2]. We can use them, for example, for conceptual
modeling or as ontology languages. The logical formalisms of OWL (Web Ontology Lan-
guage), recommended by W3C, are based on description logics.

Description logics represent the domain of interest in terms of concepts, individuals,
and roles. A knowledge base in a DL is a tuple (R, T ,A) consisting of an RBox R of role
axioms, a TBox T of terminological axioms, and an ABox A of facts about individuals
(objects) and roles. The instance checking problem in a DL is to check whether a given
individual a is an instance of a given concept C w.r.t. a knowledge base (R, T ,A), which
is written as (R, T ,A) |= C(a). This problem in the basic description logic ALC (with
R = ∅) is ExpTime-complete [39]. From the point of view of deductive databases, A
is assumed to be much larger than R and T , and it makes sense to consider the data
complexity, which is measured when the query specified by R, T , C and a is fixed
while A varies as input data. In [20], Hustadt et al. proved that the data complexity of
the instance checking problem in the description logic SHIQ, which extends ALC with
transitive roles, role hierarchies, inverse roles and number restrictions, is coNP-complete.

It is interesting from both the theoretical and practical points of view to find and study
fragments of DLs with tractable (PTime) data complexity. In this work, we consider two
problems:
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– The first problem is to identify classes of R, T , A, C such that the instance checking
problem (R, T ,A) |= C(a) has PTime data complexity.

– Using a restricted language to specify a class of allowed R, T , A, C, let
InstanceChecking(R, T ,A) denote the set of C(a) such that (R, T ,A) |= C(a).

The second problem is to approximate the set InstanceChecking(R, T ,A) by a subset
P(R, T ,A) such that checking whether C(a) ∈ P(R, T ,A) can be done in polynomial
time in the size of A.

Checking whether C(a) ∈ P(R, T ,A) is then called a weakening of the check-
ing C(a) ∈ InstanceChecking(R, T ,A). For short, in that case we also say that
P is a weakening of InstanceChecking. Amongst two weakenings P and P′ of
InstanceChecking, the first one is better than the second one if P(R, T ,A) ⊇
P′(R, T ,A) for every R, T , A allowed by the restricted language.

A natural approach to the mentioned problems is to consider Horn fragments of DLs.
Several researchers have introduced and studied different Horn fragments of DLs [16, 4,
1, 20, 5, 22, 24, 37]. In this work, we define and study the general Horn fragment of DLs
that extend ALC with a regular RBox.

This paper is structured as follows. In Section 2 we recall notation and semantics
of the description logic ALC, and define regular DLs and their general Horn fragment.
Having basic definitions, in Section 3 we give an overview of the results of this work.
The formulations of our results in the overview are introductory. They use a few no-
tions that are formally defined in the latter sections. In Section 4 we discuss related
work. In Section 5 we present several examples demonstrating the potential of the gen-
eral Horn fragment of regular DLs in real-world applications. The technical part of this
work consists of Sections 6, 7 and 8. In Section 6 we introduce pseudo-interpretations.
In Sections 7 we present an algorithm for constructing a least pseudo-model of a given
deterministic Horn knowledge base in a given regular DL and analyze its data complex-
ity. In Section 8 we provide characterizations of such least pseudo-models and present
related results involving the instance checking problem. Concluding remarks are given in
Section 9.

2 Preliminaries

2.1 Notation and Semantics of ALC

The basic description logic ALC is a notational variant of the multimodal logic K(n).
The notations change as follows: primitive propositions are called atomic concepts, the
connectives ∧, ∨, →, ↔ are written respectively as u, t, v,

.
=, and formulas of the form

2iϕ or 3iϕ are written respectively as ∀Ri.ϕ and ∃Ri.ϕ. In the DL literature, ¬, u,
t, ∀, ∃ are traditionally called concept constructors, while v and

.
= are used only in

terminological axioms and cannot be nested. On the one hand, it is intuitive to not call
a general concept inclusion C v D a concept. But on the other hand, if “concept” is
understood as a set of objects (in an interpretation), then C v D can be treated as a
“concept”. Besides, one may prefer to shorten an axiom of the form > v C to C and treat
it as a global assumption. In this work, instead of the terms “concept”, “terminological
axiom”, “general concept inclusion”, we tend to use only one term “formula”.
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Definition 2.1. In the primitive language of ALC, formulas are defined using the fol-
lowing BNF grammar:

C ::= > | A | ¬C | C u C | C t C | C v C | C .
= C | ∀R.C | ∃R.C

where A denotes an atomic concept and R denotes a role name. C

By this definition, a formula may contain nested occurrences of v and
.
=. We will use

letters like A, B to denote atomic concepts, and letters like C, D to denote formulas.

Definition 2.2. An interpretation I = 〈∆I , ·I〉 consists of a non-empty set ∆I , the
domain of I, and a function ·I , the interpretation function of I, that maps every atomic
concept to a subset of ∆I and every role name to a subset of ∆I ×∆I . C

The interpretation function is extended to interpret every formula as follows:

>I = ∆I

(¬C)I = ∆I \ CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(C v D)I = (¬C tD)I

(C
.
= D)I = ((C v D) u (D v C))I

(∀R.C)I = {x ∈ ∆I | ∀y.(x, y) ∈ RI implies y ∈ CI}
(∃R.C)I = {x ∈ ∆I | ∃y.(x, y) ∈ RI and y ∈ CI}.

Using the notations of modal logic, where ∆I is treated as a set of possible worlds
and RI is treated as an accessibility relation, we also write I, x |= C to denote x ∈ CI .

Definition 2.3. A TBox is a finite set of formulas. An interpretation I validates a
formula C if CI = ∆I . An interpretation I is a model of a TBox T if I validates all
C ∈ T . C

We use letters like a and b to denote individuals.

Definition 2.4. An ABox is a finite set of assertions of the formA(a) (concept assertion)
or R(a, b) (role assertion). An interpretation I, which additionally maps every individual
a to an element aI ∈ ∆I , is a model of an ABox A iff aI ∈ AI (resp. (aI , bI) ∈ RI)
holds for every assertion A(a) (resp. R(a, b)) of A. C

In [20], an ABox as defined above is said to be extensionally reduced.
We will write I |= C(a) to denote I, aI |= C (which means aI ∈ CI).

2.2 Regular Description Logics

Definition 2.5. A (context-free) RBox is a finite set of role axioms of the form

Rs1 ◦ . . . ◦Rsk v Rt

where k ≥ 0 and the left hand side stands for the identity relation if k = 0 [19, 1, 20]. An
interpretation I is a model of an RBox R iff RIs1 ◦ . . . ◦ R

I
sk
⊆ RIt for every role axiom

Rs1 ◦ . . . ◦Rsk v Rt of R. C
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We say that Rs1 ◦ · · · ◦Rsk v Rt is a consequence of an RBox R if every model I of
R is also a model of the role axiom (i.e. RIs1 ◦ . . . ◦R

I
sk
⊆ RIt ).

Definition 2.6. A knowledge base is a triple (R, T ,A) consisting of an RBox R, a TBox
T and an ABox A. We say that I is a model of a knowledge base (R, T ,A) if it is a
model of all R, T , A. An individual a is an instance of a formula C (understood as a
“concept”) w.r.t. (R, T ,A), write (R, T ,A) |= C(a), if I |= C(a) holds for every model
I of (R, T ,A). C

From now on, we assume that role names are of the form Rt for t ∈ IND, where
IND is a fixed finite set of indices. A role axiom Rs1 ◦ . . . ◦ Rsk v Rt corresponds to
the grammar rule t → s1 . . . sk. An RBox R thus corresponds to a semi-Thue system,
denoted by G(R), which is like a context free grammar, but it has no designated start
symbol and there is no distinction between terminal and non-terminal symbols.

Definition 2.7. If for every t ∈ IND, the set of words over alphabet IND that are
derivable from t using G(R) is a regular language and recognized by a finite automaton
At, then we call R a regular RBox and (At)t∈IND the automata specifying R. C

We assume that the automata specifying R are given explicitly because checking
whether a context-free grammar generates a regular language is undecidable (see, e.g.,
[25]). (In [8], a “regular grammar logic” is specified either by a left/right linear grammar
or by finite automata. Note that every left/right linear grammar can be transformed in
polynomial time to an equivalent finite automaton.)

Recall that a finite automaton A is a tuple 〈Σ,Q, I, δ, F 〉, where Σ is the alphabet
(in our case, Σ = IND), Q is a finite set of states, I ⊆ Q is the set of initial states,
δ ⊆ Q × Σ × Q is the transition relation, and F ⊆ Q is the set of accepting states. A
run of A on a word s1 . . . sk is a finite sequence of states q0, q1, . . . , qk such that q0 ∈ I
and δ(qi−1, si, qi) holds for every 1 ≤ i ≤ k. It is an accepting run if qk ∈ F . We say
that A accepts word w if there exists an accepting run of A on w. The set of all words
accepted/recognized by A is denoted by L(A).

Definition 2.8. By Reg we denote the class of description logics that extend ALC with
a regular RBox. Each regular RBox identifies a logic of Reg, which is called a regular
(Reg) DL. We sometimes use Reg also to refer to an arbitrary regular DL. C

2.3 The General Horn Fragment of Reg

Definition 2.9.

– A formula C is called a positive formula if it does not contain ¬, v,
.
=, and is called

a negative formula if it is ¬D for some positive formula D.
– Non-negative Horn formulas are defined by the following BNF grammar, where A

denotes an atomic concept and D denotes a positive formula:

C ::= > | A | D v C | C u C | ∀Rt.C | ∃Rt.C

– A Horn formula is either a non-negative Horn formula or a negative formula.
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– A program clause is a non-negative Horn formula.
– A positive logic program is a finite set of program clauses.
– A knowledge base (R, T ,A) is called a Horn knowledge base in Reg if R is a regular

RBox and T is a positive logic program.1 C

Definition 2.10. A premise of a program clause C is a formula D such that D v D′

is a subformula of C for some D′. A conclusion of a program clause C is a formula D
without v such that either D = C or D′ v D is a subformula of C for some D′. C

For example, the program clause (AuB) v ∃R.((A′ v A′′)u (B′ v B′′)) has premises
A uB, A′, B′, and conclusions A′′, B′′.

Concerning the instance checking problem (R, T ,A) |= C(a), the general Horn frag-
ment of Reg consists of positive logic programs used for T and positive formulas used
for C and regular RBoxes used for R.

3 An Overview of the Results of This Work

In DLs roles are not required to satisfy the seriality condition ∀x∃yRi(x, y). As shown
in [27, 28], non-seriality causes a problem of nondeterminism for modal logics.2 For the
same reason, the data complexity of the instance checking problem for the general Horn
fragment of ALC and Reg is coNP-hard (see Appendix A for the proof).

In this work, we first study approximating the instance checking problem (R, T ,A) |=
C(a) for a Horn knowledge base (R, T ,A) inReg and a positive formula C by a weakening
P such that checking whether C(a) ∈ P(R, T ,A) can be done in polynomial time in the
size of A. We then identify the cases when the approximation is exact.

We extend the language with the constructor ∀∃, which creates a formula ∀∃Rt.C from
a role name Rt and a formula C. We provide two semantics for dealing with ∀∃Rt.C,
where the second one depends on a given RBox R.

Definition 3.1. Let

Sem1(∀∃Rt.C) = {∀Rt.C,∃Rt.>}

Sem2,R(∀∃Rt.C) = {∀Rt.C} ∪ {∀Rs1 . . . ∀Rsi−1∃Rsi .> |
Rs1 ◦ · · · ◦Rsk v Rt is a consequence of R and 1 ≤ i ≤ k}.

Given a model I of an RBox R, x ∈ ∆I and s ∈ {Sem1,Sem2,R}, define I, x |=s C

– in the usual way (as in modal logic) if C is not of the form ∀∃Rt.D, and that
– I, x |=s ∀∃Rt.D if I, x |=s D

′ for every D′ ∈ s(∀∃Rt.D). C

Note that Sem2,R(∀∃Rt.C) may be an infinite set.
From now on, by s we denote either Sem1 or Sem2,R.

1 Note that negative formulas are not allowed in a Horn knowledge base because they can play only the
role of constraints to detect inconsistency of the knowledge base itself.

2 Every positive logic program has a least KD-model, but may not have any least K -model [27]. The
complexity of checking satisfiability of a set of modal Horn formulas with modal depth bounded by
k ≥ 2 in KD is PTime-complete [27] and in K is NP-complete [28].
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Example 3.2. If R is empty (the case of ALC) then Rt v Rt for t ∈ IND are the only
consequences of R and Sem2,R(∀∃Rt.C) = Sem1(∀∃Rt.C) ≡ {∀Rt.C, ∃Rt.C}. If R con-
sists only of role axioms of the form Rs ◦Rs v Rs and Rt ◦Rt v Rt is one of them, then
Sem2,R(∀∃Rt.C) ≡ {∀Rt.C,∃Rt.>,∀Rt.∃Rt.>}.

Note: The notions of “program clause”, “positive logic program” and “Horn knowledge
base” will always be understood as the ones defined in the primitive language (i.e. without
the constructor ∀∃).

Definition 3.3.

– A positive formula is still defined to be a formula without ¬, v,
.
=, but from now

on, we will distinguish three kinds of positive formulas: positive formulas (possibly
with both ∀ and ∀∃), positive formulas without ∀∃, and positive formulas without ∀.
Formulas of the last kind are called positive allsome-formulas. Note that they may
contain ∃ and ∀∃.

– If C is the formula obtained from a program clause C ′ by replacing every ∀ in the
premises by ∀∃ then we call C a deterministic program clause and the deterministic
version of C ′.

– A deterministic positive logic program is a finite set of deterministic program clauses.
If a deterministic positive logic program T is obtained from a positive logic program
T ′ by replacing every ∀ in the premises of the program clauses of T ′ by ∀∃ then we
call T the deterministic version of T ′.

– We call (R, T ,A) a deterministic Horn knowledge base inReg if T is the deterministic
version of T ′ and (R, T ′,A) is a Horn knowledge base in Reg. C

Definition 3.4. We say that an interpretation I is an s-model of a deterministic Horn
knowledge base (R, T ,A) in Reg if I is a model of R and A, and for every x ∈ ∆I and
C ∈ T , we have that I, x |=s C. We write (R, T ,A) |=s C(a) to denote that, for every
s-model I of (R, T ,A), it holds that I, aI |=s C. C

Definition 3.5. An interpretation I is said to be less than or equal to I ′ if for any
positive formula C without ∀∃ and for any individual a, I |= C(a) implies I ′ |= C(a).
An interpretation I is said to be a least model of a Horn knowledge base (R, T ,A) if I
is a model (R, T ,A) and I is less than or equal to any model I ′ of (R, T ,A). C

If I is a least model of (R, T ,A) then, for any positive formula C without ∀∃ and for
any individual a, (R, T ,A) |= C(a) is equivalent to I |= C(a). Unfortunately, similarly
to the case of the non-serial modal logic K , one cannot hope for the existence of such
a model I in the general case. However, we can talk about least s-pseudo-models of
deterministic Horn knowledge bases.

Note: The notions of least s-pseudo-model and I |=s C(a) for an s-pseudo-model I will
be defined in Section 6. We are now interested only in their properties related to the
instance checking problem.

In this work, we present an algorithm that, given s ∈ {Sem1, Sem2,R} and a determin-
istic Horn knowledge base (R, T ,A) in Reg, constructs a finite least s-pseudo-model I of
(R, T ,A). The algorithm runs in polynomial time and returns I with a polynomial size
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in the size of A. Moreover, checking I |=s C(a) can be done in polynomial time in the
size of I and C. Some important properties of the constructed structures are illustrated
in Figure 1.

As shown by the first diagram of the figure, given a Horn knowledge base
(R, T ′,A) in Reg and a positive formula C without ∀∃, for T being the determin-
istic version of T ′ and I1 (resp. I2) being a least Sem1-pseudo-model (resp. Sem2,R-
pseudo-model) of (R, T ,A), all of the four checking problems (R, T ,A) |=Sem1 C(a),
(R, T ,A) |=Sem2,R C(a), I1 |=Sem1 C(a), I2 |=Sem2,R C(a) are weakenings of the instance
checking problem (R, T ′,A) |= C(a). The first two weakenings cannot directly be de-
cided, while the two remaining ones can be decided with PTime data complexity. The
weakening using I1 is better than the weakening using I2. We introduce Sem2,R and the
related structure I2 due to the nice theoretical property that, for any positive allsome-
formula C,

(R, T ,A) |=Sem2,R C(a)⇔ I2 |=Sem2,R C(a).

For the case associated with the third diagram of the figure, we also have that

(R, T ,A) |=Sem1 C(a)⇔ I1 |=Sem1 C(a).

Given a Horn knowledge base (R, T ′,A) in Reg and a positive formula C without ∀∃,
for T being the deterministic version of T ′ and I1 being a least Sem1-pseudo-model of
(R, T ,A), the approximation of checking (R, T ′,A) |= C(a) by checking I1 |=Sem1 C(a)
is exact when, for every t ∈ IND (Corollary 8.5):

– either the constructor ∀Rt.D does not occur in C and the premises of the program
clauses of T ′

– or ∃Rs.> ∈ T ′ for every s ∈ IND occurring in some word accepted by At

– or L(At) = {t} and the constructor ∀Rt.D may occur in C and the premises of the
program clauses of T ′ only in the form (∀Rt.D u ∃Rt.D

′) for some arbitrary D′.

4 Related Work

Reg is a notational variant of regular grammar logics [3, 8, 9, 15] and relates to propo-
sitional dynamic logic (PDL) [13, 36, 17] and the description logic ALCreg [6] (which
uses regular expressions for role constructions). The computational methods for regular
grammar logics [3, 8, 9, 15] can easily be extended to deal with global assumptions for
automated reasoning in Reg. The logic Reg differs from ALCreg in the same way as reg-
ular grammar logics differ from PDL. In general, dealing with ∃R.C is easier when R is
a role name (the case of Reg) than when R is a role construction with the star operator
(the case of ALCreg). On the other hand, role expressions in ALCreg are “self-contained”,
while roles in Reg depend on an “external” RBox.

In [19], Horrocks and Sattler introduced “acyclic generalized RBoxes”, and in [18],
Horrocks et al. introduced an extended notion called “acyclic regular RBoxes”. It can
be shown for the case without inverse roles that both the notions of “acyclic generalized
RBox” and “acyclic regular RBoxes” are strictly less general than the notion of “regular
RBox”. The notion of “regular RBox” used by Krötzsch et al. in [24] is the same as
the notion of “acyclic generalized RBox” and hence different from our notion of “regular
RBox”.
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(R, T ′,A) : a Horn knowledge base in Reg
T : the deterministic version of T ′
I1 : a least Sem1-pseudo-model of (R, T ,A)
I2 : a least Sem2,R-pseudo-model of (R, T ,A)
C : a positive formula (possibly with ∀ and ∀∃)
C′ : the formula obtained from C by replacing every subformula of the form ∀∃Rt.D by

(∀Rt.D u ∃Rt.D)

By Lemma 6.10:

(R, T ′,A) |= C′(a)

⇑

(R, T ,A) |=Sem1 C(a) ⇐ I1 |=Sem1 C(a)

⇑ ⇑

(R, T ,A) |=Sem2,R C(a) ⇐ I2 |=Sem2,R C(a)

and when C is a positive allsome-formula (by Theorem 8.1):

(R, T ′,A) |= C′(a)

⇑

(R, T ,A) |=Sem1 C(a) ⇐ I1 |=Sem1 C(a)

⇑ ⇑

(R, T ,A) |=Sem2,R C(a) ⇔ I2 |=Sem2,R C(a)

By Theorem 8.4, if for every t ∈ IND,

– either the constructor ∀Rt.D does not occur in C′ and the premises of the program
clauses of T ′

– or ∃Rs.> ∈ T ′ for every s ∈ IND occurring in some word accepted by At

– or L(At) = {t} and the constructor ∀Rt.D may occur in C′ and the premises of the
program clauses of T ′ only in the form (∀Rt.D u ∃Rt.D

′) for some arbitrary D′,

then

(R, T ′,A) |= C′(a)

m

(R, T ,A) |=Sem1 C(a) ⇔ I1 |=Sem1 C(a)

m m

(R, T ,A) |=Sem2,R C(a) ⇔ I2 |=Sem2,R C(a)

Fig. 1. Characterizations of least pseudo-models.
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A number of Horn fragments of DLs with PTime data complexity (for instance check-
ing or conjunctive query answering – a problem more general than instance checking) have
been studied in [16, 20, 5, 22, 24, 37]. The combined complexities of Horn fragments of DLs
were studied, amongst others, in [23]. Some Horn fragments of DLs without ABoxes that
have PTime complexity have also been studied in [4, 1]. We give here some more details:

– In [16], Grosof et al. introduced the description Horn logic (DHL), which is a re-
stricted fragment of DL, and studied it through a transformation to classical Horn
logic. A DHL program consists of Horn clauses specifying (relations between) con-
cepts, (relations between) roles, and instances of concepts and roles. Inverse roles and
transitive roles are allowed in DHL programs. In order to make the transformation
possible, the constructor ∀R.C is disallowed in premises and the constructor ∃R.C is
disallowed in conclusions of DHL program clauses.

– In [20], Hustadt et al. introduced a Horn fragment of the description logic SHIQ,
which is called Horn-SHIQ, and studied it using a transformation to Datalog. In
comparison with DHL, Horn-SHIQ also disallows the constructor ∀R.C in premises
of program clauses and goals (by a goal we call a positive formula C given for the
instance checking problem (R, T ,A) |= C(a)), but it allows the constructor ∃R.C to
appear in conclusions of program clauses. There are some additional restrictions for
Horn-SHIQ, for example:
• The constructor ∀R.C may occur in conclusions of program clauses only when R

is a simple role (i.e., R and sub-roles of R cannot be transitive).
• Despite that number restrictions of the form ≥ nR.C or ≤ 1R may occur in

conclusions of program clauses, the constructor ≤ nR.C for any n and the con-
structor ≥ nR.C for n ≥ 2 cannot occur in premises of program clauses. (Note
that ≥ 1R.C is equiv to ∃R.C.) Thus, the usefulness of the number restriction
constructors in Horn-SHIQ programs is questionable.

– In [5], Calvanese et al. also studied data complexity of query answering in a family
called DL-Lite of DLs. To obtain low data complexity they adopted strong restrictions
for the form of Horn clauses: for example, both the constructors ∀R.C and ∃R.C are
not allowed in the left hand side of v, and the constructor ∀R.C is not allowed in the
right hand side of v.

– The EL family of DLs with PTime data complexity studied in [4, 1, 22, 24, 37] com-
pletely disallows the constructor ∀R.C in program clauses.

The logic Reg considered in this work differs from the DLs with PTime data com-
plexity considered in [16, 20, 5, 24, 37] in that, our notion of regular RBox is more general
than the notion of RBox of transitive roles and role hierarchies used in [16, 20, 5, 37] and
the notion of acyclic generalized RBox used in [24] (and called there “regular RBox”),
but on the other hand, in comparison with DHL and Horn-SHIQ, Reg does not deal
with inverse roles. However, the special feature of this work is that we try to allow the
constructor ∀R.C or its stronger form ∀∃R.C in premises of program clauses and goals,
while all of DHL [16], Horn-SHIQ [20], DL-Lite [5] and EL [22, 24, 37] disallow the con-
structor ∀R.C (and do not use ∀∃R.C) in premises of program clauses and goals. Besides,
this work uses a direct approach, while [16, 20] use the translation approach.

For the connection with classical logic programming, note that the functional transla-
tion [7] and the semi-functional translation [35] do not work for the general Horn fragment
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of Reg because Reg is not “serial” (i.e. neither ∃Rt.> nor ∀x∃y Rt(x, y) is assumed), and
the relational translation when applied to a positive logic program or a deterministic
positive logic program in Reg does not produce a Datalog program (because resulting
clauses may contain Skolem function symbols and more than one positive literal due to
formulas of the form ∀R.C or ∀∃R.C in premises of the original program clauses).

The “allsome” constructor ∀∃R.C w.r.t. Sem1 was introduced in [4]. That work, how-
ever, does not deal with the data complexity of the instance checking problem.

This work is a continuation of our previous works [29, 31, 34] and is an extension of our
workshop paper [33] and poster [32]. In [29], we introduced and studied the “deterministic
Horn fragment of ALC”, and in [31] the “deterministic Horn fragment of test-free PDL”.3

In [34], we studied the problem of constructing finite least Kripke models for positive
logic programs in serial regular grammar logics. The semantics Sem1 for Reg follows [29],
while the semantics Sem2,R for Reg follows [31]. This work differs from [29, 31, 34] in
an important aspect that it deals with ABoxes and the data complexity of the instance
checking problem. Furthermore, note that:

– The logic considered in [29] is ALC with R = ∅.
– The modal logics studied in [34] are serial, while Reg is non-serial.

– The works [31, 34] deal with logic programs treated as local assumptions (for the
actual world) but not as a TBox of global assumptions (for all individuals).

– Regular RBoxes are different from regular expressions of test-free PDL used in [31]
and make the proofs of this paper more complicated than the ones of [31].

In the recent works [11, 12], together with Dunin-Kȩplicz and Sza las we studied the
data complexity of the Horn fragment of serial PDL. The method used in [11, 12] is
an adaptation of our method to serial PDL. Also note that serial PDL is substantially
different from (non-serial) Reg.

5 Examples of Application

5.1 Example: Movability of Objects

In this subsection, we present an example about movability of objects, which is a mod-
ified version of the one given in [11]. To reason about similarities between objects as in
applications of rough sets we can assume that every object is similar to some object (e.g.
to itself).

Consider the following scenario:

Two robots, r1 and r2, have the goal to move objects from one place to another.
Each robot is able to move objects of a specific signature,4 and together they
might be able to move objects of a combined signature. Robots are working inde-
pendently, but sometimes have to cooperate to achieve their goals.

To design such robots one has to make a number of decisions as described below.

3 In [31] we use the term “serial positive formula” and in [29] we use the term “(modal-)deterministic
positive concept” instead of “positive allsome-formula”.

4 For example, dependent on weight, size and type of surface.
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We assume that the signature of movable objects for each robot is given by its speci-
fication together with a similarity relation defining the range of movable objects. Assume
the following specification:

spec1
def
= (light u smooth) t (heavy u rough) − for robot r1 (1)

spec2
def
= small tmedium − for robot r2. (2)

Movable objects are then specified by

speci v movablei (3)

where i ∈ {1, 2} and movablei is true for objects that can be moved by ri.
The idea is that all objects similar to movable ones are movable too.5 We use R1

and R2 as roles representing the similarity relations reflecting perceptual capabilities
of robots r1 and r2, respectively (for a discussion of such similarity relations based on
various sensor models see [10]). That is, a role assertion Ri(o, o

′) means that object o′ is
perceived similar to object o by robot ri. Now, in addition to (3), movable objects are
characterized by

∃Ri.speci v movablei. (4)

Observe that in general it is impossible to automatically derive combined signatures
that specify what robots can move together. Therefore, we introduce spec3 and R3 as a
specification of such joint capabilities. An example of spec3 can be given by

spec3
def
= large u rough. (5)

We shall assume that

R1 v R3 (6)

R2 v R3 (7)

R1 ◦R2 v R3 (8)

R2 ◦R1 v R3. (9)

Of course, one can give another specification for R3.
Objects movable by robots working together are then defined by

spec3 t ∃R3.spec3 v movable by two. (10)

Let T be the TBox consisting of (3), (4), ∃Ri.> for i ∈ {1, 2}, and (10). Thus, T is
a deterministic positive logic program consisting of ∃R1.>, ∃R2.>, and

(light u smooth) t (heavy u rough) vmovable1
∃R1.((light u smooth) t (heavy u rough)) vmovable1

small tmedium vmovable2
∃R2.(small tmedium) vmovable2

(large u rough) t ∃R3.(large u rough) vmovable by two.
5 This is a very natural and quite powerful technique, allowing one to express the inheritance of particular

properties of objects by similar objects.
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Let R be the RBox consisting of role axioms (6)-(9). Clearly, it is a regular RBox.
Note that every model of R and T is also a model of ∃R3.>. Let A be an arbitrary
ABox. Thus (R, T ,A) is a deterministic Horn knowledge base. According to the declared
results, for every positive formula C without ∀∃ and for every individual a, we have that
(R, T ,A) |= C(a) iff I1 |=Sem1 C(a), where I1 is a least Sem1-pseudo-model of (R, T ,A).

5.2 Example: Web Pages

There are domains for which the assumption that ∃Rt.> ∈ T ′ for all t ∈ IND is not
very natural but somehow acceptable. For example, despite that in general there are web
pages without outgoing links, it is not too restrictive to assume that every web page has
an outgoing link (e.g. to itself). In this subsection, we present an example about web
pages. It is constructed around the atomic concept interesting.

Let R be the regular RBox consisting of the following role axioms:

link v path
link ◦ path v path.

This RBox “defines” path to be the transitive closure of link. It is a regular RBox
specified by the following finite automata, where IND = {l, p}, with Rl standing for link
and Rp standing for path:

Al = 〈IND, {1, 2}, {1}, {(1, l, 2)}, {2}〉
Ap = 〈IND, {1, 2}, {1}, {(1, l, 1), (1, l, 2), (1, p, 2)}, {2}〉.

Let T ′ be the TBox consisting of the following program clauses:

perfect v interesting u ∀path.interesting (11)

interesting u ∀path.interesting v perfect (12)

interesting t ∀ link.interesting v worth surfing (13)

∃path.interesting v has a path to an interesting page (14)

has a path to an interesting page v ∃path.interesting. (15)

Note that T ′ is equivalent to the TBox consisting of the following:

perfect
.
= (interesting u ∀path.interesting)

interesting t ∀ link.interesting v worth surfing

has a path to an interesting page
.
= ∃path.interesting

Let A be the ABox specified by the concept assertions perfect(b),
has a path to an interesting page(g) and the following role assertions of link:

a

����������

��

b

����������

��=======

c

����������
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����������
f

��========

g h i

kk



Horn Knowledge Bases in Regular Description Logics with PTime Data Complexity 13

It can be seen that the used atomic concepts have the following instances w.r.t. the
Horn knowledge base (R, T ′,A):

perfect, interesting,worth surfing : b, e, f, h, i

has a path to an interesting page : a, b, c, e, f, g, i

Note that h is an instance of perfect w.r.t. (R, T ′,A) due to the program clause (12),
but this clause does not reflect our intention. The deterministic version T of T ′ changes
the clauses (12) and (13) of T ′ to:

interesting u ∀∃path.interesting v perfect

interesting t ∀∃link.interesting v worth surfing

With this change, h is no longer an instance of perfect w.r.t. the deterministic Horn
knowledge base (R, T ,A), using any semantics s ∈ {Sem1, Sem2,R}.

For this example, approximating the checking problem (R, T ′,A) |= C(a) by
(R, T ,A) |=Sem1 C(a) is justifiable because T better reflects our intention than T ′. But
there may still be a gap between (R, T ,A) |=Sem1 C(a) and I1 |=Sem1 C(a), where I1 is
a least Sem1-pseudo-model of (R, T ,A).

Let T ′∗ be T ′ extended with ∃link.>. Consider the situation when T ′∗ is used instead
of T ′ (i.e. when every web page is assumed to contain at least one link). Let T∗ be the
deterministic version of T ′∗ . Since link v path, every model of R and T ′∗ is also a model
of ∃path.>, and we can thus assume that ∃path.> ∈ T ′∗ . Let I∗ be a least Sem1-pseudo-
model of (R, T∗,A). Then, according to the declared results, for every positive formula
C without ∀∃ and for every individual a, (R, T ′∗ ,A) |= C(a) iff I∗ |=Sem1 C(a). That is,
in this case, the approximation is exact.

5.3 Example: Epistemic Reasoning

Regular description logics extended with the seriality axioms ∃Rt.> for all t ∈ IND
can be used for epistemic reasoning. For this purpose, individuals and elements of the
domain of an interpretation are used to denote possible worlds, and roles are used to
denote accessibility relations between possible worlds of agents and groups of agents.
Each t ∈ IND represents an agent or a group of agents. If t is an agent then a formula
∀Rt.C states that in the current world the agent believes in C (the formal semantics
of the formula is that the property C holds for all possible worlds accessible from the
current world via the accessibility relation of agent t). If t is a group of agents then the
formula ∀Rt.C means that the group “commonly believes” in C.6 The seriality axiom
∃Rt.> is equivalent to ∀Rt.C v ¬∀Rt.¬C, which states that if t believes in C then it
does not believe in ¬C. Using Reg extended with the seriality axioms as an epistemic
logic, individuals and ABoxes do not anymore play an important role in complexity issues
because usually only the actual world is explicitly used as an individual.

In this subsection, we formalize the wise men puzzle using the general Horn fragment
of Reg. This demonstrates the usefulness of the fragment for epistemic reasoning. The
puzzle is a famous benchmark of AI introduced by McCarthy [26]. It can be stated as
follows (cf. [21]):

6 Not all properties of common beliefs are expressible in Reg, but we need only some properties of
common beliefs for the example considered in this subsection.
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A king wishes to know whether his three advisors, denoted by σ1, σ2, σ3, are as
wise as they claim to be. Three chairs are lined up, all facing the same direction,
with one behind the other. The wise men are instructed to sit down in the order
σ1, σ2, σ3 with σ1 on front. Each of the men can see the backs of the men sitting
before them (e.g. σ3 can see σ2 and σ1). The king informs the wise men that he
has three cards, all of which are either black or white, at least one of which is
white. He places one card, face up, behind each of the three wise men, explaining
that each wise man must determine the color of his own card. Each wise man
must announce the color of his own card as soon as he knows what it is. All know
that this will happen. The room is silent; then, after a while, wise man σ1 says
“My card is white!”.

We use IND = {1, 2, 3, g}. For t ∈ {1, 2, 3}, let ∀Rt.C stand for “the wise man σt
believes in C”, whitet stand for “the card of σt is white”, and blackt stand for “the
card of σt is black”. Let g denote the group {σ1, σ2, σ3} and let ∀Rg.C state that C is
a “common belief” of the group g. Let R be the RBox consisting of the following role
axioms:

Rt v Rg − for t ∈ {1, 2, 3}
Rt ◦Rt v Rt − for t ∈ {1, 2, 3, g}.

This RBox is regular and specified by the following finite automata:

At = 〈IND, {1, 2}, {1}, {(1, t, 1), (1, t, 2)}, {2}〉 for t ∈ {1, 2, 3}

Ag = 〈IND, {1, 2}, {1}, {(1, t, 1), (1, t, 2) | t ∈ {1, 2, 3, g}}, {2}〉.

The wise men puzzle can be formalized as follows (cf. [30, 34]).

It is a common belief of the group that if y sits behind x then x’s card is white
whenever y considers this possible:

∀Rg.(∃R2.white1 v white1) (16)

∀Rg.(∃R3.white1 v white1) (17)

∀Rg.(∃R3.white2 v white2) (18)

The following clauses are “dual” to the above ones:

∀Rg.(black1 v ∀R2.black1) (19)

∀Rg.(black1 v ∀R3.black1) (20)

∀Rg.(black2 v ∀R3.black2) (21)

It is a common belief of the group that at least one of the wise men has a white card:

∀Rg.(black2, black3 v white1) (22)

∀Rg.(black3, black1 v white2) (23)

∀Rg.(black1, black2 v white3) (24)

It is a common belief of the group that: each of σ2 and σ3 does not know the color
of his own card; in particular, each of the men considers that it is possible that his own
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card is black:

∀Rg.∃R2.black2 (25)

∀Rg.∃R3.black3 (26)

The formulas (16)-(24) are supposed to hold for every possible world, while the formu-
las (25) and (26) are only supposed to hold for the actual world. Since only extensionally
reduced ABoxes are allowed, we encode the conjunction of (25) and (26) by an atomic
concept A, and assume that our ABox A is {A(τ)}, where τ is the only individual, which
represents the actual world, and we treat the following formula as a global assumption:

A v ∀Rg.∃R2.black2 u ∀Rg.∃R3.black3 (27)

Let T be the deterministic positive logic program consisting of the formulas (16)-(24),
(27), and ∃Rt.> for t ∈ IND. Thus (R, T ,A) is a deterministic Horn knowledge base.

The goal is to check whether wise man σ1 believes that his card is white: that is,
whether (R, T ,A) |= (∀R1.white1)(τ). According to the declared results, this question
is equivalent to checking whether I1 |=Sem1 (∀R1.white1)(τ), where I1 is a least Sem1-
pseudo-model of (R, T ,A). It can be shown that the answer is affirmative.

5.4 Example: Formalizing a Search Problem

In this subsection, we formalize the missionaries and cannibals problem using the general
Horn fragment of Reg. The problem is well-known for courses of AI [38] and is stated as
follows:

Three missionaries and three cannibals must cross a river using a boat which can
carry at most two people, under the constraint that, for both banks, if there are
missionaries present on the bank, they cannot be outnumbered by cannibals (if
they were, the cannibals would eat the missionaries.) The boat cannot cross the
river by itself with no people on board.

For the considered problem, individuals and elements of the domain of an interpreta-
tion are used to denote states of the search space, and roles are used to denote actions.
We represent each state by a tuple (Mi, Cj , Bk), where

– i ∈ {0, 1, 2, 3}, j ∈ {0, 1, 2, 3}, k ∈ {1, 2},
– Mi means that there are i missionaries on the departure bank,

– Cj means that there are j cannibals on the departure bank,

– B1 means that the boat is at the departure bank,

– B2 means that the boat is at the arrival bank.

We use the following roles:

– Rmi,cj : the boat takes mi missionaries and cj cannibals to the other bank
(1 ≤ i+ j ≤ 2),

– Rmi : the boat takes mi missionaries (and possibly some cannibals) to the other bank
(0 ≤ i ≤ 2),
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– Rci : the boat takes ci cannibals (and possibly some missionaries) to the other bank
(0 ≤ i ≤ 2),

– Ra : the boat moves to the other bank (the subscript a stands for “action”),
– R+ : a nonempty sequence of moves of the boat between the banks.

Let R be the RBox consisting of the following role axioms:

Rmi,cj v Rmi

Rmi,cj v Rcj

Rmi v Ra

Rci v Ra

Ra v R+

Ra ◦R+ v R+

It can be seen that R is a regular RBox.
Let T be the deterministic positive logic program consisting of the following clauses:

B1 v ∀Ra.B2

B2 v ∀Ra.B1

B1 uMi v ∀Rmj .Mk for i ∈ {0, 1, 2, 3}, j ∈ {0, 1, 2}, i ≥ j, k = i− j
B2 uMi v ∀Rmj .Mk for i ∈ {0, 1, 2, 3}, j ∈ {0, 1, 2}, 3− i ≥ j, k = i+ j

B1 u Ci v ∀Rcj .Ck for i ∈ {0, 1, 2, 3}, j ∈ {0, 1, 2}, i ≥ j, k = i− j
B2 u Ci v ∀Rcj .Ck for i ∈ {0, 1, 2, 3}, j ∈ {0, 1, 2}, 3− i ≥ j, k = i+ j

B1 uMi u Cj v ∃Rmi′ ,cj′ .> for


i ∈ {0, 1, 2, 3}, i′ ∈ {0, 1, 2}, i ≥ i′,
j ∈ {0, 1, 2, 3}, j′ ∈ {0, 1, 2}, j ≥ j′,
(i− i′ = 0) ∨ (i− i′ ≥ j − j′),
(3− i+ i′ = 0) ∨ (3− i+ i′ ≥ 3− j + j′)

B2 uMi u Cj v ∃Rmi′ ,cj′ .> for


i ∈ {0, 1, 2, 3}, i′ ∈ {0, 1, 2}, 3− i ≥ i′,
j ∈ {0, 1, 2, 3}, j′ ∈ {0, 1, 2}, 3− j ≥ j′,
(3− i− i′ = 0) ∨ (3− i− i′ ≥ 3− j − j′),
(i+ i′ = 0) ∨ (i+ i′ ≥ j + j′)

Let s be an individual representing the initial state and let

A = {B1(s),M3(s), C3(s)}

Thus (R, T ,A) is a deterministic Horn knowledge base. The question is whether there
exists a solution for the problem, which is formalized as the problem of checking whether

(R, T ,A) |= (∃R+.(B2 uM0 u C0))(s)

According to the declared results, this problem is equivalent to checking whether

I1 |=Sem1 (∃R+.(B2 uM0 u C0))(s)

where I1 is a least Sem1-pseudo-model of (R, T ,A). It can be shown that the answer is
affirmative.
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Similarly as for epistemic reasoning, for formalizing search problems individuals and
ABoxes do not anymore play an important role in complexity issues because usually only
the initial state is explicitly used as an individual. The example, however, demonstrates
the expressiveness of the general Horn fragment of Reg.

5.5 Example: Constructivism

Let T ′ be the positive logic program consisting of the following clauses:

∃has child .> v parent (28)

∀has child .(doctor t lawyer) v happy parent (29)

all children are lawyers v ∀has child .lawyer (30)

Let R = ∅ and

A = {has child(Jane, Peter), has child(Jane, Christ),

all children are lawyers(Jane)}

Consider the Horn knowledge base (R, T ′,A). As expected, we have that

(R, T ′,A) |= happy parent(Jane)

But unexpectedly, we also have that

(R, T ′,A) |= (parent t happy parent)(Peter)

(R, T ′,A) |= (parent t happy parent)(Christ)

The reason is that the premise of the program clause (29) is not “constructive”. In other
words, the instance ∃has child .> t ∀has child .¬> of the “law of excluded middle” holds
for every individual a. If a satisfies ∃has child .> then it is an instance of parent ; else it
satisfies ∀has child .¬>, and therefore satisfies any formula ∀has child .C, and hence is an
instance of happy parent (by (29)).

The program clause (29) should be changed to

parent u ∀has child .(doctor t lawyer) v happy parent

or equivalently w.r.t. Sem1, given (28), to

∀∃has child .(doctor t lawyer) v happy parent (31)

which is the deterministic version of (29).
The deterministic version of T ′ is T consisting of the program clauses (28), (30), (31).

According to the declared results (the third case of the last diagram of Figure 1), for any
positive formula C possibly with the constructor ∀∃ but without ∀ and for any individual
a, (R, T ,A) |=Sem1 C(a) iff I1 |=Sem1 C(a), where I1 is a least Sem1-pseudo-model of
(R, T ,A).

The above example shows that, in premises of program clauses and goals (the positive
formulas given for instance checking), the constructor ∀∃ is more “constructive” than ∀.
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6 Pseudo-Interpretations

Definition 6.1. A pseudo-interpretation is a tuple I = 〈∆,O, C, E ,U〉, where ∆ is a
non-empty set representing the domain, O maps every individual to an element of ∆,
C maps every atomic concept to a subset of ∆, and E and U map every role name to a
subset of ∆ ×∆, with the property that E(Rt) ⊆ U(Rt) for every role name Rt. By aI

we denote O(a). C

The function E is used to deal with the (existential) constructor ∃, while U is used
to deal with the (universal) constructor ∀. The intuition behind the mappings E and U
is as follows: every edge created to satisfy a formula of the form ∃Rt.C is included into
E(Rt), but we also want to use additional edges for Rt; the set U(Rt) is the set E(Rt)
plus the additional edges created for Rt, which causes E(Rt) ⊆ U(Rt).

A pseudo-interpretation 〈∆,O, C, E ,U〉 can be treated as an interpretation if E = U .
Conversely, every interpretation can be treated as a pseudo-interpretation.

Definition 6.2. A pseudo-interpretation I = 〈∆,O, C, E ,U〉 is a pseudo-model of an
RBox R iff E(Rs1) ◦ . . . ◦ E(Rsk) ⊆ E(Rt) and U(Rs1) ◦ . . . ◦ U(Rsk) ⊆ U(Rt) for every
role axiom Rs1 ◦ . . . ◦ Rsk v Rt of R. It is a pseudo-model of an ABox A iff aI ∈ C(A)
for every A(a) ∈ A and (aI , bI) ∈ E(R) for every R(a, b) ∈ A. C

Given a pseudo-model I = 〈∆,O, C, E ,U〉 of an RBox R, an element x ∈ ∆, and a
formula C which is either a positive formula (possibly with ∀ and ∀∃) or a deterministic
program clause, define I, x |=s C as follows:

I, x |=s A iff x ∈ C(A)
I, x |=s C uD iff I, x |=s C and I, x |=s D
I, x |=s C tD iff I, x |=s C or I, x |=s D
I, x |=s C v D iff I, x 2s C or I, x |=s D
I, x |=s ∃Rt.C iff ∃y.(E(Rt)(x, y) ∧ I, y |=s C)
I, x |=s ∀Rt.C iff ∀y.(U(Rt)(x, y)→ I, y |=s C)
I, x |=s ∀∃Rt.C iff I, x |=s D for every D ∈ s(∀∃Rt.C)

For the notion of s( ), see Definition 3.1.
We write I |=s C(a) for I, aI |=s C.

Definition 6.3. We say that a pseudo-interpretation I with domain ∆ validates a for-
mula C w.r.t. s if I, x |=s C for every x ∈ ∆. For a deterministic positive logic program
T , we say that I is an s-pseudo-model of T if I validates all formulas of T w.r.t. s. C

Definition 6.4. A pseudo-interpretation is a s-pseudo-model of a deterministic Horn
knowledge base (R, T ,A) if it is a pseudo-model of R and A and is an s-pseudo-model
of T . C

6.1 Ordering Pseudo-Interpretations

Definition 6.5. Let I and I ′ be pseudo-models of an RBox R. We say that I is less
than or equal to I ′ w.r.t. semantics s, write I ≤s I ′, if for every positive formula C
(possibly with ∀ and ∀∃) and every individual a, I |=s C(a) implies I ′ |=s C(a).7 C

7 In [29], we use a weaker ordering in the form “a pseudo-interpretation I is less than or equal to a
pseudo-interpretation I′ if for every positive formula C, if I validates C then I′ also validates C”.
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Definition 6.6. A pseudo-interpretation I is called a least s-pseudo-model of a deter-
ministic Horn knowledge base (R, T ,A) if it is an s-pseudo-model of (R, T ,A) and for
every s-pseudo-model I ′ of (R, T ,A), I ≤s I ′. C

Note that I and I ′ are least s-pseudo-models of (R, T ,A) does not imply I = I ′, as
it only states that, for every positive formula C and every individual a, I |=s C(a) iff
I ′ |=s C(a).

Definition 6.7. Let I = 〈∆,O, C, E ,U〉 and I ′ = 〈∆′,O′, C′, E ′,U ′〉 be pseudo-
interpretations. We say that I is less than or equal to I ′ w.r.t. a binary relation
r ⊆ ∆ × ∆′, and write I ≤r I ′, if the following conditions hold for every individual
a, every role name Rt and every atomic concept A:

1. r(aI , aI
′
)

2. ∀x, x′, y E(Rt)(x, y) ∧ r(x, x′)→ ∃y′ E ′(Rt)(x
′, y′) ∧ r(y, y′)

3. ∀x, x′, y′ U ′(Rt)(x
′, y′) ∧ r(x, x′)→ ∃y U(Rt)(x, y) ∧ r(y, y′)

4. ∀x, x′ r(x, x′)→ (x ∈ C(A)→ x′ ∈ C′(A)) C

In the above definition, the first three conditions state that r is a kind of bisimulation
(forward w.r.t. E/E ′ and backward w.r.t. U/U ′) of the “frames” of I and I ′. Intuitively,
r(x, x′) states that if x is an instance of a positive formula C (understood as a “concept”)
in I then x′ is an instance of C in I ′.

Lemma 6.8. Let I = 〈∆,O, C, E ,U〉 and I ′ = 〈∆′,O′, C′, E ′,U ′〉 be pseudo-models of an
RBox R. Suppose that I ≤r I ′ for some r. Then I ≤s I ′ (for both s ∈ {Sem1, Sem2,R}).
Moreover, for every x ∈ ∆ and x′ ∈ ∆′, if r(x, x′) holds then, for every positive formula C
(possibly with ∀ and ∀∃), I, x |=s C implies I ′, x′ |=s C.

Proof. Let C be an arbitrary positive formula and suppose that r(x, x′) holds. We prove
that I, x |=s C implies I ′, x′ |=s C by induction on the construction of C. Suppose that
I, x |=s C.

The cases when C is of the form A, C ′ u C ′′, or C ′ t C ′′ are trivial.
Case C = ∃Rt.D: Since I, x |=s C, there exists y ∈ ∆ such that E(Rt)(x, y) holds

and I, y |=s D. By Condition 2 of the definition of ≤r, there exists y′ ∈ ∆′ such that
E ′(Rt)(x

′, y′) and r(y, y′) hold. By the inductive assumption, I ′, y′ |=s D, hence I ′, x′ |=s

C.
Case C = ∀Rt.D: Let y′ be an arbitrary element of ∆′ such that U ′(Rt)(x

′, y′) holds.
By Condition 3 of the definition of ≤r, there exists y ∈ ∆ such that U(Rt)(x, y) and
r(y, y′) hold. Thus, I, y |=s D, and by the inductive assumption, I ′, y′ |=s D, hence
I ′, x′ |=s C.

The case when C is of the form ∀∃Rt.D is reduced to the two above cases. C

6.2 Some Properties

Mappings and relations are treated as sets. If not stated otherwise, the size of a set X is
the number of elements of X, denoted by |X|. The length of a formula is the number of
symbols occurring in the formula. The size of a pseudo-interpretation I = 〈∆,O, C, E ,U〉
is defined to be

|∆|+ |O|+ΣC(A) 6=∅|C(A)|+Σt∈IND|E(Rt)|+Σt∈IND|U(Rt)|.
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Proposition 6.9. Let I be a pseudo-model of a regular RBox R, C a positive formula
(possibly with ∀ and ∀∃), a an individual, and s ∈ {Sem1, Sem2,R}. Then checking whether
I |=s C(a) can be done in polynomial time in the size of I and C, assuming that the finite
automata specifying R are fixed.

Proof sketch. Let I = 〈∆,O, C, E ,U〉. Checking whether I |=s C(a) can be done by
computing the set DI = {x ∈ ∆ | I, x |=s D} for each subformula D of C as in dynamic
programming. It can be proved by induction on the construction of D that the set DI

can be computed in O(n3 ×m) steps, where n is the size of ∆ and m is the length of D.
Here, we consider only the representative case when D = ∀∃Rt.D

′ and s = Sem2,R.
Let At = 〈IND, Qt, It, δt, Ft〉 be the automaton corresponding to t amongst the ones

specifying R. Let x ∈ ∆ and consider the problem of checking I, x |=s ∀∃Rt.D
′. By

starting from x and “running” At across edges of I, we can compute in O(|∆|+ |U|) =
O(n2) steps the set Sx of all pairs (y, q) ∈ ∆×Qt such that there is a path in I from x to y
via U(Rs1), . . . , U(Rsi) and there is a run of At on the word s1 . . . si that ends at q. Then,
to check I, x |=s ∀∃Rt.D

′, apart from checking I, x |=s ∀Rt.D
′, it suffices to check that

I, y |=s ∃Rs.> for every (y, q) ∈ Sx and every (q, s, q′) ∈ δt such that there is an accepting
run of At starting from q′. As At and IND are fixed, the cost of computing (∀∃Rt.D

′)I

can be estimated as the cost of computing (∀Rt.D
′)I plus O(n3) for computing the sets

Sx for x ∈ ∆. Without loss of generality, we can assume that ∀Rt.D
′ is a subformula of

∀∃Rt.D
′ with length m− 1. By the inductive assumption, (∀Rt.D

′)I can be computed in
O(n3 × (m− 1)) steps. Hence (∀∃Rt.D

′)I can be computed in O(n3 ×m) steps. C

Lemma 6.10. Let (R, T ′,A) be a Horn knowledge base in Reg, T the deterministic
version of T ′, I1 (resp. I2) a least Sem1-pseudo-model (resp. Sem2,R-pseudo-model) of
(R, T ,A), C a positive formula (possibly with ∀ and ∀∃), C ′ the formula obtained from
C by changing every subformula of the form ∀∃Rt.D to (∀Rt.D u ∃Rt.D), and a an
individual. Then:

1. Every model of (R, T ′,A) is a Sem1-model of (R, T ,A), and
every Sem1-model of (R, T ,A) is a Sem2,R-model of (R, T ,A).

2. (R, T ,A) |=Sem1 C(a) implies (R, T ′,A) |= C ′(a), and
(R, T ,A) |=Sem2,R C(a) implies (R, T ,A) |=Sem1 C(a).

3. I1 |=Sem1 C(a) implies (R, T ,A) |=Sem1 C(a), and
I2 |=Sem2,R C(a) implies (R, T ,A) |=Sem2,R C(a).

4. I2 |=Sem2,R C(a) implies I1 |=Sem1 C(a).

See the first diagram of Figure 1 for an illustration of this lemma.

Proof. Let I be a model of R. It is easy to prove by induction on the construction of C
that, for x ∈ ∆I ,

if I, x |=Sem2,R C then I, x |=Sem1 C, (32)

if I, x |=Sem1 C then I, x |= C ′. (33)

Let D′ be a program clause and D the deterministic version of D′. Using (32) and (33),
it is easy to prove by induction on the construction of D that, for x ∈ ∆I ,

if I, x |=Sem1 D then I, x |=Sem2,R D, (34)

if I, x |= D′ then I, x |=Sem1 D. (35)
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The first assertion of the lemma immediately follows from (34) and (35).
Consider the second assertion and suppose that (R, T ,A) |=Sem1 C(a). We show

that (R, T ′,A) |= C ′(a). Let I be a model of (R, T ′,A). By (35), I is also a Sem1-
model of (R, T ,A). Hence I |=Sem1 C(a). By (33), we derive that I |= C ′(a). Hence
(R, T ′,A) |= C ′(a).

The remaining part of the second assertion can be proved analogously.
For the third assertion, just note that I1 is a Sem1-model of (R, T ,A) and I2 is a

Sem2,R-model of (R, T ,A).
Consider the fourth assertion and suppose that I2 |=Sem2,R C(a). Thus,

(R, T ,A) |=Sem2,R C(a), since I2 is a least Sem2,R-pseudo-model of (R, T ,A). Simi-
larly to the proof of the first assertion, it can be shown that I1 is a Sem2,R-pseudo-model
of (R, T ,A). It follows that I1 |=Sem2,R C(a), and hence I1 |=Sem1 C(a). C

7 Constructing Finite Least Pseudo-Models

If A is a finite automaton and Q is a subset of the states of A then we call [A, Q] a
(universal) automaton-modal operator/constructor. If C is a formula without automaton-
modal operators then we call [A, Q]C a formula (in the extended language). In this
section, by a formula we mean a formula in the language extended with automaton-
modal operators and the constructor ∀∃.

The technique of using automaton-modal formulas for building finite models in
modal/description logics that are related with regular languages has been previously
used in [17, 19, 15, 18, 31]. It guarantees the subformula property (also called the super-
formula property [14]): the set of formulas used to build a model of a finite set Γ of
formulas consists of subformulas from a certain finite set (depending on Γ ).

Fix a regular RBox R and let (At = 〈IND, Qt, It, δt, Ft〉)t∈IND be the automata spec-
ifying R. Let δt(Q, s) = {q′ | ∃q ∈ Q.(q, s, q′) ∈ δt} be the set of all states which can be
reached from Q via an s-transition of At. Let ε be the empty word and define δ̃t(Q, ε) = Q
and δ̃t(Q, s1 . . . sk) = δt(δ̃t(Q, s1 . . . sk−1), sk). The formal semantics of formulas with
automaton-modal operators are defined as follows.

Definition 7.1. Let I = 〈∆,O, C, E ,U〉 be a pseudo-model of R, and x0 ∈ ∆. Define
that I, x0 |=s [At, Q]C if I, xk |=s C for every path x0U(Rs1)x1 . . . xk−1U(Rsk)xk with

k ≥ 0 such that δ̃t(Q, s1 . . . sk) ∩ Ft 6= ∅ (i.e. s1 . . . sk is accepted by At when starting
from some state from Q). C

In this section, we present an algorithm that constructs a finite least s-pseudo-model
for a given deterministic Horn knowledge base (R, T ,A) in Reg.8 In the algorithm we
use the following data structures:

– ∆ is a set forming the domain of the constructed pseudo-interpretation. We distin-
guish a subset ∆0 of ∆ that consists of all the individuals occurring in the ABox A.
In the case A is empty, let ∆0 = {τ} for some element τ .

– C is a mapping that maps every x ∈ ∆ to a set of formulas. We treat elements of
∆ as possible worlds as in modal logic, and C(x) thus denotes the “content” of the
possible world x.

8 Recall that a deterministic Horn knowledge base may have more than one least s-pseudo-models.
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– E is a mapping such that for x ∈ ∆ and ∃Rt.C ∈ C(x), E(x, ∃Rt.C) ∈ ∆. The
meaning of E(x,∃Rt.C) = y is that ∃Rt.C ∈ C(x), C ∈ C(y), and the “requirement”
∃Rt.C is satisfied at x by going to y via Rt (treating x and y as possible worlds).

– U is a mapping such that for x ∈ ∆ and a role name Rt, U(x,Rt) ∈ ∆. Let us give
the intuition behind the use of this mapping. If the content of x contains only ∃Rt.C,
then by connecting x to y with C ∈ C(y), ∃Rt.C will be satisfied at x, but ∀Rt.C
may (still) be satisfied at x because at that time the created edge may be the only
edge of Rt going out from x, which is undesirable (because ∀Rt.C is not a “logical
consequence” of ∃Rt.C). The solution is that for every x ∈ ∆ and every role name
Rt, we connect x via Rt to some y with a minimal content forced by the content
of x. However, this has the undesirable side effect that ∃Rt.> is satisfied at x (note
that ∃Rt.> is not assumed to be an “axiom”). Hence we need to distinguish the edge
Rt(x, y) from the “normal” edges of Rt and that is why we use both the mappings E
and U.

We call the tuple 〈∆,C,E,U〉 a model graph.

The algorithm also uses a pseudo-interpretation I = 〈∆,O, C, E ,U〉 defined below,
which at the end is the output of the algorithm:

– C(A) = {x | A ∈ C(x)},
– O is the function that maps every individual a ∈ ∆0 to a,

– E0(Rt) = {(a, b) | Rt(a, b) ∈ A} ∪ {(x, y) | E(x,∃Rt.C) = y for some C},
– U0(Rt) = E0(Rt) ∪ {(x, y) | U(x,Rt) = y},
– (E(Rt))t∈IND is the least extension of (E0(Rt))t∈IND that satisfies R,

– (U(Rt))t∈IND is the least extension of (U0(Rt))t∈IND that satisfies R.

Definition 7.2. The saturation of a set Γ of formulas, denoted by Sat(Γ ), is defined to
be the smallest superset of Γ such that:

– > ∈ Sat(Γ ),

– if ∀Rt.C ∈ Sat(Γ ) then [At, It]C ∈ Sat(Γ ),

– if [At, Q]C ∈ Sat(Γ ) and Q ∩ Ft 6= ∅ then C ∈ Sat(Γ ). C

Thus, Sat(Γ ) is a superset of Γ , which is equivalent to Γ .

Definition 7.3. The transfer of Γ through Rt is defined as follows:

Trans(Γ, t) = Sat({[As, δs(Q, t)]C | [As, Q]C ∈ Γ}).

The intuition behind Trans(Γ, t) is that, in a given interpretation, if Γ holds for x and
Rt(x, y) holds then Trans(Γ, t) holds for y.

Definition 7.4. The compact form CF(Γ ) of Γ is the smallest set of formulas obtained
as follows:

– if C ∈ Γ and C is not of the form [At, Q]D then C ∈ CF(Γ ),

– if Q1, . . . , Qk are all the sets such that [At, Qi]C ∈ Γ for 1 ≤ i ≤ k,
then [At, Q1 ∪ . . . ∪Qk]C ∈ CF(Γ ). C



Horn Knowledge Bases in Regular Description Logics with PTime Data Complexity 23

Function Find(Γ )

1. if there exists z ∈ ∆ \∆0 with C(z) = Γ then return z,
2. else add a new element z to ∆ with C(z) := Γ and return z.

Procedure Simulate-Changing-Content(x, Γ )

1. x∗ := Find(Γ );
2. for every y, t, C, if E(y,∃Rt.C) = x then E(y,∃Rt.C) := x∗;
3. for every y and t, if U(y,Rt) = x then U(y,Rt) := x∗;

(Note: if x∗ 6= x and x /∈ ∆0 then x becomes unreachable from ∆0

via paths using (U(Rt))t∈IND.)

Algorithm 1

Input: s ∈ {Sem1, Sem2,R}, a deterministic Horn knowledge base (R, T ,A) in Reg, and
finite automata (At)t∈IND specifying R.

Output: A least s-pseudo-model I = 〈∆,O, C, E ,U〉 of (R, T ,A).

1. let ∆0 be the set of all individuals occurring in A;
if ∆0 = ∅ then ∆0 := {τ};
set ∆ := ∆0;
for all individuals a occurring in A, set O(a) := a;
for x ∈ ∆, set C(x) := CF(Sat(T ∪ {A | A(x) ∈ A}));
set E and U to empty maps;
set T ′ := CF(Sat(T ));

2. for every x ∈ ∆ and every C ∈ C(x)
(a) case C = (D uD′) :

i. if x ∈ ∆0 then C(x) := CF(C(x) ∪ Sat({D,D′}))
ii. else Simulate-Changing-Content(x,CF(C(x) ∪ Sat({D,D′})));

(b) case C = (D v D′) : if I, x |=sc D then
i. if x ∈ ∆0 then C(x) := CF(C(x) ∪ Sat({D′}))

ii. else Simulate-Changing-Content(x,CF(C(x) ∪ Sat({D′})));
(c) case C = ∃Rt.D : if E(x,∃Rt.D) is not defined then

E(x,∃Rt.D) := Find(CF(Sat({D}) ∪ Trans(C(x), t) ∪ T ′));
3. for every x ∈ ∆ and every t ∈ IND:

(a) for every y ∈ ∆0 such that U0(Rt)(x, y) holds:
C(y) := CF(C(y) ∪ Trans(C(x), t));

(b) for every y ∈ ∆ \∆0 such that U0(Rt)(x, y) holds:
i. y∗ := Find(CF(C(y) ∪ Trans(C(x), t)));

ii. for every D, if E(x, ∃Rt.D) = y then E(x,∃Rt.D) := y∗;
iii. if U(x,Rt) = y then U(x,Rt) := y∗;

(c) if U(x,Rt) is not defined then
U(x,Rt) := Find(CF(Trans(C(x), t) ∪ T ′));

4. while some change occurred, go to Step 2;
5. for every x ∈ ∆ \∆0, if x is unreachable from ∆0 in the sense that

there do not exist a path x0 ∈ ∆0, x1, . . . , xk−1, xk = x and role names
Rs1 , . . . , Rsk such that U0(Rsi)(xi−1, xi) holds for every 1 ≤ i ≤ k

then delete x from ∆ and delete the elements of E and U that are related with x;

Fig. 2. Algorithm for constructing least pseudo-models.
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Thus, CF(Γ ) is a logical equivalent of Γ , which is more compact than Γ .
Algorithm 1 given in Figure 2 constructs a least s-pseudo-model for a determinis-

tic Horn knowledge base (R, T ,A) in Reg. Our construction of a least pseudo-model of
(R, T ,A) is done using the technique of building model graphs [27, 29, 31]. At the be-
ginning, ∆ starts from ∆0, which consists of all the individuals occurring in A or some
τ if A is empty, with C(x), for x ∈ ∆0, being the compact form of the saturation of
T ∪ {A | A(x) ∈ A}. Then for each x ∈ ∆ and each formula C ∈ C(x), we “ realize the
requirement C at x ” as follows:

1. Case C = (D u D′) (Step 2a) : If x ∈ ∆0 then we add both D and D′ to C(x).
Otherwise, to restrict the size of the constructed graph and prevent the situation
when C(x) becomes equal to C(x′) for some x′ ∈ ∆ \∆0 different from x, we do not
add D and D′ to C(x) but “ simulate the role of x ” by x∗ ∈ ∆ \∆0 with C(x∗) =
CF(C(x)∪Sat({D,D′})). The simulation is done by the procedure Simulate-Changing-
Content, which replaces the connections to x by connections to x∗ (by modifying the
mappings E and U).

2. Case C = (D v D′) (Step 2b) : If D is certainly satisfied at x w.r.t. semantics s,
denoted by I, x |=sc D, then analogously as for the above case, if x ∈ ∆0 then we add
D′ to C(x), else we simulate the role of x by x∗ with C(x∗) = CF(C(x) ∪ Sat({D′}))
by calling the procedure Simulate-Changing-Content. Let us explain the satisfaction
relation |=sc. Consider the example case when R = ∅, C(x) = {D v D′, ∃Rt.A} with
D = ∀∃Rt.A, E(x,∃Rt.A) is defined, but U(x,Rt) is not. Then we may have that
I, x |=s ∀∃Rt.A because there may be only one edge of Rt going out from x, which
is undesirable since ∀∃Rt.A is not a “logical consequence” of ∃Rt.A. The problem is
that U(x,Rt) is not yet defined. So, we define the satisfaction relation I, x |=sc D as
follows.

Definition 7.5. Let I = 〈∆,O, C, E ,U〉 be a pseudo-interpretation. Define the sat-
isfaction relation I, x |=sc D for a positive allsome-formula D recursively as follows:

I, x |=sc >,

I, x |=sc A iff x ∈ C(A),

I, x |=sc D1 uD2 iff I, x |=sc D1 and I, x |=sc D2,

I, x |=sc D1 tD2 iff I, x |=sc D1 or I, x |=sc D2,

I, x |=sc ∃Rt.D iff ∃y.(E(Rt)(x, y) ∧ I, y |=sc D), and

I, x |=sc ∀∃Rt.D iff (∗)

where (∗) is the combination of the following conditions:
– ∀y.(U(Rt)(x, y)→ I, y |=sc D) and
– case s = Sem1 : I, x |=sc ∃Rt.> and U(x,Rt) is defined,
– case s = Sem2,R : for every consequence Rs1 ◦ · · · ◦ Rsk v Rt of R and for every

path x0 U(Rs1)x1 . . .U(Rsi−1)xi−1 with x0 = x and 1 ≤ i ≤ k, I, xi−1 |=sc ∃Rsi .>
and U(xi−1, Rsi) is defined. C

3. Case C = ∃Rt.D (Step 2c) : If E(x,∃Rt.D) is not defined, we just connect x via Rt

to the possible world of ∆ \ ∆0 with content CF(Sat({D} ∪ Trans(C(x), t) ∪ T )) by
setting E(x, ∃Rt.D) to that world. The world is created if necessary.
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4. Case C = [As, Q]D (Steps 3a and 3b) : For every y ∈ ∆ and t ∈ IND such that
U0(Rt)(x, y) holds, we would like to add [As, δs(Q, t)]D to C(y). More generally, for
every y ∈ ∆ and t ∈ IND, we would like to add Trans(C(x), t) to C(y), independently
from C. We do so for y ∈ ∆0 (because the edge U0(Rt)(x, y) is caused by Rt(x, y) ∈ A).
For y ∈ ∆ \∆0, however, modifying the content of y has two drawbacks: First, other
possible worlds connected to y will be affected. For example, if D is added to C(y)
and E(Rt′)(z, y) holds, then ∃Rt′ .D becomes satisfied at z, while x and z may be
independent. Second, modifying C(y) may cause C(y) = C(y′) for some y′ ∈ ∆ \∆0

different from y, which we try to avoid. Step 3b contains our solution for these two
problems.

5. The case C = ∀Rt.D is reduced to the case C = [At, It]D.

In Step 3c of Algorithm 1, we also guarantee that for every x ∈ ∆ and every t ∈ IND,
x is connected via U(Rt) to the possible world with content CF(Sat(Trans(C(x), t) ∪ T ))
by setting U(x,Rt) to that world. This is important for making I a least s-pseudo-model
of the input knowledge base (in particular, for satisfying Condition 3 of the definition
of ≤r).

When iteration of Steps 2 and 3 does not modify the model graph anymore, we delete
all possible worlds that are unreachable from ∆0 (via a path using edges of U0). This is
necessary because such a possible world x may contain a formula C which is not satisfied
at x (for example, to realize D uD′ ∈ C(x) we did not add D and D′ to C(x) but just
simulated the task).

Observe that, for any x, y, t, C, if E(x,∃Rt.C) = y or U(x,Rt) = y then y /∈ ∆0.
Hence, if U0(Rt)(x, y) holds and y ∈ ∆0, then we must have that x ∈ ∆0 and Rt(x, y) ∈ A.
Both ∆0 and the part restricted to ∆0 of U0 are therefore “fixed” by the ABox A (unless
A is empty and ∆0 = {τ}). This explains the way we deal with realizing C ∈ C(x)
for x ∈ ∆0 in Steps 2(a)i, 2(b)i and 3a. On the other hand, the part on ∆ \ ∆0 of
the constructed pseudo-model is flexible, and for that part we can “Simulate-Changing-
Content” and redirect edges. Our techniques for that part prevent duplicates and avoid
modifying the content of a node and re-creating a new node with that content later.

7.1 Illustrative Examples

Example 7.6. Consider the domain of web pages. Let

R = ∅
T = {perfect v interesting u ∀link .perfect ,

exists link to perfect page v ∃link .perfect}
A = {perfect(a), exists link to perfect page(b), link(a, b)}

The empty RBox R is regular and specified by the following finite automaton, where
IND = {l} and Rl stands for link:

Al = 〈IND, {1, 2}, {1}, {(1, l, 2)}, {2}〉

As abbreviations, let

L = link , I = interesting , P = perfect , E = exists link to perfect page,
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and let C and D denote the first and the second program clause of T , respectively. In
Figures 3 and 4 we illustrate the run of Algorithm 1 on the deterministic Horn knowledge
base (R, T ,A) using s ∈ {Sem1, Sem2,R}. C

Example 7.7. In Figure 5, we present another example of application of Algorithm 1. C

7.2 Complexity and Correctness of the Algorithm

Proposition 7.8. Let s and (R, T ,A) be inputs for Algorithm 1 and let I =
〈∆,O, C, E ,U〉 be the output. Assume that R and T are fixed, while A varies and has
size n. Then ∆ has size O(n) and the algorithm runs in O(n4) steps.

Proof. We will refer to the data structures used in Algorithm 1. Define the size of a set
of formulas to be the sum of the lengths of its formulas.

Since each x ∈ ∆\∆0 has a unique C(x) and the possible values of C(x) are dependent
only on R and T , the set ∆ \∆0 contains only O(1) elements. Hence ∆ has size O(n).

Since R and T are fixed, the size of C(x) for x ∈ ∆ \∆0 and the size of C(a) \ {A |
A(a) ∈ A} for a ∈ ∆0 are bounded by a constant. Denote this assertion by (∗).

The total number of changes made at Steps 2(a)i, 2(b)i, 2c, 3a, 3c is of rank O(n).
Note that if x is “simulated” by x∗ at Step 2(a)ii or 2(b)ii then C(x∗) extends C(x). A
similar statement can be said for y and y∗ at Step 3b. Since ∆ \∆0 has size O(1), ∆ has
size O(n), and (∗), the total number of changes made at Steps 2(a)ii, 2(b)ii, 3b is of rank
O(n). Hence, the loop at Step 4 executes only O(n) times.

By (∗), all the calls of Sat, Trans, CF in the algorithm can be done in constant time. A
call of Simulate-Changing-Content runs in time O(n) (because y ranges over ∆). Similarly
to the proof of Proposition 6.9, checking I, x |=sc D at Step 2b can be done in time
O(n3 × length(D)) = O(n3).

Summing up, Algorithm 1 runs in O(n4) steps. C

Here is the main theorem of this section:

Theorem 7.9. Let (R, T ,A) be a deterministic Horn knowledge base in Reg, and I =
〈∆,O, C, E ,U〉 the pseudo-interpretation constructed by Algorithm 1 for (R, T ,A) w.r.t.
s ∈ {Sem1, Sem2,R}. Then I is a least s-pseudo-model of (R, T ,A).

To prove this theorem we need a number of lemmas. The main ones are Lemma 7.13,
which shows that I is an s-pseudo-model of (R, T ,A), and Lemma 7.15, which shows
that I is less than or equal (w.r.t. semantics s) to any s-pseudo-model of (R, T ,A).

Lemma 7.10. Algorithm 1 has the following properties:

1. During the execution, for every x ∈ ∆ and every formula ∃Rt.D, if E(x,∃Rt.D) = y
then ∃Rt.D ∈ C(x) and D ∈ C(y).

2. At the end, E(x,∃Rt.D) is defined for every x ∈ ∆ and every formula ∃Rt.D ∈ C(x),
and U(x,Rt) is defined for every x ∈ ∆ and every role name Rt.

This lemma can easily be verified.
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The model graph after executing Step 1:

The first execution of Step 2 results in the following model graph:

– Realizing C at a : I u ∀L.P is added to C(a).
– Realizing I u ∀L.P at a : I, ∀L.P , [Al, {1}]P are added to C(a).
– Realizing D at b : ∃L.P is added to C(b).
– Realizing ∃L.P at b : c0 is created and E(b, ∃L.P ) is set to c0.
– Realizing C at c0 : c1 is created and E(b,∃L.P ) is changed to c1.
– Realizing I u ∀L.P at c1 : c2 is created and E(b, ∃L.P ) is changed to c2.

The first execution of Step 3 results in the following model graph:

– Processing a : [Al, {2}]P and P are added to C(b); d0 is created and U(a, L) is set to d0.
– Processing b : e is created and U(b, L) is set to e.
– Processing c0 : U(c0, L) is set to e.
– Processing c1 : U(c1, L) is set to e.
– Processing c2 : U(c2, L) is set to d0.
– Processing d0 : U(d0, L) is set to e.
– Processing e : U(e, L) is set to e.

Fig. 3. The application of Algorithm 1 to (R, T ,A), where: L
def
= Rl is the only role (IND = {l}), R = ∅,

and Al = 〈IND, {1, 2}, {1}, {(1, l, 2)}, {2}〉; T = {C,D} with C
def
= (P v Iu∀L.P ) and D

def
= (E v ∃L.P );

and A = {P (a), E(b), L(a, b)}. Each node of the model graph represents an element of ∆ (displayed in the
upper part of the node). The lower part of a node x contains the formulas of C(x). We have ∆0 = {a, b}.
The dashed (resp. dotted) arrows represent elements of E (resp. U). To be continued in Fig. 4.
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The second execution of Step 2 (looping at Step 4) results in the following model graph:

– Realizing C at b : I u ∀L.P is added to C(b).
– Realizing I u ∀L.P at b : I and ∀L.P are added to C(b), and

[Al, {2}]P is replaced by [Al, {1, 2}]P .
– Realizing C at d0 : d1 is created, U(a, d0) and U(c2, d0) are changed to d1.
– Realizing I u ∀L.P at d1 : d2 is created, U(a, L) and U(c2, L) are changed to d2.

The second execution of Step 3 and the third execution of Step 2 (looping at Step 4) results
in the following model graph:

– Processing b (at Step 3) : E(b, ∃L.P ) is changed to d2; U(b, L) is changed to d0.
– Processing d1 (at Step 3) : U(d1, L) is set to e.
– Processing d2 (at Step 3) : U(d2, L) is set to d0.
– Realizing C at d0 (at Step 2) : U(b, L) and U(d2, L) are changed to d1.
– Realizing I u ∀L.P at d1 (at Step 2) : U(b, L) and U(d2, L) are changed to d2.

Fig. 4. Continuation of Figure 3. The dashed and dotted arrow (b, d2) in the second model graph repre-
sents the connections E(b, ∃L.P ) = d2 and U(b, L) = d2. The second model graph is not further modified
by the loop at Step 4. Executing Step 5, the nodes c0, c1, c2, d0, d1, e and the related arrows are deleted.
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In this figure, we present the model graph constructed by Algorithm 1 for the deterministic
Horn knowledge base (R, T ,A) of the example given in Section 5.2, using semantics
s = Sem1. Recall that:

– The regular RBox R = {link v path, link ◦ path v path} is specified by the following
finite automata, where IND = {l, p}, with Rl standing for link and Rp standing for path:

Al = 〈IND, {1, 2}, {1}, {(1, l, 2)}, {2}〉
Ap = 〈IND, {1, 2}, {1}, {(1, l, 1), (1, l, 2), (1, p, 2)}, {2}〉.

– The TBox T consists of the following deterministic program clauses:

perfect v interesting u ∀path.interesting
interesting u ∀∃path.interesting v perfect
interesting t ∀∃link.interesting v worth surfing
∃path.interesting v has a path to an interesting page
has a path to an interesting page v ∃path.interesting.

– The ABox A consists of perfect(b), has a path to an interesting page(g) and the following
role assertions of link:

a

����������

��

b

����������

��=======

c

����������
e

����������
f

��========

g h i

kk

The constructed model graph is illustrated below. Each x ∈ ∆ is represented by a box
labeled by x : C(x). The box is shaded if x ∈ ∆ \∆0. A normal arrow from x to y represents
the role assertion link(x, y) ∈ A. A dotted arrow from x to y represents the two connections
U(x, link) = y and U(x, path) = y. A dashed arrow from x to y represents the connection
E(x,∃path.interesting) = y. A dashed and dotted arrow (like the one from b to j) is a
combination of a dashed arrow and a dotted arrow. We do not display all arrows of path.
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ll
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T1 = T ∪ {perfect, interesting u ∀path.interesting, interesting,
∀path.interesting, [Ap, {1, 2}]interesting,worth surfing,
has a path to an interesting page,∃path.interesting}

T2 = T ∪ {[Ap, {1, 2}]interesting, interesting,worth surfing}
T3 = T ∪ {has a path to an interesting page,∃path.interesting}
T4 = T ∪ {interesting,worth surfing}

Fig. 5. An example of application of Algorithm 1.
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Lemma 7.11. Consider a moment in an execution of Algorithm 1. Suppose that
E(Rt)(x, y) (resp. U(Rt)(x, y)) holds. Then there exist x0, . . . , xk in ∆ with x0 = x,
xk = y and indices s1, . . . , sk ∈ IND such that E0(Rsi)(xi−1, xi) (resp. U0(Rsi)(xi−1, xi))
holds for 1 ≤ i ≤ k and Rs1 ◦ . . . ◦Rsk v Rt is a consequence of the RBox R.

Proof. By induction on the number of inferences in the derivation of E(Rt)(x, y) (resp.
U(Rt)(x, y)) when extending (E0(Rt))t∈IND to (E(Rt))t∈IND (resp. (U0(Rt))t∈IND to
(U(Rt))t∈IND) using the RBox R. C

Lemma 7.12. The following conditions are equivalent for every regular RBox R:

1. s1 . . . sk is derivable from t using the grammar G(R),
2. the role axiom Rs1 ◦ · · · ◦Rsk v Rt is a consequence of R.

Proof sketch. The first assertion clearly implies the second one. The converse can be
proved by induction using a model of the form of an infinite full tree. See also [3, 8, 15]. C

Lemma 7.13. Let s and (R, T ,A) be inputs and I = 〈∆,O, C, E ,U〉 the output of Algo-
rithm 1. Then I is an s-pseudo-model of (R, T ,A). Moreover, for every x ∈ ∆ and every
C ∈ C(x), we have that I, x |=s C, where C is the data structure used by Algorithm 1
for s and (R, T ,A).

Proof. For every individual a, we have that O(a) = a ∈ ∆0. By Step 1, I |= A(a) for
every A(a) ∈ A. By the definition of E0, I also satisfies every assertion R(a, b) ∈ A.
That is, I is a pseudo-model of A. By the definition of E and U , I is a pseudo-model
of R. Since T is included in the content of every possible world, to show that I is an
s-pseudo-model of T it suffices to show that, for every x ∈ ∆ and every C ∈ C(x), it
holds that I, x |=s C. We prove this by induction on the construction of C.

Consider the case when C is of the form D v D′. Suppose that I, x |=s D. We show
that I, x |=s D

′. Since U(x,Rt) is defined for every x ∈ ∆ and every role name Rt, we
have that I, x |=sc D iff I, x |=s D. Hence I, x |=sc D. If x ∈ ∆0, then D′ must have been
added to C(x), and by the inductive assumption, I, x |=s D

′. Suppose that x ∈ ∆ \∆0.
When Step 2b is executed the last time for x and C, as no changes are made, we have
x∗ = x, where x∗ is the element simulating the role of x, because x is reachable from
∆0 via a path using U0 as it remains after executing Step 5. Since D v D′ ∈ C(x) and
I, x |=sc D, we have that D′ ∈ C(x∗), i.e. D′ ∈ C(x). By the inductive assumption,
I, x |=s D

′. Therefore, I, x |=s D v D′.
The case when C is of the form D uD′ is similar to the above case. The cases when

C is of the form A or ∃Rt.D are straightforward.
Consider the case when C = ∀Rt.D. Suppose that U(Rt)(x, y) holds. By the in-

ductive assumption, it is sufficient to show that D ∈ C(y). Since U(Rt)(x, y) holds, by
Lemma 7.11, there exist x0, . . . , xk in ∆ with x0 = x, xk = y and indices s1, . . . , sk ∈ IND
such that U0(Rsi)(xi−1, xi) holds for 1 ≤ i ≤ k and Rs1 ◦ . . . ◦Rsk v Rt is a consequence

of R. By Lemma 7.12, s1 . . . sk is accepted by At. Hence δ̃t(It, s1 . . . sk) ∩ Ft 6= ∅. Since
∀Rt.D ∈ C(x), we have [At, Q]D ∈ C(x0) for some Q ⊇ It, and hence [At, Q

′]D ∈ C(xk)
for some Q′ ⊇ δ̃t(It, s1 . . . sk). It follows that D ∈ C(xk), which means D ∈ C(y).

Consider the case when C = [At, Q]D. Let x0U(Rs1)x1 . . . xk−1U(Rsk)xk be an arbi-

trary path of I such that x0 = x and δ̃t(Q, s1 . . . sk) ∩ Ft 6= ∅. We show that D ∈ C(xk).
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There exists q ∈ Q such that δ̃t({q}, s1 . . . sk) ∩ Ft 6= ∅. Since [At, Q]D ∈ C(x)
and q ∈ Q, there exists x′0, . . . , x

′
h ∈ ∆ and s′1, . . . , s

′
h ∈ IND such that ∀Rt.D ∈

C(x′0), q ∈ δ̃t(It, s
′
1 . . . s

′
h), x′0U0(Rs′1

)x′1 . . . x
′
h−1U0(Rs′h

)x′h holds, and x′h = x = x0.
The word s′1 . . . s

′
hs1 . . . sk is thus accepted by At. By Lemma 7.12, it follows that

Rs′1
◦ · · · ◦ Rs′h

◦ Rs1 ◦ · · · ◦ Rsk v Rt is a consequence of R. Hence U(Rt)(x
′
0, xk) holds.

Since ∀Rt.D ∈ C(x′0) and U(Rt)(x
′
0, xk) holds, as for the previous case (when C is of

the form ∀Rt.D) we derive that D ∈ C(xk). By the inductive assumption, it follows that
I, xk |=s D. Hence I, x |=s C, which completes the proof. C

Lemma 7.14. Let s and (R, T ,A) be inputs and I = 〈∆,O, C, E ,U〉 the output of Al-
gorithm 1, and let I ′ = 〈∆′,O′, C′, E ′,U ′〉 be an arbitrary s-pseudo-model of (R, T ,A).
Consider a moment after executing a numerated step in the execution of Algorithm 1.
Let

r = {(a, aI′) | a is an individual occurring in A} ∪
{(x, x′) ∈ ∆×∆′ | x is not an individual and I ′, x′ |=s C(x)}

Then the following assertions hold for every u, v ∈ ∆, u′, v′ ∈ ∆′, s ∈ IND, every formula
D′′ and every individual a occurring in A:

r(u, u′) ∧ (E(u,∃Rs.D
′′) = v) ∧ E ′(Rs)(u

′, v′) ∧ (I ′, v′ |=s D
′′)→ r(v, v′) (36)

r(u, u′) ∧ (U(u,Rs) = v) ∧ U ′(Rs)(u
′, v′)→ r(v, v′) (37)

I ′, aI′ |=s C(a) (38)

Proof. We prove this lemma by induction on the number of executed steps. The base
case occurs after executing Step 1 and the assertions clearly hold. Consider some latter
enumerated step K of the algorithm. Inductively assume that the assertions (36)-(38) of
the lemma hold before executing that step. We first prove the following claim by an inner
induction on the construction of C0.

Claim 1. Let C0 be a positive allsome-formula and suppose that r(x, x′) holds and
I, x |=sc C0. Then I ′, x′ |=s C0.

– The cases when C0 is of the form A or D1 uD2 or D1 tD2 are straightforward.
– Consider the case when C0 = ∃Rs.D0. Since I, x |=sc C0, there exists y such that
E(Rs)(x, y) holds and I, y |=sc D0. By Lemma 7.11, there exist x0, . . . , xk in ∆ with
x0 = x, xk = y and indices s1, . . . , sk ∈ IND such that E0(Rsi)(xi−1, xi) holds for
1 ≤ i ≤ k and Rs1 ◦ . . . ◦Rsk v Rs is a consequence of R. Denote this by (?). For 1 ≤
i ≤ k, since E0(Rsi)(xi−1, xi) holds, either Rsi(xi−1, xi) ∈ A or E(xi−1, ∃Rsi .Ci) = xi
for some Ci. Let x′0 = x′. For i from 1 to k, we define x′i ∈ ∆′ as follows:
• Case Rsi(xi−1, xi) ∈ A : We have that xi−1 and xi are individuals, and by the

definition of r, x′i−1 = O′(xi−1). Let x′i = O′(xi). Thus r(xi, x
′
i) holds. Since I ′ is

a pseudo-model of A, E ′(Rsi)(x
′
i−1, x

′
i) holds.

• Case E(xi−1, ∃Rsi .Ci) = xi : We have that ∃Rsi .Ci ∈ C(xi−1). Since r(xi−1, x
′
i−1)

holds (we are maintaining this invariant), by the definition of r and the outer
inductive assumption (38), we have that I ′, x′i−1 |=s ∃Rsi .Ci. Hence, there exists
x′i ∈ ∆′ such that E ′(Rsi)(x

′
i−1, x

′
i) holds and I ′, x′i |=s Ci. By the outer inductive

assumption (36), r(xi, x
′
i) holds.
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We have that r(xk, x
′
k) holds, and for 1 ≤ i ≤ k, E ′(Rsi)(x

′
i−1, x

′
i) holds. By (?),

it follows that E ′(Rs)(x
′
0, x
′
k) holds, which means that E ′(Rs)(x

′, x′k) holds. Since
r(xk, x

′
k) holds and xk = y and I, y |=sc D0, by the inner inductive assumption,

I ′, x′k |=s D0. It follows that I ′, x′ |=s ∃Rs.D0, i.e. I ′, x′ |=s C0.

– Now consider the case when C0 = ∀∃Rs.D0. Let y = U(x,Rs). Thus I, y |=sc D0. Let
y′ be an arbitrary element of ∆′ such that U ′(Rs)(x

′, y′) holds. By the outer inductive
assumption (37), we derive that r(y, y′) holds. By the inner inductive assumption, it
follows that I ′, y′ |=s D0. Hence I ′, x′ |=s ∀Rs.D0.

Consider the case s = Sem1. Since I, x |=sc C0, we have that I, x |=sc ∃Rs.>. As
proved for the case C0 = ∃Rs.D0, it follows that I ′, x′ |=s ∃Rs.>.

Now consider the case s = Sem2,R. Let Rs1 ◦ · · · ◦ Rsk v Rs be a consequence of
R and let 1 ≤ i ≤ k. We show that I ′, x′ |=s ∀Rs1 . . . ∀Rsi−1∃Rsi>. Let x′0 = x′

and x′1, . . . , x
′
i−1 be arbitrary elements of ∆′ such that U ′(Rsj )(x

′
j−1, x

′
j) holds for

1 ≤ j ≤ i − 1. We need to show that I ′, x′i−1 |=s ∃Rsi .>. For 1 ≤ j ≤ i − 1, let
xj = U(xj−1, Rsj ), then, by the outer inductive assumption (37), r(xj , x

′
j) holds. Since

I, x |=sc C0, we have that I, xi−1 |=sc ∃Rsi .>. As proved for the case C0 = ∃Rs.D0,
it follows that I ′, x′i−1 |=s ∃Rsi .>. This completes the proof of Claim 1.

We now return to the outer induction. Suppose that after executing the step K we
have r2, ∆2, C2, E2, U2, I2 in the places of r, ∆, C, E, U, I, respectively. We show that
the following conditions hold for every u, v ∈ ∆, u′, v′ ∈ ∆′, s ∈ IND, every formula D′′

and every individual a occurring in A:

r2(u, u
′) ∧ (E2(u,∃Rs.D

′′) = v) ∧ E ′(Rs)(u
′, v′) ∧ (I ′, v′ |=s D

′′)→ r2(v, v
′) (39)

r2(u, u
′) ∧ (U2(u,Rs) = v) ∧ U ′(Rs)(u

′, v′)→ r2(v, v
′) (40)

I ′, aI′ |=s C2(a) (41)

– Consider the case K = 2(a)i or K = 2(b)i. Since r2 = r and E2 = E and U2 = U,
the assertions (39) and (40) follow from the inductive assumptions (36) and (37).
The assertion (41) clearly holds for the case K = 2(a)i. Consider the assertion (41)
for the case K = 2(b)i with x = a. It suffices to show that I ′, aI′ |=s D

′. Since
I, a |=sc D, by Claim 1, I ′, aI′ |=s D. By the inductive assumption, I ′, aI′ |=s C(a),
hence I ′, aI′ |=s (D v D′). It follows that I ′, aI′ |=s D

′.

– Consider the case K = 2(a)ii. Let x′ be an element of ∆′ such that r(x, x′) holds.
It suffices to show that r2(x∗, x

′) holds. Since r(x, x′) holds, I ′, x′ |=s C(x), and we
have that I ′, x′ |=s D u D′. Hence I ′, x′ |=s D and I ′, x′ |=s D

′. It follows that
I ′, x′ |=s C(x∗), and hence r2(x, x∗) holds.

– Consider the case K = 2(b)ii and assume that I, x |=sc D. Let x′ be an element of
∆′ such that r(x, x′) holds. It suffices to show that r2(x∗, x

′) holds. We need only to
show that I ′, x′ |=s D

′. Since r(x, x′) holds, I ′, x′ |=s (D v D′). Since I, x |=sc D and
r(x, x′) holds, by Claim 1, I ′, x′ |=s D. It follows that I ′, x′ |=s D

′.

– Consider the case K = 2c and assume that E(x, ∃Rt.D) is not defined. It suffices
to prove the assertion (39) for the case when u = x, s = t and D′′ = D. Consider
this case. Suppose that r2(x, u

′) ∧ (E2(x,∃Rt.D) = v) ∧ E ′(Rt)(u
′, v′) ∧ (I ′, v′ |=s D)

holds. We show that r2(v, v
′) holds. Since r2(x, u

′) holds, r(x, u′) also holds, and hence
I ′, u′ |=s C(x). It follows that I ′, v′ |=s Trans(C(x), t), since E ′(Rt)(u

′, v′) holds. Hence
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I ′, v′ |=s {D}∪Trans(C(x), t)∪T , which implies I ′, v′ |=s C2(v) (since I ′, v′ |=s Γ iff
I ′, v′ |=s CF(Sat(Γ )) for any set Γ of formulas), and hence r2(v, v

′) holds.

– Consider the case K = 3a. Since y ∈ ∆0, we have that r2 = r. Additionally, E2 = E
and U2 = U, hence the assertions (39) and (40) follow from the inductive assumptions
(36) and (37). For the assertion (41), it suffices to consider the case y = a and show
that I ′, aI′ |=s Trans(C(x), t). Since U0(Rt)(x, a) holds, x must be an individual occur-
ring in A and Rt(x, a) ∈ A. By the inductive assumption (38), I ′, xI′ |=s C(x). Since
I ′ is a pseudo-model of A and Rt(x, a) ∈ A, it follows that I ′, aI′ |=s Trans(C(x), t).

– Consider the case K = 3(b)ii. It suffices to show that if r(x, x′) ∧ (E(x,∃Rt.D) =
y) ∧ E ′(Rt)(x

′, y′) ∧ (I ′, y′ |=s D) then I ′, y′ |=s C(y∗). Suppose that the premise
holds. By the inductive assumption, r(y, y′) holds and I ′, y′ |=s C(y). Since r(x, x′)
holds, I ′, x′ |=s C(x). Hence I ′, y′ |=s Trans(C(x), t) (since E ′(Rt)(x

′, y′) holds). Hence
I ′, y′ |=s C(y∗).

– Consider the case K = 3(b)iii. It suffices to show that if r(x, x′) ∧ (U(x,Rt) = y)
∧ U ′(Rt)(x

′, y′) holds then I ′, y′ |=s C(y∗). This can be proved analogously as for
Step 3(b)ii.

– Consider the case K = 3c and assume that U(x,Rt) is not defined. It suffices to
prove the assertion (40) for the case u = x and s = t. Consider this case. Suppose
that r2(x, u

′) ∧ (U2(x,Rt) = v) ∧ U ′(Rt)(u
′, v′) holds. We show that r2(v, v

′) holds.
Since r2(x, u

′) holds, r(x, u′) also holds, and hence I ′, u′ |=s C(x). It follows that
I ′, v′ |=s Trans(C(x), t), since U ′(Rt)(u

′, v′) holds. Hence I ′, v′ |=s Trans(C(x), t)∪T ,
which means I ′, v′ |=s C2(v), and hence r2(v, v

′) holds.

– The case when K = 5 is trivial. C

Lemma 7.15. Let R, T , A, I, I ′ be as in Lemma 7.14, and r be the relation defined
as in Lemma 7.14 for the end of the execution of Algorithm 1. Then I ≤r I ′.

Proof. We check the four conditions of I ≤r I ′ :

1. By the definition of r, for every a occurring in A, r(aI , aI
′
) holds.

2. Suppose that E(Rs)(x, y)∧r(x, x′) holds. We show that there exists y′ ∈ ∆′ such that
E ′(Rs)(x

′, y′) ∧ r(y, y′). Since E(Rs)(x, y) holds, by Lemma 7.11, there exist x0, . . . ,
xk in ∆ with x0 = x, xk = y and indices s1, . . . , sk ∈ IND such that E0(Rsi)(xi−1, xi)
holds for 1 ≤ i ≤ k and Rs1 ◦ . . . ◦ Rsk v Rs is a consequence of R. Denote this
by (‡). For 1 ≤ i ≤ k, since E0(Rsi)(xi−1, xi) holds, either Rsi(xi−1, xi) ∈ A or
E(xi−1,∃Rsi .Ci) = xi for some Ci. Let x′0 = x′. For i from 1 to k, we define x′i ∈ ∆′
as follows:

– Case Rsi(xi−1, xi) ∈ A : We have that xi−1 and xi are individuals, and by the
definition of r, x′i−1 = O′(xi−1). Let x′i = O′(xi). Thus r(xi, x

′
i) holds. Since I ′ is

a pseudo-model of A, E ′(Rsi)(x
′
i−1, x

′
i) holds.

– Case E(xi−1, ∃Rsi .Ci) = xi : We have that ∃Rsi .Ci ∈ C(xi−1). Since r(xi−1, x
′
i−1)

holds (we are maintaining this invariant), I ′, x′i−1 |=s ∃Rsi .Ci. Hence, there exists
x′i ∈ ∆′ such that E ′(Rsi)(x

′
i−1, x

′
i) holds and I ′, x′i |=s Ci. By Lemma 7.14,

r(xi, x
′
i) holds.

We have that r(xk, x
′
k) holds, and for 1 ≤ i ≤ k, E ′(Rsi)(x

′
i−1, x

′
i) holds. By (‡), it

follows that E ′(Rs)(x
′
0, x
′
k) holds. Take y′ = x′k. Thus E ′(Rs)(x

′, y′) and r(y, y′) hold.
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3. Suppose that U ′(Rs)(x
′, y′)∧r(x, x′) holds. Let y = U(x,Rs). By Lemma 7.14, r(y, y′)

holds. Hence U(Rs)(x, y) ∧ r(y, y′) holds.
4. By the definition of r and the assertion (38) of Lemma 7.14, if r(x, x′) holds then
x ∈ C(A) implies x′ ∈ C′(A). C

To increase readability we recall Theorem 7.9 before presenting its proof.

Theorem 7.9. Let (R, T ,A) be a deterministic Horn knowledge base in Reg, and I =
〈∆,O, C, E ,U〉 the pseudo-interpretation constructed by Algorithm 1 for (R, T ,A) w.r.t.
s ∈ {Sem1, Sem2,R}. Then I is a least s-pseudo-model of (R, T ,A).

Proof. By Lemma 7.13, I is an s-pseudo-model of (R, T ,A). By Lemmas 7.15 and 6.8,
for every s-pseudo-model I ′ of (R, T ,A), we have that I ≤s I ′. C

8 Characterizations of Least Pseudo-Models

In this section, if not stated otherwise, by a formula we mean a formula possibly with
∀ and ∀∃ but without automaton-modal operators. We will prove the following theorem
and present its consequences.

Theorem 8.1. Let (R, T ,A) be a deterministic Horn knowledge base in Reg, I a least
Sem2,R-pseudo-model of (R, T ,A), C a positive allsome-formula, and a an individual.
Then (R, T ,A) |=Sem2,R C(a) iff I |=Sem2,R C(a).

As mentioned earlier, we do not have a similar result for Sem1.

Definition 8.2. Let (R, T ,A) be a deterministic Horn knowledge base in Reg,
I = 〈∆,O, C, E ,U〉 be the least Sem2,R-pseudo-model of (R, T ,A) constructed by Al-
gorithm 1, and E0 and U be the mappings used for defining U . For every role name Rt,
define

E ′0(Rt) = U ′0(Rt) = E0(Rt) ∪ {(x, y) | U(x,Rt) = y and ∃y′.(E(Rt)(x, y
′))}. (42)

Let E ′ (resp. U ′) be the least extension of E ′0 (resp. U ′0) that satisfies the role axioms of
R. Then I ′ = 〈∆,O, C, E ′,U ′〉 can be treated as an interpretation since E ′ = U ′. We call
it the interpretation corresponding to I. C

Notice the occurrence of E in (42). Also note that

E0(Rt) ⊆ E ′0(Rt) = U ′0(Rt) ⊆ U0(Rt).

To prove Theorem 8.1 we need the following lemma.

Lemma 8.3. Let (R, T ,A) be a deterministic Horn knowledge base in Reg, I the least
Sem2,R-pseudo-model of (R, T ,A) constructed by Algorithm 1, I ′ the interpretation cor-
responding to I, and C a positive allsome-formula. Let

r = {(a, a) | a is an individual occurring in A} ∪
{(x, x′) ∈ ∆×∆ | x is not an individual and I, x′ |=Sem2,R C(x)},
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where ∆ and C are the data structures used in the execution of Algorithm 1. Then for
every x, x′ ∈ ∆, if r(x, x′) holds and I ′, x |=Sem2,R C then I, x′ |=Sem2,R C. Moreover, for
every x ∈ ∆, I ′, x |=Sem2,R C implies I, x |=Sem2,R C. As a consequence, if I ′ validates
C w.r.t. Sem2,R then I also validates C w.r.t. Sem2,R.

Proof. We will refer to the data structures used in the execution of Algorithm 1. By
Lemma 7.13, I, y |=Sem2,R D for every y ∈ ∆ and D ∈ C(y). Hence, r is reflexive, and it
suffices to prove the first assertion of the lemma. By Lemma 7.15, I ≤r I. Furthermore,
by Lemma 7.14, we have that:

∀u, v, u′, v′, Rs r(u, u′) ∧ (U(u,Rs) = v) ∧ U(Rs)(u
′, v′)→ r(v, v′). (43)

Let I ′ = 〈∆,O, C, E ′,U ′〉. We prove the assertion by induction on the construction of
C. Suppose that r(x, x′) holds and I ′, x |=Sem2,R C. We show that I, x′ |=Sem2,R C.

– Case C = A : Since I ′, x |=Sem2,R A, we have that A ∈ C(x). Since I ≤r I and
r(x, x′) holds, it follows that A ∈ C(x′). Hence I, x′ |=Sem2,R A.

– Case C = D uD′ or C = D tD′ is trivial.
– Case C = ∃Rt.D : Since I ′, x |=Sem2,R C, there exists y such that E ′(Rt)(x, y) holds

and I ′, y |=Sem2,R D. Consequently, there are x0, . . . , xk of ∆ such that x0 = x, xk = y,
E ′0(Rsi)(xi−1, xi) holds for 1 ≤ i ≤ k and Rs1 ◦ . . . ◦ Rsk v Rt is a consequence of R.
Let x′0 = x′. For 1 ≤ i ≤ k, choose x′i as follows:
• Case E0(Rsi)(xi−1, xi) holds: Since I ≤r I and r(xi−1, x

′
i−1) holds, there exists

x′i ∈ ∆ such that r(xi, x
′
i) and E(Rsi)(x

′
i−1, x

′
i) hold.

• Case xi = U(xi−1, Rsi): There must exist zi such that E(Rsi)(xi−1, zi) holds.
Analogously as for the above case, there exists x′i ∈ ∆ such that r(zi, x

′
i) and

E(Rsi)(x
′
i−1, x

′
i) hold. By (43), it follows that r(xi, x

′
i) holds.

Since r(xk, x
′
k) holds and y = xk and I ′, y |=Sem2,R D, by the inductive assumption,

I, x′k |=Sem2,R D. Since E(Rsi)(x
′
i−1, x

′
i) holds for 1 ≤ i ≤ k and Rs1 ◦ . . . ◦ Rsk v Rt

is a consequence of R, E(Rt)(x
′
0, x
′
k) must hold. It follows that I, x′0 |=Sem2,R ∃Rt.D,

which means I, x′ |=Sem2,R C.
– Case C = ∀∃Rt.D : Since I ≤r I and r(x, x′) holds, by Lemma 6.8, it suffices to show

that I, x |=Sem2,R C. Let x0U0(Rs1)x1 . . .U0(Rsk)xk be a path such that x0 = x and
Rs1 ◦ . . . ◦ Rsk v Rt is a consequence of R. It suffices to show that I, xk |=Sem2,R D,
and for every 1 ≤ i ≤ k, E(Rsi)(xi−1, yi) holds for some yi.
We prove by an inner induction on 1 ≤ i ≤ k that U ′0(Rsi)(xi−1, xi) holds. Fix
1 ≤ i ≤ k and inductively assume that U ′0(Rsj )(xj−1, xj) holds for every 1 ≤ j ≤ i−1.
Since I ′, x0 |=Sem2,R C, it follows that E ′(Rsi)(xi−1, zi) holds for some zi. Hence,
there are u0, . . . , uh ∈ ∆ and q1, . . . , qh ∈ IND (which are dependent on i) such that
u0 = xi−1, uh = zi, E ′0(Rql)(ul−1, ul) holds for 1 ≤ l ≤ h and Rq1 ◦ . . . ◦ Rqh v Rsi is
a consequence of R.
We prove by a second inner induction on l from h down to 1 that I, ul−1 |=Sem2,R

∃Rql . . . .∃Rqh .>. Since E ′0(Rql)(ul−1, ul) holds, either E0(Rql)(ul−1, ul) holds or ul =
U(ul−1, Rql) and E(Rql)(ul−1, u

′
l) holds for some u′l. As the assumption of the second

inner induction, we have that I, ul |=Sem2,R ∃Rql+1
. . . .∃Rqh .>. If E0(Rql)(ul−1, ul)

holds, then it follows that I, ul−1 |=Sem2,R ∃Rql . . . .∃Rqh .>. Otherwise, since
r(ul−1, ul−1) holds and by (43), r(ul, u

′
l) holds, which implies that I, u′l |=Sem2,R
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∃Rql+1
. . . .∃Rqh .> (by Lemma 6.8), and hence I, ul−1 |=Sem2,R ∃Rql . . . .∃Rqh .>.

Thereby we have proved the second inner induction, which implies that I, u0 |=Sem2,R

∃Rq1 . . . .∃Rqh .>. Consequently, I, xi−1 |=Sem2,R ∃Rsi .>, since xi−1 = u0 and
Rq1 ◦ . . . ◦ Rqh v Rsi is a consequence of R. It follows that E(Rsi)(xi−1, yi) holds
for some yi (one of the main goals). This together with U0(Rsi)(xi−1, xi) implies
that U ′0(Rsi)(xi−1, xi) holds. Thereby we have proved the first inner induction. Since
I ′, x |=Sem2,R C, i.e. I ′, x0 |=Sem2,R ∀∃Rt.D, and Rs1 ◦ . . . ◦Rsk v Rt is a consequence
of R, it follows that I ′, xk |=Sem2,R D. Since r is reflexive, by the outer inductive
assumption, I, xk |=Sem2,R D. This completes the proof. C

Proof (of Theorem 8.1). Suppose that I |=Sem2,R C(a). Let I ′′ be an arbitrary Sem2,R-
model of (R, T ,A). It can be treated as a Sem2,R-pseudo-model of (R, T ,A). Since I is
a least Sem2,R-pseudo-model of (R, T ,A) and I |=Sem2,R C(a), we have that I ′′ |=Sem2,R

C(a). This implies that (R, T ,A) |=Sem2,R C(a).
For the converse, suppose that (R, T ,A) |=Sem2,R C(a). Without loss of generality,

we assume that I = 〈∆,O, C, E ,U〉 is the least Sem2,R-pseudo-model of (R, T ,A) con-
structed by Algorithm 1. We will refer to the data structures used in the execution of
Algorithm 1. Let I ′ be the interpretation corresponding to I. We show that I ′ is a Sem2,R-
model of (R, T ,A). This will imply that I ′ |=Sem2,R C(a), and hence I |=Sem2,R C(a), by
Lemma 8.3. Clearly, I ′ is a model of R and A. To prove that I ′ is a Sem2,R-model of
T , it suffices to prove by induction on the construction of C that for every x ∈ ∆ and
C ∈ C(x) without automaton-modal operators, I ′, x |=Sem2,R C.

The case when C is an atomic concept is trivial.
Consider the case when C is of the form DuD′. By Step 2a of Algorithm 1, {D,D′} ⊂

C(x) (note that if x /∈ ∆0 then the last execution of Step 2(a)ii gives x∗ = x, because
otherwise x would become unreachable from ∆0 and then be deleted by Step 5). By
the inductive assumption, it follows that I ′, x |=Sem2,R D and I ′, x |=Sem2,R D′. Hence
I ′, x |=Sem2,R D uD′, i.e. I ′, x |=Sem2,R C.

Consider the case when C is of the form D v D′. Suppose that I ′, x |=Sem2,R D. By
Lemma 8.3, I, x |=Sem2,R D. Since U(u,Rt) is defined for every u ∈ ∆ and every role
name Rt, we also have that I, x |=sc D with s = Sem2,R. By Step 2b of Algorithm 1,
D′ ∈ C(x) (note that if x /∈ ∆0 then the last execution of Step 2(b)ii gives x∗ = x). By
the inductive assumption, it follows that I ′, x |=Sem2,R D

′. Hence I ′, x |=Sem2,R C.
Consider the case when C is of the form ∀Rt.D. Let y be an arbitrary element of ∆

such that U ′(Rt)(x, y) holds. Since U ′(Rt) ⊆ U(Rt), it can be seen that D ∈ C(y). By
the inductive assumption, I ′, y |=Sem2,R D. Hence I ′, x |=Sem2,R C.

Consider the case when C is of the form ∃Rt.D. Let y = E(x,∃Rt.D). Thus D ∈ C(y).
We also have that E ′(Rt)(x, y) holds. By the inductive assumption, I ′, y |=Sem2,R D.
Hence I ′, x |=Sem2,R C. This completes the proof. C

As a consequence of Theorem 8.1, we have:

Theorem 8.4. Let (R, T ′,A), T , I1, I2, C, C ′, and a be as in Lemma 6.10, i.e. :

– (R, T ′,A) is a Horn knowledge base in Reg,
– T is the deterministic version of T ′,
– I1 is a least Sem1-pseudo-model of (R, T ,A),
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– I2 is a least Sem2,R-pseudo-model of (R, T ,A),
– C is a positive formula (possibly with ∀ and ∀∃),
– C ′ is the formula obtained from C by replacing every subformula of the form ∀∃Rt.D

by (∀Rt.D u ∃Rt.D),
– a is an individual.

Suppose that, for every t ∈ IND,

1. either the constructor ∀Rt.D does not occur in C ′ and the premises of the program
clauses of T ′

2. or ∃Rs.> ∈ T ′ for every s ∈ IND occurring in some word accepted by At

3. or L(At) = {t} and the constructor ∀Rt.D may occur in C ′ and the premises of the
program clauses of T ′ only in the form (∀Rt.D u ∃Rt.D

′) for some arbitrary D′.

Then the three assertions (R, T ′,A) |= C ′(a), I1 |=Sem1 C(a) and I2 |=Sem2,R C(a) are
equivalent.

Proof. By Lemma 6.10, we only need to show that (R, T ′,A) |= C ′(a) implies I2 |=Sem2,R

C(a). Let IND3 be the set of indices t satisfying Condition 3. Let I be an arbitrary model
of (the TBox) {∃Rs.> ∈ T ′ | s ∈ IND}.

Let E and E′ be formulas such that:

– either E′ occurs in a premise of a program of T ′ and E is obtained from E′ by
replacing every occurrence of ∀ by ∀∃

– or E is C or a subformula of C and E′ is obtained from E by replacing every subfor-
mula of the form ∀∃Rt.D by (∀Rt.D u ∃Rt.D);

– and furthermore, if t ∈ IND3 then a formula of the form ∀Rt.D may occur in E′ only
in the form (∀Rt.D u ∃Rt.D

′) for some arbitrary D′.

It is straightforward to prove by induction on the structures of E and E′ that, for every
x ∈ ∆I , we have that I, x |= E′ iff I, x |=Sem2,R E. As a consequence, I |= (R, T ′,A) iff
I |=Sem2,R (R, T ,A), and I |= C ′(a) iff I |=Sem2,R C(a). Hence,

(R, T ′,A) |= C ′(a) iff (R, T ,A) |=Sem2,R C(a). (44)

Note that if t ∈ IND3 then the constructor ∀Rt.D may occur in C only in the form
(∀Rt.D u ∃Rt.D

′) for some arbitrary D′. Let C∀∃ be the formula obtained from C by
replacing every subformula ∀Rt.D by ∀∃Rt.D. Similarly as shown above:

– for every x ∈ ∆I , we have that I, x |=Sem2,R C iff I, x |=Sem2,R C∀∃
– for every x ∈ ∆I2 , we have that I2, x |=Sem2,R C iff I2, x |=Sem2,R C∀∃.

Therefore, (R, T ,A) |=Sem2,R C(a) iff (R, T ,A) |=Sem2,R C∀∃(a), and by Theorem 8.1, iff
I2 |=Sem2,R C∀∃(a), and hence, iff I2 |=Sem2,R C(a). By (44), it follows that (R, T ′,A) |=
C ′(a) iff I2 |=Sem2,R C(a), which completes the proof.

Corollary 8.5. Let (R, T ′,A) be a Horn knowledge base in Reg and C be a positive
formula without the constructor ∀∃ such that, for every t ∈ IND,

– either the constructor ∀Rt.D does not occur in C and the premises of the program
clauses of T ′
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– or ∃Rs.> ∈ T ′ for every s ∈ IND occurring in some word accepted by At

– or L(At) = {t} and the constructor ∀Rt.D may occur in C and the premises of the
program clauses of T ′ only in the form (∀Rt.D u ∃Rt.D

′) for some arbitrary D′.

Then

1. for T being the deterministic version of T ′ and I1 being a least Sem1-pseudo-model
of (R, T ,A), the approximation of checking (R, T ′,A) |= C(a) by checking I1 |=Sem1

C(a) is exact
2. checking (R, T ′,A) |= C(a) can be done in polynomial time in the size of A.

Proof. The first assertion immediately follows from Theorem 8.4 (as C ′ = C). For the
second assertion, note that checking whether (R, T ′,A) |= C(a) can be done by construct-
ing I1 and checking whether I1 |=Sem1 C(a). By Proposition 7.8, I1 can be constructed
in polynomial time in the size of A. Checking whether I1 |=Sem1 C(a) can be done in
polynomial time in the size of I1 (by Proposition 6.9), and hence in polynomial time in
the size of A.

9 Conclusions

Since instance checking is a basic task of knowledge bases in DLs, developing a good
formalism and an efficient decision procedure for the instance checking problem is desir-
able for practical applications. The data complexity of this problem is coNP-hard even
for Horn knowledge bases in ALC (with R = ∅). In this paper, we have studied weaken-
ings with PTime data complexity of the instance checking problem for Horn knowledge
bases in Reg. We have established important cases when the weakenings give an exact
approximation.

Given a Horn knowledge base (R, T ′,A) in Reg and a positive formula C without the
constructor ∀∃, we propose to approximate the checking whether (R, T ′,A) |= C(a) by
checking whether I1 |=Sem1 C(a), where I1 is the least Sem1-pseudo-model of (R, T ,A)
constructed by Algorithm 1 for T being the deterministic version of T ′. This is a weak-
ening in the sense that I1 |=Sem1 C(a) implies (R, T ′,A) |= C(a). The pseudo-model I1
is constructed in polynomial time in the size of A, and checking I1 |=Sem1 C(a) can be
done in polynomial time in the size of I1 and C. That is, the weakening has PTime data
complexity.

The approximation is exact for the cases mentioned in Corollary 8.5. The examples
given in Section 5 show that the assumptions of these cases are acceptable for certain
domains of application. Our results stated in Corollary 8.5 are the strongest ones that
are known about Horn fragments with PTime data complexity of the description logics
ALC and Reg. Recall that all of DHL [16], Horn-SHIQ [20], DL-Lite [5] and EL [22,
24, 37] disallow the constructor ∀R.C (and do not use ∀∃R.C) in premises of program
clauses and goals. Also recall that our notion of regular RBox of Reg is strictly more
general than the notion of RBox of transitive roles and role hierarchies used in [16, 20,
5, 37] and the notion of acyclic generalized RBox used in [24] (and called there “regular
RBox”).

Our method is therefore very promising for practical applications of DLs. It has
been developed using bottom-up computation and to obtain a good theoretical result
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(PTime data complexity). For efficiency, optimizations are expected, e.g. by combining
the method with the top-down (goal-directed) approach to reduce the search space. We
briefly discuss some optimizations in Appendix B. As future work, we will extend our
method to cope also with inverse roles and number restrictions.

References

1. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In L.P. Kaelbling and A. Saffiotti,
editors, Proceedings of IJCAI’2005, pages 364–369. Morgan-Kaufmann Publishers, 2005.

2. F. Baader and U. Sattler. An overview of tableau algorithms for description logics. Studia Logica,
69:5–40, 2001.

3. M. Baldoni, L. Giordano, and A. Martelli. A tableau for multimodal logics and some (un)decidability
results. In H.C.M. de Swart, editor, Proceedings of TABLEAUX’1998, LNCS 1397, pages 44–59, 1998.

4. S. Brandt. Polynomial time reasoning in a description logic with existential restrictions, GCI axioms,
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24. M. Krötzsch, S. Rudolph, and P. Hitzler. Conjunctive queries for a tractable fragment of OWL 1.1.
In Proceedings of ISWC’2007 + ASWC’2007, LNCS 4825, pages 310–323. Springer, 2007.

25. A. Mateescu and A. Salomaa. Formal languages: an introduction and a synopsis. In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages - Volume 1: Word, Language, Grammar,
pages 1–40. Springer, 1997.

26. J. McCarthy. First order theories of individual concepts and propositions. Machine Intelligence,
9:120–147, 1979.

27. L.A. Nguyen. Constructing the least models for positive modal logic programs. Fundamenta Infor-
maticae, 42(1):29–60, 2000.

28. L.A. Nguyen. On the complexity of fragments of modal logics. In R.A. Schmidt et al., editor,
Advances in Modal Logic - Volume 5, pages 249–268. King’s College Publications, 2004.

29. L.A. Nguyen. A bottom-up method for the deterministic Horn fragment of the description logic ALC.
In M. Fisher et al., editor, Proceedings of JELIA 2006, LNAI 4160, pages 346–358. Springer-Verlag,
2006.

30. L.A. Nguyen. Multimodal logic programming. Theoretical Computer Science, 360:247–288, 2006.
31. L.A. Nguyen. On the deterministic Horn fragment of test-free PDL. In I. Hodkinson and Y. Venema,

editors, Advances in Modal Logic - Volume 6, pages 373–392. King’s College Publications, 2006.
32. L.A. Nguyen. Approximating Horn knowledge bases in regular description logics to have PTIME
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A Hardness of the General Horn Fragment of ALC

Theorem A.1. The data complexity of the instance checking problem for the general
Horn fragment of ALC is coNP-complete. That is, given R = ∅, a positive logic program
T , an ABox A, a positive formula C without the constructor ∀∃, and an individual a,
checking whether (R, T ,A) |= C(a) is coNP-complete w.r.t. the size of A.

Proof. The upper bound (coNP) follows from the result of Hustadt et al. [20] that the
data complexity of the instance checking problem in SHIQ is coNP-complete. For the
lower bound, we show that the checking problem (∅, T ,A) 2 C(a) is NP-hard w.r.t. the
size of A by using a reduction from the 3SAT problem, which is known to be NP-hard.
The technique used for this comes from our proof of that checking satisfiability of a set of
Horn formulas with modal depth bounded by 2 in the modal logic K is NP-complete [28].

The 3SAT problem is to check satisfiability of a clause set X = {C1, . . . , Cm}, where
Ci = L1i ∨ L2i ∨ L3i and L1i, L2i, L3i are classical literals. Given such a set X, we
construct in polynomial time a positive logic program T and an ABox A such that X is
satisfiable iff (∅, T ,A) 2 inconsistent(τ), where inconsistent is an atomic concept and
τ is an individual.

Let a1, . . . , al be all the primitive propositions occurring in the clauses of X. We use
the same name ai, for 1 ≤ i ≤ l, to denote an individual (corresponding to the primitive
proposition ai). We use also individuals c1, . . . , cm (where ci corresponds to the clause
Ci) and τ (as the actual world in a Kripke model).

We use atomic concepts C, L1, L2, L3, T , F , tau, inconsistent, which have the
following intuition:

– C(x) means that x = ci for some 1 ≤ i ≤ m and corresponds to clause Ci.
– L1(x) means that x = ci for some 1 ≤ i ≤ m and the 1st literal of Ci has value true.
– L2(x) and L3(x) have a similar meaning as L1(x).
– T (x) (resp. F (x)) means that x is one of a1, . . . , al and its corresponding primitive

proposition has value true (resp. false).
– tau(x) means x = τ ,
– inconsistent is interpreted by the empty set (like ¬>).

Let IND = {0, 1, 2, p1, p2, p3, n1, n2, n3} and

A = {C(c1), . . . , C(cm), tau(τ)} ∪ {R0(τ, ai) | 1 ≤ i ≤ l} ∪
{Rpi(cj , ak) | 1 ≤ i ≤ 3, 1 ≤ j ≤ m, 1 ≤ k ≤ l and ak is the ith literal of Cj} ∪
{Rni(cj , ak) | 1 ≤ i ≤ 3, 1 ≤ j ≤ m, 1 ≤ k ≤ l and ¬ak is the ith literal of Cj}.

Let T be the positive logic program consisting of the following program clauses:

C u ∃R1.> v L1 (45)

C u ∃R2.> v L2 (46)

C u ∀R1.inconsistent u ∀R2.inconsistent v L3 (47)

L1 v ∀Rp1 .T u ∀Rn1 .F (48)

L2 v ∀Rp2 .T u ∀Rn2 .F (49)

L3 v ∀Rp3 .T u ∀Rn3 .F (50)

tau u ∃R0.(T u F ) v inconsistent (51)
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We show that X is satisfiable iff (∅, T ,A) 2 inconsistent(τ).
Suppose that X is satisfied by an assignment V . We build a model I of T and A

such that I 2 inconsistent(τ). Let ∆I consist of all the mentioned individuals plus ω.
For x being one of the individuals, let xI = x. Let inconsistentI = ∅ and let the
interpretation of C, R0, Rp1 , Rp2 , Rp3 , Rn1 , Rn2 and Rn3 in I be specified by the ABox
A (e.g. CI = {c1, . . . , cm}). Let the interpretation of the other atomic concepts and roles
be specified as follows:

T I = {ai | 1 ≤ i ≤ l, V (ai) = true}
F I = {ai | 1 ≤ i ≤ l, V (ai) = false}
L1I = {ci | 1 ≤ i ≤ m, the 1st literal of Ci has value true by using V }
L2I = {ci | 1 ≤ i ≤ m, the 2nd literal of Ci has value true by using V }
L3I = {ci | 1 ≤ i ≤ m, the 3rd literal of Ci has value true by using V }
RI1 = {(ci, ω) | 1 ≤ i ≤ m, ci ∈ L1I}
RI2 = {(ci, ω) | 1 ≤ i ≤ m, ci ∈ L2I}

We need to show that I is a model of T .
I validates program clauses (45) and (46) of T due to the definition of RI1 and RI2 .
Consider program clause (47) of T . Suppose that x ∈ CI and x /∈ L3I . We show that

x /∈ (∀R1.inconsistent u ∀R2.inconsistent)
I . We have that x = ci for some 1 ≤ i ≤ m

and the 3rd literal of Ci has value false by using V . Thus, either the 1st literal or the
2nd literal of Ci has value true by using V . It follows that either ci ∈ L1I or ci ∈
L2I . Consequently, either RI1 (ci, ω) or RI2 (ci, ω) holds. Hence x /∈ (∀R1.inconsistent u
∀R2.inconsistent)

I since inconsistentI = ∅.
It is easy to check that I validates program clauses (48), (49), (50) of T .
Since T I ∩ F I = ∅, I validates program clause (51) of T .
For the converse, suppose that (∅, T ,A) 2 inconsistent(τ), i.e. there exists a model

I of T and A such that τI /∈ inconsistentI . We show that X is satisfiable.
As I validates program clause (51) of T but τI /∈ inconsistentI , no aIi belongs to

both T I and F I . Let V be the assignment such that, for 1 ≤ i ≤ l, V (ai) = true iff
aIi ∈ T I .

Since I validates program clauses (45), (46), (47) of T , for every 1 ≤ i ≤ m, either
cIi ∈ L1I or cIi ∈ L2I or cIi ∈ L3I . Suppose that cIi ∈ L1I . We show that the 1st literal
of Ci has value true by using V . Since I validates program clause (48) of T , we have
that cIi ∈ (∀Rp1 .T )I and cIi ∈ (∀Rn1 .F )I . If the 1st literal of Ci is ak for some 1 ≤ k ≤ l,
then aIk ∈ T I (since Rp1(ci, ak) ∈ A and I is a model of A), and hence V (ak) = true
and Ci has value true by using V . If the 1st literal of Ci is ¬ak for some 1 ≤ k ≤ l, then
aIk ∈ F I (since Rn1(ci, ak) ∈ A and I is a model of A), and hence aIk /∈ T I , and hence
V (ak) = false and Ci has value true by using V . The cases when cIi ∈ L2I or cIi ∈ L3I

can be handled in a similar way. Hence X is satisfied by V , which completes the proof. C

B Optimizations

We briefly discuss some optimizations for Algorithm 1 and the instance checking problem.
The loop at Step 2 of Algorithm 1 can be done only for x ∈ ∆ that are reachable

from ∆0 (via a path using edges of U0). The reason is that, an iteration of that loop for
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an x unreachable from ∆0 does not affect the part of the model graph related with the
elements of ∆ that are reachable from ∆0, and at the end only such a part is essential
for the result of the algorithm.

Consider the procedure Simulate-Changing-Content(x, Γ ), which is called in Algo-
rithm 1. Observe that, for its calls in Algorithm 1, Γ depends only on x, C(x) and
the selected formula C ∈ C(x) at Step 2 of Algorithm 1. The first instruction of that
procedure set x∗ := Find(Γ ). If x∗ = x then, of course, the remaining instructions of
the procedure do not have any effect and can therefore be ignored. In the case x∗ is a
newly created element (different from x), then the mentioned remaining instructions of
the procedure are expected to be executed not only at the moment of the calling but also
at later moments when there appear new connections via E or U to x. That is, we can
remember x∗ as a replacement of x, and whenever there appears a connection via E or
U to x we can immediately direct the connection to x∗ (instead of x).

Steps 3a and 3b of Algorithm 1 can be moved to Step 2 as a substep 2d for the case
C = ∀Rt.D, assuming that the two occurrences of C(x) in those steps are changed to C.
Assume that we have this modification. Then, to reduce redundant computation, when a
formula C of C(x) has been processed at Step 2 we mark it as resolved if it is not of the
form D v D′. We will select a formula C of C(x) for consideration at Step 2 only if it is
not resolved. Furthermore, when simulating the role of x by a newly created element x∗
in an execution of Simulate-Changing-Content(x, Γ ) at Step 2(a)ii or 2(b)ii:

– we can transfer the marks (resolved or the default value unresolved) of the formulas
of C(x) to the formulas of C(x∗) (note that C(x) ⊆ C(x∗));

– if E(x,∃Rt.D) = z then we can set E(x∗,∃Rt.D) := z, for any ∃Rt.D ∈ C(x);
– if U(x,Rt) = z then we can set U(x∗, Rt) := z, for any t ∈ IND.

Similar modifications can be made for the pair y and y∗ in the mentioned new step 2d
(the case C = ∀Rt.D) if y∗ is a newly created element of ∆.

The selection orders of x ∈ ∆ (at Steps 2 and 3) and C ∈ C(x) (at Steps 2), as
well as the execution order of Steps 2a, 2b, 2c, 2d (of the modified version) and 3c (of
the original version) are not essential for correctness and the PTime data complexity of
the algorithm. However, they may affect efficiency of the algorithm. Different orders can
be experimented with to find an efficient one. For example, one may give a preference
to realizing requirements of the form D u D′, then creating connections of the form
U(x,Rt) = y, then realizing requirements of the form ∀Rt.D, then realizing requirements
of the form ∃Rt.D or D v D′.

Given a Horn knowledge base (R, T ,A) in Reg and a positive formula C such that
the constructors ∀ and ∀∃ do not occur in C and the premises of the program clauses of
T , by using the relational translation (and Skolemization), one can translate the problem
of checking (R, T ,A) |= C(a) to the problem of checking unsatisfiability of a set Γ of
Horn clauses in predicate logic. Analyzing the dependencies of predicates, one may ignore
certain clauses of Γ that are irrelevant for deriving the empty clause. This corresponds to
a certain simplification of the knowledge base (R, T ,A) w.r.t. the query specified by C(a).
That is, analyzing dependency of predicates of Γ , one may reduce the knowledge base
(R, T ,A) to a smaller one (R′, T ′,A′) such that (R, T ,A) |= C(a) iff (R′, T ′,A′) |= C(a).


