Introduction to Combinatorics

Homework 9, due date: 2020-05-28

1. Let G be a d-regular simple undirected graph on n vertices. Let $\lambda_{1} \geq \ldots \geq \lambda_{n}$ be eigenvalues of the adjacency matrix of G. Show that $\lambda_{k}=d$ if and only if G has at least k connected components.
2. Let $G=(V, E)$ be a d-regular simple undirected graph. For a set $S \subseteq V$ let $|\partial S|$ be the number of edges going from S to its complement. Show that for any $S \subseteq V$ we have $|\partial S| \leq$ $\frac{d-\lambda_{n}}{2 d}|E|$, where λ_{n} is the smallest eigenvalue of the adjacency matrix of G.
3. Let $G=(V, E)$ be an undirected simple graph. Let T denote the number of triangles in it. Prove that $9 T^{2} \leq 2|E|^{3}$.
4. We say that a d-regular simple undirected graph $G=(V, E)$ on n vertices is an (n, d, c) vertex expander if the neighborhood $N(S)=\{v \in V \backslash S: \exists u \in S, u v \in E\}$ of every set S with $|S| \leq n / 2$ satisfies $|N(S)| \geq c|S|$. Show that the diameter of G is at most $O\left(\log _{1+c}(n)\right)$ (i.e. there exists an absolute constant B such that the diameter of G is at $\operatorname{most} B \log _{1+c}(n)$).
5. Edges of K_{16} were colored in red, blue and green such that both red and blue edges form a Clebsch graph. Prove that green edges form a Clebsch graph as well. (Computer-assisted proofs will not be accepted!)
