Introduction to Combinatorics

Homework 8, due date: 2020-05-21

- 1. Let c > 0 be a constant and let $p_n = c \frac{\ln n}{n}$. Consider an event $C_n = \{G(n, p_n) \text{ has no isolated vertices} \}$.
 - (a) Show that if c < 1 then $\mathbb{P}(\mathcal{C}_n) \to 0$ as $n \to \infty$.
 - (b) Show that if c > 1 then $\mathbb{P}(\mathcal{C}_n) \to 1$ as $n \to \infty$.
- 2. Let $k, d \ge 1$ be integers. Let \mathcal{F} be a family of k-subsets of a give set X. Suppose that every point in X belongs to at most d members of \mathcal{F} . Show that there exists a function $f: X \to \{-1, 1\}$ such that for any set $A \in \mathcal{F}$ we have

$$\left|\sum_{a \in A} f(a)\right| \le \sqrt{2k \log(2ekd)}.$$

- 3. Prove that $p_n := \frac{\ln n}{n}$ is a threshold function for connectivity of $G(n, p_n)$.
- 4. Suppose $f : \{-1, 1\}^n \to \mathbb{R}$ is not identically zero. Let $f = \sum_S a_S w_S$ be its Fourier expansion and let $\deg(f) = \max\{|S|: a_S \neq 0\}$. Show that $|\{x: f(x) \neq 0\}| \ge 2^{n-\deg(f)}$.
- 5. Suppose $f : \{-1, 1\}^n \to \{-1, 1\}$ depends on all its variables (for any *i* there exists at least one point *x* such that flipping the *i*th bit of *x* changes the value f(x)). Let $f = \sum_S a_S w_S$ be its Fourier expansion and let $d = \max\{|S|: a_S \neq 0\}$. Show that $n \leq d2^d$. In particular $d \geq \frac{1}{2} \ln n$.
- 6. Let G_n be the hypercube graph, namely $G_n = (\{0, 1\}^n, E)$, where $x \sim y$ if |x y| = 1. Show that for any $A \subseteq \{-1, 1\}^n$ we have $|\partial A| \ge |A|(n \log_2 |A|)$.
- 7. Show that there exists $f : \{-1, 1\}^n \to \{-1, 1\}$ depending on all its variables (for any *i* there exists at least one point *x* such that flipping the *i*th bit of *x* changes the value f(x)) and such that $\deg(f) = O(\ln n)$.