Introduction to Combinatorics

Homework 8, due date: 2020-05-21

1. Let $c>0$ be a constant and let $p_{n}=c \frac{\ln n}{n}$. Consider an event $\mathcal{C}_{n}=\left\{G\left(n, p_{n}\right)\right.$ has no isolated vertices $\}$.
(a) Show that if $c<1$ then $\mathbb{P}\left(\mathcal{C}_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
(b) Show that if $c>1$ then $\mathbb{P}\left(\mathcal{C}_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$.
2. Let $k, d \geq 1$ be integers. Let \mathcal{F} be a family of k-subsets of a give set X. Suppose that every point in X belongs to at most d members of \mathcal{F}. Show that there exists a function $f: X \rightarrow\{-1,1\}$ such that for any set $A \in \mathcal{F}$ we have

$$
\left|\sum_{a \in A} f(a)\right| \leq \sqrt{2 k \log (2 e k d)}
$$

3. Prove that $p_{n}:=\frac{\ln n}{n}$ is a threshold function for connectivity of $G\left(n, p_{n}\right)$.
4. Suppose $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ is not identically zero. Let $f=\sum_{S} a_{S} w_{S}$ be its Fourier expansion and let $\operatorname{deg}(f)=\max \left\{|S|: a_{S} \neq 0\right\}$. Show that $|\{x: f(x) \neq 0\}| \geq 2^{n-\operatorname{deg}(f)}$.
5. Suppose $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ depends on all its variables (for any i there exists at least one point x such that flipping the i th bit of x changes the value $f(x))$. Let $f=\sum_{S} a_{S} w_{S}$ be its Fourier expansion and let $d=\max \left\{|S|: a_{S} \neq 0\right\}$. Show that $n \leq d 2^{d}$. In particular $d \geq \frac{1}{2} \ln n$.
6. Let G_{n} be the hypercube graph, namely $G_{n}=\left(\{0,1\}^{n}, E\right)$, where $x \sim y$ if $|x-y|=1$. Show that for any $A \subseteq\{-1,1\}^{n}$ we have $|\partial A| \geq|A|\left(n-\log _{2}|A|\right)$.
7. Show that there exists $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ depending on all its variables (for any i there exists at least one point x such that flipping the i th bit of x changes the value $f(x)$) and such that $\operatorname{deg}(f)=O(\ln n)$.
