Introduction to Combinatorics

Homework 4, due date: 2020-03-26

1. Let p be a prime number, A be a subset of \mathbb{Z}_{p}. Prove that $|A \oplus A| \geq \min (p, 2|A|-3)$, where $B \oplus C=\{b+c: b \in B, c \in C, b \neq c\}$.
2. Let $s(i, j)= \begin{cases}1 & \text { if } i \leq j \\ -1 & \text { if } i>j\end{cases}$

Determine the coefficient next to $x_{1} x_{2} \ldots x_{2020}$ in $\prod_{i=1}^{2020}\left(\sum_{j=1}^{2020} s(i, j) x_{j}\right)$
3. Erdős-Ginzburg-Ziv theorem says that for every positive integer n and every set of integers of size $2 n-1$ there exists a subset of this set, having cardinality n, so that the sum of its elements is divisible by n. In the exercises we proved it when n is a prime number. Conclude its general version.
4. Let n be a positive integer and $S=\{(x, y, z): x, y, z \in\{0, \ldots, n\}, x+y+z>0\}$. Find smallest number k so that there exist k planes whose sum contains S but doesn't contain $(0,0,0)$.
5. Let A be a finite nonempty subset of \mathbb{Z}. Show that $|A+A| \geq 2|A|-1$. Moreover, show that if $|A+A|=2|A|-1$ then A is an arithmetic progression.
6. A set $C \subseteq \mathbb{R}$ is called nice if C is a finite sum of closed disjoint intervals $I_{i}=\left[a_{i}, b_{i}\right]$, where $a_{i}<b_{i}$ for $i=1, \ldots, n$ and $n \geq 1$. Then the length of C is defined as $|C|=\sum_{i=1}^{n}\left|b_{i}-a_{i}\right|$. Show that if A and B are nice sets, then the set $A+B=\{a+b: a \in A, b \in B\}$ is also nice and $|A+B| \geq|A|+|B|$.

