Introduction to Combinatorics

Homework 4, due date: 2020-03-26

- 1. Let p be a prime number, A be a subset of \mathbb{Z}_p . Prove that $|A \oplus A| \ge \min(p, 2|A| 3)$, where $B \oplus C = \{b + c : b \in B, c \in C, b \neq c\}.$
- 2. Let $s(i,j) = \begin{cases} 1 & \text{if } i \leq j \\ -1 & \text{if } i > j \end{cases}$

Determine the coefficient next to $x_1x_2...x_{2020}$ in $\prod_{i=1}^{2020} (\sum_{j=1}^{2020} s(i,j)x_j)$

- 3. Erdős-Ginzburg-Ziv theorem says that for every positive integer n and every set of integers of size 2n 1 there exists a subset of this set, having cardinality n, so that the sum of its elements is divisible by n. In the exercises we proved it when n is a prime number. Conclude its general version.
- 4. Let n be a positive integer and $S = \{(x, y, z) : x, y, z \in \{0, ..., n\}, x + y + z > 0\}$. Find smallest number k so that there exist k planes whose sum contains S but doesn't contain (0, 0, 0).
- 5. Let A be a finite nonempty subset of \mathbb{Z} . Show that $|A + A| \ge 2|A| 1$. Moreover, show that if |A + A| = 2|A| 1 then A is an arithmetic progression.
- 6. A set $C \subseteq \mathbb{R}$ is called *nice* if C is a finite sum of closed **disjoint** intervals $I_i = [a_i, b_i]$, where $a_i < b_i$ for i = 1, ..., n and $n \ge 1$. Then the *length* of C is defined as $|C| = \sum_{i=1}^n |b_i a_i|$. Show that if A and B are nice sets, then the set $A + B = \{a + b : a \in A, b \in B\}$ is also nice and $|A + B| \ge |A| + |B|$.