Introduction to Combinatorics

Piotr Nayar, homework III, due date: 19/03/2020

1. Suppose $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$ are such that $\left|v_{i}-v_{j}\right|=1$ for $i \neq j$. Show that $n \leq d+1$. Is this bound sharp?
2. For $u=\left(u_{1}, \ldots, u_{d}\right) \in \mathbb{R}^{d}$ we define $\|u\|_{\infty}=\max _{i=1, \ldots, d}\left|u_{i}\right|$. Suppose v_{1}, \ldots, v_{m} be vectors in \mathbb{R}^{d} such that $\left\|v_{i}-v_{j}\right\|_{\infty}=1$ for all $i \neq j$. Show that $m \leq 2^{d}$. Is this bound sharp?
3. Let $N=\frac{1}{2} n(n+1)$. Show that there exist distinct vectors v_{1}, \ldots, v_{N} in \mathbb{R}^{n} and real numbers $a, b>0$ such that $\left|v_{i}-v_{j}\right| \in\{a, b\}$ for all $i \neq j$.
4. Let $B_{2}^{d}=\left\{x \in \mathbb{R}^{d}:|x| \leq 1\right\}$.
(a) Show that B_{2}^{d} can be partitioned into $d+1$ sets of diameter smaller than 2 .
(b) Is there a partition of B_{2}^{d} into fewer than $d+1$ sets of diameter smaller than 2 ?
5. Let A be a finite subset of $[0,1)$ and let l be the cardinality of $A \cup(-A)$. Suppose v_{1}, \ldots, v_{m} are unit vectors in \mathbb{R}^{d} such that $\left|\left\langle v_{i}, v_{j}\right\rangle\right| \in A$ for every $i \neq j$. Show that $m \leq\binom{ d+l-1}{l}$.
6. Let $u_{1}, u_{2}, \ldots, u_{m}$ be non-zero vectors in \mathbb{R}^{d} satisfying the condition $\left\langle u_{i}, u_{j}\right\rangle \leq 0$ for all $i \neq j$. Show that $m \leq 2 d$. Is this bound tight?
7. Let $\Delta(G)$ be the maximum degree of a vertex in G and let $\chi(G)$ be the chromatic number ${ }^{1}$ of G. Prove that $\chi(G) \leq \Delta(G)+1$.
8. Let G be a graph on n vertices, and $\alpha(G)$ be its independence number, i.e., the maximal number of vertices, no two of which are joined by an edge. Show that $\frac{n}{\alpha(G)} \leq \chi(G) \leq$ $n-\alpha(G)+1$.
9. Let $\mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}$ be three basis of \mathbb{R}^{n}. Must there exist $v_{i} \in \mathcal{B}_{i}$ for $i=1,2,3$ such that v_{1}, v_{2}, v_{3} are pairwise non-orthogonal?
[^0]
[^0]: ${ }^{1}$ Chromatic number of a graph $G=(V, E)$ is the smallest number of colors needed to color the vertices of G in such a way that no two adjacent vertices receive the same color.

