Introduction to Combinatorics

Piotr Nayar, homework III, due date: 19/03/2020

- 1. Suppose $v_1, \ldots, v_n \in \mathbb{R}^d$ are such that $|v_i v_j| = 1$ for $i \neq j$. Show that $n \leq d + 1$. Is this bound sharp?
- 2. For $u=(u_1,\ldots,u_d)\in\mathbb{R}^d$ we define $||u||_{\infty}=\max_{i=1,\ldots,d}|u_i|$. Suppose v_1,\ldots,v_m be vectors in \mathbb{R}^d such that $||v_i-v_j||_{\infty}=1$ for all $i\neq j$. Show that $m\leq 2^d$. Is this bound sharp?
- 3. Let $N = \frac{1}{2}n(n+1)$. Show that there exist distinct vectors v_1, \ldots, v_N in \mathbb{R}^n and real numbers a, b > 0 such that $|v_i v_j| \in \{a, b\}$ for all $i \neq j$.
- 4. Let $B_2^d = \{x \in \mathbb{R}^d : |x| \le 1\}.$
 - (a) Show that B_2^d can be partitioned into d+1 sets of diameter smaller than 2.
 - (b) Is there a partition of B_2^d into fewer than d+1 sets of diameter smaller than 2?
- 5. Let A be a finite subset of [0,1) and let l be the cardinality of $A \cup (-A)$. Suppose v_1, \ldots, v_m are unit vectors in \mathbb{R}^d such that $|\langle v_i, v_j \rangle| \in A$ for every $i \neq j$. Show that $m \leq \binom{d+l-1}{l}$.
- 6. Let u_1, u_2, \ldots, u_m be non-zero vectors in \mathbb{R}^d satisfying the condition $\langle u_i, u_j \rangle \leq 0$ for all $i \neq j$. Show that $m \leq 2d$. Is this bound tight?
- 7. Let $\Delta(G)$ be the maximum degree of a vertex in G and let $\chi(G)$ be the chromatic number of G. Prove that $\chi(G) \leq \Delta(G) + 1$.
- 8. Let G be a graph on n vertices, and $\alpha(G)$ be its independence number, i.e., the maximal number of vertices, no two of which are joined by an edge. Show that $\frac{n}{\alpha(G)} \leq \chi(G) \leq n \alpha(G) + 1$.
- 9. Let $\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3$ be three basis of \mathbb{R}^n . Must there exist $v_i \in \mathcal{B}_i$ for i = 1, 2, 3 such that v_1, v_2, v_3 are pairwise non-orthogonal?

¹Chromatic number of a graph G = (V, E) is the smallest number of colors needed to color the vertices of G in such a way that no two adjacent vertices receive the same color.