Introduction to Combinatorics

Piotr Nayar, homework II, due date: 12/03/2020

- 1. Suppose $n_1 < n_2 < \ldots < n_{1000}$ be positive integers. Prove that one can either select 28 of them, no one of which divides any other, or 38 of them, each dividing the following one.
- 2. Let $r \ge 1$ be an integer. Let \mathcal{F} be a family of distinct subsets of a given finite set, such that for every distinct $A, B \in \mathcal{F}$ we have

$$|A \cap B| < \frac{1}{r} \min\{|A|, |B|\}.$$

Show that for all distinct $A_0, A_1, \ldots, A_r \in \mathcal{F}$ we have $A_0 \nsubseteq A_1 \cup A_2 \cup \ldots \cup A_r$.

3. Let G = (V, E) be a graph on *n* vertices and let t(G) be the number of triangles in it. Show that

$$t(G) \ge \frac{|E|}{3n}(4|E| - n^2).$$

- 4. A chain of subsets $A_1 \subset \ldots \subset A_k$ of an *n* element set is called *symmetric* if $|A_1| + |A_k| = n$ and $|A_{i+1}| = |A_i| + 1$ for $i = 1, \ldots, k - 1$. Prove that the family of all subsets of a given *n* element set can be partitioned into $\binom{n}{\lfloor n/2 \rfloor}$ disjoint symmetric chains.
- 5. Let $r \ge 1$ be an integer. Show that there exists an integer $n_0 = n_0(r)$ with the following property: whenever $n \ge n_0$ and we color all non-empty subsets of $\{1, \ldots, n\}$ with r colors, there exist disjoint non-empty subsets A and B, such that A, B and $A \cup B$ have the same color.