Introduction to Combinatorics

Homework - special I, due date: 2020-06-11

1. Let $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ be two sequences. Show that

$$
\forall_{n \geq 0} \quad a_{n}=\sum_{i}\binom{n}{i}(-1)^{i} b_{i} \quad \Longleftrightarrow \quad \forall_{n \geq 0} \quad b_{n}=\sum_{i}\binom{n}{i}(-1)^{i} a_{i}
$$

2. Let D_{n} be the number of permutations with no fixed points (derangements).
(a) Show that $n!=\sum_{i}\binom{n}{i} D_{i}$.
(b) Show that $D_{n}=n!\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}$.
3. Let $\left[\begin{array}{l}n \\ k\end{array}\right]$ be the Stirling number of the first kind, that is, the number of permutations of $[n]$ with k cycles. Let $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ be the Stirling number of the second kind, that is, the number of ways to partition the set [n] into k unlabelled subsets.
(a) Show that $\left[\begin{array}{l}n \\ k\end{array}\right]=(n-1)\left[\begin{array}{c}n-1 \\ k\end{array}\right]+\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]$.
(b) Show that $\left\{\begin{array}{l}n \\ k\end{array}\right\}=k\left\{\begin{array}{c}n-1 \\ k\end{array}\right\}+\left\{\begin{array}{c}n-1 \\ k-1\end{array}\right\}$.
(c) Let $x^{\bar{n}}=x(x+1) \ldots(x+n-1)$ and $x^{\underline{n}}=x(x-1) \ldots(x-n+1)$. Show that we have $x^{n}=\sum_{k}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{\underline{k}}$ and $x^{\bar{n}}=\sum_{k}\left[\begin{array}{l}n \\ k\end{array}\right] x^{k}$.
(d) Prove that $\sum_{i}\left\{\begin{array}{c}n \\ i\end{array}\right\}\left[\begin{array}{l}i \\ k\end{array}\right](-1)^{n-i}=\delta_{n=k}$ and $\sum_{i}\left[\begin{array}{c}n \\ i\end{array}\right]\left\{\begin{array}{l}i \\ k\end{array}\right\}(-1)^{n-i}=\delta_{n=k}$. Here δ stands for the Kronecker delta.
4. Let B_{n} be the number of partitions of [n] into blocks, namely $B_{n}=\sum_{k}\left\{\begin{array}{l}n \\ k\end{array}\right\}$ (Bell numbers).
(a) Show that $B_{n+1}=\sum_{k}\binom{n}{k} B_{k}$.
(b) Define $B(x)=\sum_{n} \frac{B_{n}}{n!} x^{n}$. Show that $B^{\prime}(x)=e^{x} B(x)$ and find $B(x)$.
(c) Show that $B_{n}=\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n}}{k!}$.
5. Let R_{n} be the number of ways to write n as a sum of pairwise different non-negative integers. Let S_{n} be the number of ways to write n as a sum of odd integers (permutation of numbers gives the same division). Using generating functions show that $R_{n}=S_{n}$.
6. Let P_{n} be the number of ways to write n as a sum of positive summands, written in a non-increasing order (partitions). Show that $n P_{n}=\sum_{k=0}^{n-1} \sigma(n-k) P_{k}$, where $\sigma(n)=\sum_{k \mid n} k$.
7. (Inclusion-exclusion principle) Let A_{1}, \ldots, A_{n} be subsets of a finite set X. Let $S_{j}=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{j} \leq n} \mid A_{i_{1}} \cap$ $A_{i_{2}} \cap \ldots \cap A_{i_{j}} \mid$ and $S_{0}=|X|$. Let D_{k} be the number of elements of X belonging to precisely k subset A_{i}. Show that $D(k)=\sum_{j \geq k}\binom{j}{k}(-1)^{j-k} S_{j}$. In particular $D(0)=\sum_{j \geq 0}(-1)^{j} S_{j}$.
Show that the number of surjective functions $f:\{1, \ldots, r\} \rightarrow\{1, \ldots, n\}$ equals $\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}(n-j)^{r}$.
8. Let $a_{0}=-1, a_{1}=-5, a_{2}=-5, a_{3}=2$ and $a_{n+4}=3 a_{n+3}-a_{n+2}-4 a_{n}$ for $n \geq 0$. Find a_{n}.

Remark. Give the final result using only real numbers. Answer: $a_{n}=2 \cos \left(\frac{2}{3} \pi n\right)+2^{n}(n-3)$.
9. Let C_{n} be the number of lattice paths from $(0,0)$ to $(2 n, 0)$ consisting of moves $(1,1)$ and $(1,-1)$ and staying above the x-axis (see the example below). Show that $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$.

10. Prove the following identities (for most of them it is preferable to give combinatorial argument):
(a) $\sum_{j=0}^{k}(-1)^{j}\binom{n}{j}=(-1)^{k}\binom{n-1}{k}$
(b) $\sum_{k=0}^{n} k k^{l}\binom{n}{k}=n^{\underline{l}} 2^{n-l}$.
(c) $\sum_{k}\binom{n}{k}\binom{m}{l-k}=\binom{n+m}{l}$
(d) $\sum_{k=m}^{n}\binom{k}{m}=\binom{n+1}{m+1}$
(e) $\sum_{k=0}^{m}\binom{n+k}{k}=\binom{n+m+1}{m}$
(f) $\sum_{k=0}^{[n / 2]}\binom{n-k}{k}=F_{n+1}$

Here F_{n} is the n-th Fibonacci number.

