Introduction to Combinatorics

Piotr Nayar, homework I, due date: 05/03/2020

- 1. Let A_1, \ldots, A_m and B_1, \ldots, B_m be subsets of a given *n* element set, such that $|A_i \cap B_i|$ is odd for all *i* and $|A_i \cap B_j|$ is even for all $i \neq j$. Prove that $m \leq n$.
- 2. Let $n \leq 2k$ and let A_1, \ldots, A_m be distinct k element subsets of a given set X with n elements. Suppose $A_i \cup A_j \neq X$ for all i, j. Show that $m \leq (1 - \frac{k}{n}) {n \choose k}$.
- 3. Let A_1, \ldots, A_m and B_1, \ldots, B_m be subsets of a given finite set X such that $A_i \cap B_j = \emptyset$ if and only if i = j. Let $a_i = |A_i|$ and $b_i = |B_i|$. Prove the inequality

$$\sum_{i=1}^m \binom{a_i+b_i}{a_i}^{-1} \le 1.$$

Deduce that if A_1, \ldots, A_m are *a* element subsets and B_1, \ldots, B_m are *b* element subsets of a given finite set X, such that $A_i \cap B_j = \emptyset$ if and only if i = j, then $m \leq \binom{a+b}{a}$. Is this bound tight?

- 4. Let A_1, \ldots, A_m be distinct subsets of an *n* element set, such that $|A_i \cap A_j|$ is even for every $i \neq j$. Show that if n > 5 then $m \leq 2^{[n/2]}$ if *n* is even and $m \leq 2^{[n/2]} + 1$ if *n* is odd. Moreover, $m \leq n+1$ if $n \leq 5$. Are these bounds tight?
- 5. Suppose that \mathcal{F} is a family of distinct subsets of an *n* element set *X*, such that |A| is even and $|A \cap B|$ is even for every $A, B \in \mathcal{F}$. Suppose also that no subset of *X* (not belonging to \mathcal{F}) can be added to \mathcal{F} without violating the above parity rule. Show that $|\mathcal{F}| = 2^{[n/2]}$.
- 6. Let V be an N-dimensional vector space over arbitrary field and let U be an n-dimensional subspace of V. Let v_1, \ldots, v_N be a basis for V. Show that U contains at most 2^n vectors of the form $\sum_{i=1}^N \lambda_i v_i$, where $\lambda_i \in \{0, 1\}$ for all i.