Introduction to Combinatorics

Piotr Nayar, homework I, due date: 05/03/2020

1. Let A_{1}, \ldots, A_{m} and B_{1}, \ldots, B_{m} be subsets of a given n element set, such that $\left|A_{i} \cap B_{i}\right|$ is odd for all i and $\left|A_{i} \cap B_{j}\right|$ is even for all $i \neq j$. Prove that $m \leq n$.
2. Let $n \leq 2 k$ and let A_{1}, \ldots, A_{m} be distinct k element subsets of a given set X with n elements. Suppose $A_{i} \cup A_{j} \neq X$ for all i, j. Show that $m \leq\left(1-\frac{k}{n}\right)\binom{n}{k}$.
3. Let A_{1}, \ldots, A_{m} and B_{1}, \ldots, B_{m} be subsets of a given finite set X such that $A_{i} \cap B_{j}=\emptyset$ if and only if $i=j$. Let $a_{i}=\left|A_{i}\right|$ and $b_{i}=\left|B_{i}\right|$. Prove the inequality

$$
\sum_{i=1}^{m}\binom{a_{i}+b_{i}}{a_{i}}^{-1} \leq 1
$$

Deduce that if A_{1}, \ldots, A_{m} are a element subsets and B_{1}, \ldots, B_{m} are b element subsets of a given finite set X, such that $A_{i} \cap B_{j}=\emptyset$ if and only if $i=j$, then $m \leq\binom{ a+b}{a}$. Is this bound tight?
4. Let A_{1}, \ldots, A_{m} be distinct subsets of an n element set, such that $\left|A_{i} \cap A_{j}\right|$ is even for every $i \neq j$. Show that if $n>5$ then $m \leq 2^{[n / 2]}$ if n is even and $m \leq 2^{[n / 2]}+1$ if n is odd. Moreover, $m \leq n+1$ if $n \leq 5$. Are these bounds tight?
5. Suppose that \mathcal{F} is a family of distinct subsets of an n element set X, such that $|A|$ is even and $|A \cap B|$ is even for every $A, B \in \mathcal{F}$. Suppose also that no subset of X (not belonging to $\mathcal{F})$ can be added to \mathcal{F} without violating the above parity rule. Show that $|\mathcal{F}|=2^{[n / 2]}$.
6. Let V be an N-dimensional vector space over arbitrary field and let U be an n-dimensional subspace of V. Let v_{1}, \ldots, v_{N} be a basis for V. Show that U contains at most 2^{n} vectors of the form $\sum_{i=1}^{N} \lambda_{i} v_{i}$, where $\lambda_{i} \in\{0,1\}$ for all i.

