
Introduction to Combinatorics

Charging and discharging

1 Examples

Example 1. A table has m rows and n columns, where m < n. Some cells of this table are
marked in such a way that every column contains at least one marked cell. Prove that there is a
marked cell such that the number of marked cells in its row is larger than the number of marked
cells in its column.

Solution. Without loss of generality we can delete the empty rows, so we shall assume that in
every row at least one cell is marked. To every column we give a charge −1 and to every row a
charge 1. The total charge is m − n < 0. Now we discharge the row and columns in such a way
that every column and every row distributes its charge evenly to each of its marked cells. After
this procedure there is a marked cell with negative charge. This means that the number of marked
cells in its column was strictly smaller than the number of marked cells in its row.

Example 2. Suppose G is a simple planar graph with minimum degree at least 5. Then G
contains an edge {x, y} such that deg(x) + deg(y) ≤ 11.

Solution. By adding edges we can assume that G is a triangulation (note that if we add edges the
minimum degree only increases and if we �nd an edge {x, y} such that deg(x)+deg(y) ≤ 11 in the
new graph, this edges will also be present in the original graph, since otherwise one of its endpoint
would have degree smaller than 5 in the original graph).

Let V be the set of vertices, E the set of edges, and F the set of faces of our triangulation. Let
d(v) be the degree of v ∈ V and let d(f) be the number of edges on the boundary of f . Here, if
e ∈ E is on the boundary of only one face, then we count it two times. Hence,

∑
f d(f) = 2|E| =∑

v∈V d(v). Thus, by Euler's formula, we have∑
v∈V

(6− d(v)) =
∑
f∈F

(6− 2d(f)) +
∑
v∈V

(6− d(v)) = 6|F | − 4|E|+ 6|V | − 2|E| = 12,

since for every face d(f) = 3. Let us give a charges 6 − d(v) to every vertex v ∈ V . The total
charge is 12. The only vertices with positive initial charge are vertices satisfying d(v) = 5.

Now we discharge the system using a single rule: every vertex of degree 5 gives charge 1
5
to each

of its neighbors. Clearly the total �nal charge is still 12. Thus there are vertices with positive �nal
charge. Suppose v is such a vertex. Then its �nal charge c(v) satis�es 0 < c(v) ≤ 6−d(v)+ 1

5
d(v) =

6− 4
5
d(v). Thus d(v) ≤ 7.

Now we consider three case.
Case 1. Suppose v with positive �nal charge satis�es d(v) = 6. Then its initial charge was 0 and
thus this vertex must have gained some charge. So, one of its neighbors u has degree 5 and {u, v}
is the desired edge.
Case 2. Suppose v with positive �nal charge satis�es d(v) = 5. Then in the discharging process
this vertex gave all its charge to its �ve neighbors. But since the �nal charge is positive, it must
have gained some charge from a vertex of degree 5. Thus, one of its neighbors u has degree 5 and
so {v, u} is the desired edge.



Case 3. Suppose v we positive �nal charge satis�es d(v) = 7. Since the initial charge of v was −1,
v gained charge from at least 6 of its neighbors. The neighbors of v (these are vertices of degree
5). There is one more neighbor of v whose degree we do not control. Since G is a triangulation,
the neighbors of v form a cycle and clearly on this cycle there are two adjacent vertices u1 and u2

of degree 5. Thus {u1, u2} is the desired edge.

2 Problems

1. We are given some number of balls in some some number of containers. Exactly k containers
are empty. We rearrange these balls in such a way that after rearrangement none of the
containers is empty. A ball is called sad if the number of balls in its current container is less
that the number of balls in its previous container before rearrangement. Show that there are
at least k + 1 sad balls. Is this bound tight?

2. There are A analysts and B algebraists taking part in the meeting of the faculty council.
During the meeting every analyst got into a �ght with at least one algebraist and every
algebrais got into a �ght with at most n analysts. It is also known that for every analyst, the
number of his opponents-algebraists is strictly greater than the number of opponents-analysts
of each of these opponents-algebraists. Show that A ≤ n

n+1
B.

3. Let k, n be positive integers. Each cell of an n×n table is �lled with numbers 0 or 1. If some
cell of the table contains 0, then the sum of the element in its cross (that is, in the union of
cells lying with it in the same row or the same column) is at least 2k. Find the least possible
sum of numbers in the table.

4. Show that every simple planar graph with minimal vertex degree at least 3 contains an edge
{x, y} with deg(x) + deg(y) ≤ 13. Is this bound tight?

5. Let C be a convex polyhedron with no quadrilateral and no pentagonal faces. Show that C
has at least 4 triangular faces.

6. Suppose we are give a convex n-gon P on the plane and m red points distinct from the
vertices of the polygon. Assume that each segment between two vertices of the polygon P
contains at least one red point. Prove the inequality

m ≥ n

(
1 +

1

2
+ . . .+

1

[(n− 1)/2]

)
.

7. A square is cut into several triangles. Prove that there are two triangles sharing a common
edge.

8. There are n lines in the plane, such that no three of them share a common point and no two
of them are parallel. These lines split the plane into several parts. Prove that there are at
least n− 2 triangles among them. Is this bound tight?


